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Are the Phenotypes of Preneoplastic Lesions of Significance for
Cancer Prevention? 1. Liver
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Abstract

Preneoplastic lesions have been described for most major sites of human tumour development. They appear to be share
characteristics like monoclonality, induction by all classes of carcinogens and some quantitative relationship to actual
tumours. Extensive studies of preneoplasia in the liver of the rat has indicated that a directed shift in phenotype occurs,
commensurate with greater physiological emphasis on growth potential. One characteristic change is increase in the key
enzyme of the pentose phosphate pathway, glucose 6 phosphatase dehydrogenase as well as elevation in glycolysis, reductio
of gluconeogenesis. In general, the changes observed in preneoplastic liver lesions appear reminiscent of the effects of
insulin or other hormones on hepatocytes, pointing to possible application of specific inhibitors for cancer chemoprevention.
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Introduction organ. Certainly there are essential prerequisites for
classification of preneoplastic lesions, like induction by
The prevailing paradigm in cancer research is tha¢arcinogens and some quantitative relationship to tumour
malignancies arise from preneoplastic focal lesions bylevelopment (Ogiso et al., 1990), but reversibility and
accretion of increasing numbers of genetic alterations, theeterogeneity in potential for malignant conversion
processes underlying neoplastic development being termedmplicate these issues.
initiation, promotion (or modulation) and progression. The
latter, characterized by genetic instability, results in a marke@lonal Origin from Single Cells
biological complexity which is reflected in immense
difficulties in therapeutic control. It is to be hoped that The earliest change that can be discerned in the livers of
advances in molecular understanding will eventuallyrats administered a genotoxic chemical carcinogen, other
generate new approaches to surmount this problem but, #&n those due to toxicity, is the single glutathione-S
an adjunctive strategy, it is clear that preventive efforts mugtansferase positive hepatocyte. These putative ‘initiated’
also be emphasized. One question of importance is therefozells show a time and carcinogen dose-dependence, and their
what can the phenotypes of preneoplastic lesions tell usumbers can be modulated by induction of drug metabolizing
regarding how best to counter their development (primargnzymes (Moore et al., 1988). They may arise preferentially
prevention) or progression towards malignancy (secondariy the mid-zone in the liver although this has been disputed
prevention). (Kato et al., 1993). Whatever, the evidence of a clonal, but
In experimental efforts to develop of concepts as to hownultiple origin for foci, with multiple lineages for tumors,
neoplasia occurs, the liver has played a central role, andigin line with findings from studies of expression of X-
great deal of information has been obtained regarding thehromosome-linked genes in chimaeric mouse foci (Rabes
characteristics of different stages in tumour developmergt al., 1982) and tumors (Williams et al., 1983). Similar
(Bannasch, 1996; Farber 1985; Pitot, 1996). In terms of theesults have also been gainedy@lutamyl transpeptidase
biochemical and biological characteristics, focal lesiongositive fociin mosaic mice (Tsuji et al., 1988). Furthermore,
occurring in the liver of the rat have attracted particulaevidence has been documented of a clonal origin for human
interest. Details for other species and organs are relativedenomatous hyperplasias (Tsuda et al., 1988) and from
scarce although there is evidence that common shifts istudies of hepatitis virus integration in carcinomas (Esumi
phenotype may occur in preneoplasia independent of thef al., 1986).
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Morphological Alteration in Preneoplastic Foci

in the Liver

Whether they appear ‘spontaneously’ (Schulte-Herman
etal., 1983) or are caused by chemical carcinogens (Farbt

(Kitagawa et al., 1985; Maisin et al., 1998)particles of
Thorotrast and neutrons (Ober et al., 1994), or viruse;
(Toshkov et al., 1990), the majority of lesions share baskg
similarities in their morphological appearance and a numbe

on the conditions under which they arise but generally thef
initially demonstrate clear cell character, reflecting excess
storage of glycogen (see Figure 1) (Bannasch 1996). Clos 2
related are the acidophilic or ‘eosinophilic’ lesions (Squire
and Levitt, 1975) which show pronounced proliferation ofFigure 2. Basophilic Focus within an MCF

smooth endoplasmic reticulum as well as increased

glycogen. The histogenesis most often involved in generatiqfhsophilic populations of dysplastic cells, similar to those
of benign adenomas and invasive carcinomas from foci undgparacteristic of malignant tumors, observed within their
various experimental conditions has been describegssses (see Fig 2) (Moore et al., 1982). The same basic
previously in great detail (Moore et al., 1982; Weber angjements have now been documented for preneoplastic and
Bannasch, 1994a;1994b; 1994c). The typical sequence leggsypastic liver lesions induced by carcinogens in other
from glycogen storing foci (GSF) to mixed cell foci (MCF), rodents (Bannasch etal., 1979; Pitot, 1990; Ungar and Adler,
which grow to take on supra-acinar proportions, compressingg7g)  chickens (Brunn et al., 1987) and the rhesus monkey
the parenchyma as nodules, and may give rise to intensglyyepner et al., 1976), as well as in rats by irradiation (Ober
et al., 1994), in transgenic mice (Toshkov et al., 1994) and
in the woodchuck infected with woodchuck hepatitis virus
(Toshkov et al., 1990). Glycogen storage in phenotypically
altered foci has also been described for the human liver in
(Fischer et al., 1986; Karhunen and Pentilla, 1987; Su et al.,
1997). Somewhat exceptional are the foci which arise in
association with long term application of so-called non-
genotoxic or epigenetic carcinogens, including the
peroxisomal proliferator-class of agents . Variously termed
‘atypical eosinophilic foci’ (Harada et al., 1989),
‘homogeneous basophilic foci’ (Marsman and Popp, 1994)
or as having weak diffuse basophilia (Kraupp-Grasl et al.,
1990), these are poor in or free of glycogen, and due to their
combination of intense acidophilia and randomly scattered
or diffuse basophilia have been termed ‘amphophilic foci’
(APF) (Weber et al., 1988a). There is evidence that they
progress to adenomas with similar characteristics and highly
differentiated carcinomas (Weber et al., 1988b).

Altered foci in the liver have been well characterized in
terms of their enzyme phenotype (see Fig 3), with a directed
in shift in different individual species observed with increase
in size or progression towards nodules (Tsuda et al., 1992;
Yamaguchi et al., 1993). Physiological significance can best
be assessed in terms of key enzymes of metabolic pathways.

Enzyme Phenotypic Alteration in Preneoplastic
Foci in the Liver

.,

_ s a) Carbohydrate and energy metabolism.
Figure 1. a) Glycogen Storage Focus, LM b) Hepatocyte
within a Glycogen Storage Focus, EM Glycogen storage and breakdown and glucose uptake and
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release play a pivotal role in regulation of blood glucoséHammond and Balinsky, 1978). Increase in hexokinase
and foci can be distinguished from neighbouring cells by activity would not be expected to be inhibited by the product
pattern of elevated and decreased enzyme activities. At thdeie to mitochondrial binding (Arora et al., 1992). Judging
interface between the cell and the blood a facilitativédrom immunohistochemical findings for some experimental
transport mechanism operates in the liver, involvingpreneoplastic lesions this might also be the case for foci
primarily the low-affinity type GLUT 2 transport protein. (Fischer etal., 1987). However, using a laser microdissection
This is decreased in foci and nodules (Grobholz et al., 199and microbiochemical approach, an increase in hexokinase
Mayer et al., 1995), with the appearance of GLUT Icould be shown in HCC but not GSF or MCF (Klimek and
expression beginning in late MCF, and increasinglyBannasch, 1993). Histochemically, hexokinase/ glucokinase
thereafter, in the majority of adenomas and carcinomas, astivities have been shown to be normal or increased in
well as in microvessels adjacent to adenoid formations iGSF and generally unchanged in APF (Metzger et al., 1995).
tumors (Grobholz et al., 1993). The results point to an initial The metabolic flow from glucose to glucose-6-phosphate
decrease of glucose transport so that only small amourissunder pancreatic hormone control, with insulin causing
enter and perhaps more importantly leave the foci. This iscrease in the glycolytic direction and glucagon acting to
in line with the observed reduction in G6Pase (Hacker giromote glucose release. In these terms, GSF can be regarded
al., 1982). Since the Km value is very high it is only undeas having escaped from the predominantly gluconeogenotic
high glucose concentrations that this step would beconfenction of the normal hepatocyte in the periportal and
limiting. In terms of hormonal control it is well documentedintermediate zones of the liver. This is supported by the
that GLUT 2 expression is decreased by insulin (Andersefinding of glycogen retention in foci in the early stages of
etal., 1994; Burcelin et al., 1992). The expression of GLUTasting (Bannasch et al., 1984) although this might be just a
2 in APF remains to be determined. guestion of absolute amounts of substrate available for

The increase in GLUT 1 observed for rat noduleslegradation. APF, on the other hand, with their generally
(Grobholz et al., 1993) is in line with earlier findings for elevated G-6Pase activity might be expected to have
human HCCs (Su et al., 1990). It might indicate a highelatively low levels of intracellular glucose. It is not clear
glucose consumption, as also suggested by the reported shiftw they behave under conditions of restricted calorific
from glucokinase to hexokinase in human tumorsntake.

Figure 3. Representative Histochemical Results for an MCF in Rat Liver. Semi-serial Sections Reacted for: a) PAS-
Alcian Blue; b) G6Pase; ¢) G6PDH; dyGT
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With regard to the pronounced storage of glycogen evidemiicrobiochemical analysis of microdissected tissue (Klimek
in GSF, it is still unclear what is the principal underlyinget al., 1984) and immunohistochemical staining (Moore et
biochemical alteration. The metabolite G6P has beeal., 1987) this has been shown to be at least partly due to
established as a control point with regard to glycogen storagéevated expression of mMRNA (Stumpf and Bannasch, 1994).
in an in vitro cell line demonstrating many of thelt may be associated with elevated proliferation through
characteristics of GSF (Mayer and Letsch,1989) and itgrovision of ribose-5-phosphate units (Baba et al., 1989) and
elevation has been described in rat livers after treatmeint this sense the histochemical findings fit with the fact that
with nitrosomorpholine (Enzmann et al., 1988). Howevergell division is known to be stepwise increased in GSF and
absolute levels within foci are very difficult to measure inMCF (Zerban et al., 1989). However, the correlation with
vivo. As would be expected from the increase in glycogeBrdU incorporation is not perfect at the individual cell level
stores, the activity of the synthetic enzyme glycogern foci (Moore et al., 1987). APF in contrast have a high
synthase is increased, whereas that for breakdown, tipeoliferation rate (Marsman and Popp, 1994) without any
phosphorylase, is more variable but most frequentlglevation in GBPDH (Metzger et al., 1995). With regard to
decreased (Hacker et al., 1982; Metzger et al., 1995). Thimrmonal control of G6PDH in cultured rat hepatocytes,
has also been confirmed at the protein level bynsulinis well known to induce mRNA synthesis (Manos et
immunohistochemistry (Seelmann-Eggebert et al., 1987al., 1991). With fetal hepatocytes, insulin increases and
Lysosomali-glucosidase activity is also decreased in GSKlucagon decreases mRNA levels (Molero et al., 1994).
while becoming increased in MCF (Klimek and Bannasch, The key enzymes of glycolysis are GAPDH, not changed
1989). The available data in fact point to a decrease in GSF but generally increased in MCF (Hacker et al., 1982),
glycogen breakdown and not increased synthesis as the mastl pyruvate kinase (PK), which demonstrates increase in
important factor responsible for excess storage. In MCF;SF as assayed histochemically and biochemically (Klimek
the glycogen decrease appears due to both a drop in synthasel Bannasch, 1990). While PK is decreased in more
activity (Hacker et al., 1982) and the increasenin advanced macronodules induced by thioacetamide (Klimek
glucosidase (Klimek and Bannasch, 1989). et al., 1988), and also in Solt-Farber nodules (Gerbracht et

The question of the relative importance of differental., 1993), reflecting a reduction in L-type protein (Fischer
sources of G6P for glycogen synthesis remains unclear. Tleeal., 1987), it has been shown to be increased in many GSF
marked concentration differential across the cell membrart®y Bannasch and co-workers. It has also been established
from the serum to the cytoplasm would presumably meathat APF are usually normal or decreased for PK (Metzger
that even under conditions of reduced GLUT 2 the foci stilet al., 1995), which is upregulated by insulin and
obtain an appreciable glucose supply from the blood. Thdownregulated by glucagon (Granner and Pilkis, 1990;
later GLUT 1 increase would supply an elevated inwardMunnich et al., 1984). However, the data suggesting a
flow but this can not explain the increased glycogen storageegative correlation between APF and glycolysis are not
in early lesions since it generally occurs in more basophiliconsistent and an earlier publication documented increase
populations. It is possible that the cells might express othém GAPDH activity in some APF (Weber et al., 1988).
glucose transporters, such as GLUT 3 which is known to be
expressed in some liver tumors (Yamamoto et al., 1990), b) Amino acid and protein metabolism
but this would appear unlikely. Another possibility is that
other precursors like amino acids or lactate can be channeled’urning to the theme of protein synthesis and energy
via gluconeogenesis (Baggeto, 1992), but it is unlikely thgtroduction, again we are hampered by the very limited nature
key enzymes in this pathway are increased in GSF givesf the information on the activity of mitochondrial enzymes
the stimulated state of glycolysis (Hacker et al., 1982in different types of foci which has so far been published. In
Klimek and Bannasch, 1990). The involvement of insulirone study of N-ethyl-N-hydroxyethylnitrosamine-induced
and glucagon in glycogen metabolism has been the subjdoti, succinate dehydrogenase was found to be decreased
of almost innumerable investigations and the excess in GS#hile isocitrate DH and malate dehydrogenase were
and relative lack in APF clearly suggest very differenincreased (Moore et al., 1986). Similar decrease in SDH has
biochemical conditions indicative of alteration in hormonealso been described for a number of other cases (Butler et
dependent pathways. Furthermore, liver amyloglucosidasd., 1981; Kitagawa, 1971; Metzger et al., 1995), although
can be altered by starvation and insulin treatment (Skoglurts significance is unclear since it is not considered to be a
etal., 1987). It should also be mentioned here that a numbmte limiting enzyme. It appears, however, to be increased in
of enzymes involved in biosynthesis of glycosaminoglycana majority of APF (Metzger et al., 1995) and it should
are increased and their degradative counterparts atteerefore be mentioned that it can be induced by glucagon
decreased in the livers of rabbits by administration of insulifMohan et al., 1991). Stimulation of ICDH, along with
(Padmaja et al., 1978). oxaloacetate dehydrogenase and pyruvate dehydrogenase

In GSF and to a larger extent in MCF, there is a consiste(PDH), is associated with increase in Ca++ (Denton et al.,
increase in the activity of the key enzyme of the pentos&987). The increase in GDH which has been reported for
phosphate pathway, G6PD (Butler et al., 1981; Hacker &SF and glycogen storing nodules (Moore et al., 1986;
al., 1982; Moore et al., 1983). Confirmed byMetzger et al., 1995) and its decrease in APF (Metzger et
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al., 1995) might be interpreted as indicating differences imcrease in the lysosomal enzymes acid phophatas@-and
protein synthesis, insulin stimulating incorporation of Krebgylucuronidase. Elevated lysosomal pH may also be
cycle derived glutamate into proteins (Mohan et al., 1991)esponsible for the loss of iron storage capacity observed in
Glucagon on the other hand favours partitioning of pyruvateost foci (Williams et al., 1976), as argued by Eriksson et
towards carboxylation, by increasing the flux throughal (1986). It is interesting in this context that basophilic foci
pyruvate carboxylase, apparently without directly inhibitingwhich spontaneously arise in F344 rats do not exclude iron
that through PDH (Agius and Alberti, 1985). (Stitzel et al., 1990).

With regard to protein metabolism, again, the data are very Decreased protein degradation, suggestive of an anabolic
limited. However, amino acid catabolism may be reducethetabolism, is generally in agreement with findings for
in GSF, as evidenced by decreased serine dehydratd®@Nase (Daoust, 1979) and nuclease (Fontaniere and Daoust,
(Kitagawa and Pitot, 1975) and a lack of inducibility 0f1973; Taper and Bannasch, 1976) within GSF and MCF.
tryptophan oxygenase (Moore et al., 1986). Transcription
of mRNA for both of these enzymes is induced by decreasedb) Lipid metabolism and membrane biochemistry
feeding states and inhibited by insulin (Kanamoto et al.,

1991; Nakamura et al., 1987). The findings for acid The key metabolite in lipid metabolism is acetyl CoA (see
phosphatase arfétglucuronidase (Kitagawa, 1971; 1976) Fig 4). Unfortunately, the enzymes which are primarily
with a clear reduction in activity within GSF might also beresponsible for directing its utilization into different
interpreted as indicating that they have a reduced capacipathways are not accessible to investigation by histochemical
for proteolysis, as described earlier for liver nodules in thenethods. Therefore, most information which has so far been
Solt Farber model (Ahlberg et al., 1987). APF exhibitpublished in this area has been gained using the Solt-Farber
increased breakdown capacity, in line with their relativelynodules which are large enough or occupy sufficient
small cell size (Metzger etal., 1995), since a decrease in tparenchyma for standard biochemical tests to be applied.
latter is associated with alkalisation of the acid intravacuolarhe group of Eriksson has been particularly active in this
pH which is necessary for the effective action of breakdowarea (Eriksson and Andersson, 1992).

enzymes (Haussinger et al., 1994). This might also be ofLipid droplets can be stained with Oil Red O but results
importance for the regulation ofglucosidase. Glucagon have been very heterogeneous, in some cases foci or nodules
is known to induce biliary protein excretion in Guinea pigsbeing found to lack any indication of lipid synthesis (Moore
(Lenzen and Tavolini, 1993), accounted for primarily by aret al., 1986) and in others a marked increase leading to the

GLYCOGEN
G6PDH
G6Pase pentose ABOSE UNITS
Hexokinase phosphate NADPH
gluconeogenesi glycolysis *
GAPDH CHOLESTEROL
PYRUVATE PDH B-HMG-CoA
AMINO ACIDS ACETYL-CoA
protei# protein B-oxidati*u lipogenesis
degradatio synthesis
PROTEIN FATTY ACIDS

Figure 4. General Anabolic Phenotype of GSF/MCF in the Rat Liver
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appearance of fat storing foci have been described (Bannagseuuctase, is increased in nodules induced by different
et al., 1972). In this latter case it is often correlated with anodels (Olsson et al., 1995; Coni et al., 1992), associated
transition to more basophilic populations,. It is also seen iwith hypomethylation of the gene (Coni et al., 1992). This
lesions in woodchucks infected with hepatitis B virus anagtnzyme also increased in regenerating liver (Trentalance et
receiving aflatoxin (Bannasch et al., 1995). Data for thal., 1984). Insulin stimulation and glucagon dependence of
key enzymes of lipid synthesis have not been published f6tMG CoA reductase is controlled at the mRNA and protein
foci, but it is well known that they are induced by insulin orlevels (Ness et al., 1994). Inhibition by cCAMP has also been
a high glucose diet and suppressed by glucagon, starvatidacumented (Botham, 1992). However, while an increased
or diabetes (Noguchi et al., 1992). Interestingly, fructose, @aapacity for cholesterol synthesis has been shown in nodules
hepatopromoter causing similar enzyme changes in livéLedda-Columbano et al., 1985) other authors have noted a
parenchyma to those observed in foci (Enzmann et al., 1988k of increase in cholesterol levels or squalene synthase
induces hypertrigyceridaemia through activation of pyruvatactivity (Olsson et al., 1995). The question of whether this
dehydrogenase and synthesis of new fat (Park et al., 1998.of over-riding significance in determining flux through
The malic enzyme which is often cited as being primarilthe pathway remains unclear, however, and rapid
responsible, along with G6PDH, for supplying reducedncorporation of cholesterol into membranes might explain
NADP for lipogenesis is consistently increased in GSF andhy no increase is observed. Cholesterylester levels are
MCF and may be reduced in APF (Metzger et al., 1995doubled in some membrane preparations in nodules (Olsson
Malic enzyme is post-transcriptionally increased by insuliret al., 1991) and membrane cholesterol may influence B-
in the normal rat liver (Davis et al., 1988), but can also badrenergic receptor characteristics and adenylate cyclase
induced at the mRNA level (Garcia-Jimenez et al., 1994)Scarpace et al., 1985). The enzyme is controlled by several
Glucagon on the other hand appears to primarily redudeed-back regulatory pathways including cholesterol and
malic enzyme in a post-transcriptional fashion (Goodridg@lasma LDL (Goldstein and Brown, 1990) and reduction in
et al., 1986). However, functional interpretation of changesell surface receptors for LDL has been reported in nodules
in malic enzyme activity are made difficult by the numberHarris et al., 1987).
of metabolic pathways which are dependent on NADPH. However, rapid uptake of dietary cholesterol nevertheless
The pathway opposite to that of lipid synthesis, fhe may occur (Horton et al., 1973) and the possibility that the
oxidation of fatty acids which occurs in mitochondria andreductase gene is resistant to normal feed-back control due
in peroxisomes for very long chain species, has been reportedhypomethylation must also be taken into account (Coni
to be reduced or non-inducible in both GSF and APt al., 1992). Interestingly, the hormone DHEA causes
(Yokoyama et al., 1992;1993), although in the latter caséecrease in HMGCoA reductase while increasing LDL
individual lesions may demonstrate considerableeceptor expression (Pascale et al., 1995).
heterogeneity in terms of peroxisomal enzymes (Grasl- Another potentially important feature of foci and nodules
Kraupp et al., 1993a). In human liver biopsy specimensnay be that the isoprenylation of regulating proteins may
glucagon enhances oxidation of fatty acids with subsequehe elevated. Thus both farnesyl PP synthase and all trans
production of ketone bodies (Vons et al., 1991). Peroxisomaleranylgeranyl PP synthase, respectively responsible for
beta-oxidation enzymes may be negatively regulated hyroduction of farnesyl and geranyl geranyl units,
insulin (Sorensen et al., 1992), in line with the control ofiemonstrate increased activity in nodules (Olsson et al.,
peroxisomal proliferator-activated receptors (Steineger et all995). The importance of this can be judged from the fact
1994). that the GTP-binding and GTP-hydrolyzing p21ras is
With regard to the metabolism of acetyl CoA to ketoneactivated by covalent farnesylation of the cysteine four
bodies, it has been reported that GSF and glycogenotiesidues form the COOH terminus of the peptide, this leading
nodules have a decreagketlydroxybutyrate dehydrogenase through a cleavage reaction to allow binding to the inner
(Moore et al., 1986). Whether this reflects altered productioaurface of the plasma membrane (Maltese, 1990). Inhibition
or use as fuel, it is of interest here that, in the starved raif mevalonate synthesis by HMG-CoA inhibitors causes
insulin decreases production of 3-hydroxybutyrate andccumulation of unfarnesylated forms (Repko and Maltese,
glucagon causes an increase (Reed et al., 1984). 1989) and blockage of growth (Goldstein and Brown, 1990).
Given the importance of cholesterol for growth oflt is unclear at present whether APF also demonstrate
carcinogen-induced lesions (Ledda-Columbano et al., 198&jJteration in this pathway but it is of interest that DHEA, an
the mevalonate and associated pathways are of espeaalenal steroid inducing such lesions, has been reported to
importance. In the rat liver, foci and nodules have beemhibit protein farnesyltransferase (Schulz and Nyce, 1994).
variously described as having normal or reduced cholester@ther proteins which undergo activation through
while dolichol, another lipid product of the mevalonateisoprenylation include members of the rho, rap, rac, ral, and
pathway is increased, along with ubiquinone (Olsson et akab families as well as nuclear lamins (Maltese, 1990).
1991; 1995). These lipids have effects on the physico- It has been shown that N-acetylglucosaminyltransferase,
chemical properties of membranes, determining fluidity foan enzyme responsible for insertion of a bisecting N-
example. The key enzyme of the mevalonate pathfray, acetylglucosamine (bi-Gn) into complex-type N-linked
hydroxy{f3-methylglutarate-coenzyme A (HMG Co A) glycans of cellular proteins, is induced in liver nodules and
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timors induced by a number of regimens in rat (Pascale &#bm nodules in that endocytosed ligand-receptor is rapidly
al., 1989). Dolichol synthesis, which is low in diabetic ratsdegraded (Eriksson and Anderssen, 1992). In nodular cells
returns to normal with application of insulin (Sharma et al.in the Solt Farber model, similar resistance to inhibition of
1987). The observed increase in ubiquinone (Olsson et atGF-stimulated DNA synthesis by TG@¥Fas found in
1995) could be of importance for lipid peroxidation, since inormal hepatocytes (Wollenberg et al., 1987). TGE-
may act as a natural lipoprotein antioxidant in its reducedroduced in non-parenchymal cells (Nakatukasa et al., 1990)
form (Eriksson and Andersson, 1992). Ubiquinone, oand therefore here is a possible influence of Kupffer cells. A
coenzyme Q functions mainly as a redox component ireduction of these has been described in some but not all
mitochondria but may also act as a membane and lipoprotaimodels (Janossy et al., 1986; Mayer et al., 1995; Ogawa et
antioxidant in its reduced form (Kagan et al., 1990). Itsal., 1983).
elevated level in foci and nodules could therefore contribute From examination of the increased nodular expression of
to resistance to toxicity and also the reported failure téransferrin receptors (Eriksson et al., 1986) and decreased
generate lipid peroxidation products in response to asialoglycoprotein receptors, it has been surmised that an
prooxidant stimulus (Poli et al., 1986). altered capacity for endocytic processing might be playing
Regarding breakdown of cholesterol to bile acids, tha role in nodules (Eriksson and Andersson, 1992). Vacuolar
situation in foci and nodules remains to be explored but fH of nodular cells is elevated as evidenced by decreased
should be noted that the key enzyme cholesterol 7 alphaetivity of the vacuolar-type H+-ATPase and quenching of
hydroxylase is inhibited by insulin (Twisk et al., 1995).acridine orange (Andersson et al., 1989). Nodules exhibit
Glucagon, in contrast, increases internal secretion afduced proteolysis and a deficiency of certain hydrolytic
cholesterol and transformation into bile acids (Guettet e¢nzymes (Ahlberg etal., 1987) as noted above. Decreased
al., 1988). This process appears to be modulated by cAMRacuolar acidification may be a mode of downregulating

dependent protein kinase (Tang and Chiang, 1986) the responsiveness to growth regulation (Eriksson and
Andersson, 1992). Interesting in this respect is the
c¢) Cell surface, physical characteristics alkalinization of lysosomes by ras transformation of

fibroblasts (Jiang et al., 1990) and by factors causing

The membrane receptor system has three componeniscreased cell volume (Busch et al., 1994).
extracellular ligand, membrane receptors and the This change in lysosomal pH may be related to the
intracellular messenger and cycling system. observed decreased ability to store iron in FAH (Williams

As noted above, the LDL receptor may be decreased &t al., 1976), and decreased levels of heme-containing
rat liver nodules (Harris et al., 1987) and this is also reporteghzymes such as cytochrome P-450, cytochrome b5, and
to be the case for the asialoglycoprotein receptor (Andersstnyptophan 2,3-dioxygenase as well as cellular heme and
etal., 1988). EGF-R mRNA levels reduced in nodules (citeleme-binding protein (Farber et al., 1989). Increased heme
in Eriksson and Andersson, 1992) and after partiabxidase, responsible for degrading heme, and decreased
hepatectomy (Johansson et al., 1990). In the latter case bome-synthetizing activity expressed as activity of 5-
high and low-affinity sites affected wheras in nodulesaminolevulinic acid synthase have also been reported
decrease limited to high-affinity sites (Rissler et al., 1991)Roomi et al., 1985; Stout and Becker, 1986; 1987).
Increase has however also been described in nodules, alon§ibronectin binding protein AGp110 is reduced in aflatoxin
with TGFa in correlation with PCNA assessed proliferatiorinduced foci and nodules, to a lesser extent also fibronectin
(Tanno and Ogawa, 1994). Transgenic mice with TGFa hawand a5R1. Acinar structures in tumors demonstrated
increased HCC (Takagi et al., 1993). Also increased TGFAericellular and luminar staining, and the fact of a total loss
during rat hepatocarcinogenesis (Kaufmann et al., 199% poorly differentiated tumors (Stamatoglou et al., 1991)
Perez-Tomas et al., 1992). Location of TGFa of interesguggests that this is a reflection of altered differentiation.
cytoplasmic in persistent nodules (Tanno and Ogawa, 1994),Gap junctional intercellular communication is known to
cell membrane in TGFa transgenic mouse lesions (Takaglay an important role in maintaining physiological
etal., 1993). Membranous pattern also in regeneratinigoeostasis under normal conditions by mediating transfer
hepatocytes (Burr et al.,1993). Increased EGF-R in humasf signal transducing substances such as calcium, cyclic
HCCs (Fukusato et al.,1990) but not DEN-induced lesionAMP and inositol triphosphate responsible for physiological
in rats (Hsieh et al., 1987). Correlation between GH-R andontrol of the cell cycle and growth (Saez et al., 1989). Its
EGF-R m RNA levels has been noted in regenerating livemterruption would therefore be expected to exert a major
liver nodules and hepatoma (Levinovitz et al., 1990). Hepatimfluence on growth control and both foci and nodules show
production of IGF-I is controlled by GH in the liver and obvious decreases in levels of mRNA and
thus the reduced expression found in both liver nodules amchmunohistochemically demonstrable connexin 32
HCCs (Norstedt et al., 1988) is in line with expectations oifFitzgerald et al., 1989; Krutovskikh et al., 1991). Cell
this score. Large fraction of nodular GH-R carry bound GHproliferation in focal lesions as well as after partial
(Levinovitz et al., 1990), explanation for the fact that nodulebepatectomy is correlated with the decrease in C32 (Tsuda
no longer demonstrate normal sexual differentiation (Blanckt al., 1995) and CCl4 toxicity brings about a reversible block
et al., 1990). GH-R also decreased after PH but differenée gap junctional function (Saez et al., 1987). Regarding the
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regulation of cell-cell communication it is apparent thatresponsible, but this is unlikely given the variation in relative
phosphorylation status is of essential importance and expression of duifferent members of the cytochrome P 450
number of authors have reported involvement of both cAMPgene family. Furthermore, no decrease in P450, despite
dependent protein kinase and protein kinase C (Godwin etduction in AHH, with long-term iron deficiency (Rao and
al., 1993; Stagg and Fletcher, 1990). Generally the insulidagadeesan, 1995). Therefore some other control mechanism
associated PKC reduces expression of connexins aiplay, known to be downregulated in human hepatocytes
interfers with communication, while the glucagon-stimulatedn primary culture by cytokines (Abdel-Razzak, et al., 1993).
PKA exerts a reverse effect. However, regulation by thes8lucagon can strongly induce some P-450 forms, although
protein kinases is in a complex, interrelated mannethe total remains unchanged (Rouer and Leroux, 1985).
presumably by multiple phosphorylation of proteins withinKinases are very specific for phase | and Il enzymes (Pyerin
gap junctions. Individual gap junction proteins can also bet al., 1987) and there may be increases the intracellular
independently regulated, as shown for connexins 26 and 82gradation of specific forms (Eliasson et al., 1992).
during hepatocarcinogenesis (Sakamoto et al., 1992).  Phosphorylation of P450 activates the enzyme and thereby
brings about elevated lipid peroxidation (Mkrtchian and
d) Drug metabolism Andersson, 1990). Potential links between the mixed
function oxidase system and enzymatic glucose metabolism
The resistance of FAH to the toxic and mitoinhibitoryhave also been stressed (Karvonen et al., 1987).
effects of carcinogens has long been a focus of interestWith regard to phase Il detoxification a number of
(Farber et al., 1976) and indeed is the basis of the shogarameters have been investigated in GSF and MCF type
term “selection pressure” model, initially conceived bylesions, with a particular focus on glutathione metabolism.
Haddow (1938) and developed by Farber and his colleagu&tus reduced glutathione itself is apparently increased
(Solt and Farber, 1976; Solt et al., 1977). It appears to @hluwalia and Farber, 1984; Deml| and Oesterle, 1980),
due to specific alteration in phase | and Il drug metabolizinglong with glutathione peroxidase and reductase (Kitahara
enzymes (Roomi et al., 1985) and is reflected in reductioet al., 1983) and many of the glutathione S-transferase family
of adduct formation by DMN, for example (Ozaki et al.,(Kitahara et al., 1984; Tatematsu et al., 1985) including GST-
1993) or AAF (Huitfeldt et al., 1986). Foci are esistant taP in particular (Sato et al., 1985) (see Fig 5). This might be
the necrogenic effects of galactosamine (Laconi et al., 199 lated to the overexpression of P glycoprotein and multidrug
and CCl4 (Tsuda et al., 1987). resistance in nodules (Fairchild et al., 1987; Thorgeirsson
Regarding phase | species, both P450 | and Il are generadlyal., 1987). APF, in contrast demonstrate a decrease in GST
decreased in rat liver foci (Buchmann et al., 1985; Camerasoenzymes (Grasl-Kraupp et al., 1993b). The frequent GSF/
et al., 1976; Tsuda et al., 1987; 1988) and the mondiCF increase in the related enzyme GGT is also not shared
oxygenase sysem is downregulated in mouse tumouby amphophilic cells (Rao et al., 1986; Metzger et al., 1995).
(Becker and Stout 1984). Similar characteristics are sharétepatic gamma-glutamylcysteine synthetase and glutathione
by human tumors (El Mouehli et al., 1987). synthesis in the rat is dependent on insulin as well as
In the APF results for P4501V variable, some showglucocorticoid (Lu et al., 1992). Positive in vivo regulation
increase and others decrease (Grasl-Kraupp et al., 1993af)glutathione S-transferase by serum insulin has also been
Because of the heme core iron deficiency could be partieported (Carnovale et al., 1990) and insulin given together
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Figure 6. Signalling Pathways. Note the components for which incease has been reported in foci and/or nodules
(bold)

with epidermal growth factor induces GST-P in adult ratyet to be ascertained but in the context of hormonal control
hepatocytes in culture (Hatayama et al., 1991). Acuté should be mentioned that diabetes and starvation bring
upregulation of hepatic cytosolic glutathione S-transferasa@bout an increase in the cytosolic form while decreasing the
activity by iv administration if insulin has also been reportednicrosomal form, along with glutathione S-transferases
(Carrillo et al., 1995). This is in line with the finding that (Thomas et al., 1989).
NIDDM is associated with lowered glutathione levels and Resistance of prenoplastic cells could also be relaated to
reduced GST activity (Barnett et al., 1992). Diabetes is alsthe reported increase of DNA repair in liver nodules (Citti
associated with decreased liver catalase, glutathionet al., 1990) with enhanced activity of 06-methylguanine
peroxidase and superoxide dismutase as well as GSH, whiEiNA alkyltransferase (Becker and Planche-Martel, 1986).
is reversed by insulin treatment (Wohaieb and Godin, 1987} owever, this was not supported by the findings of Ozaki et
The fact that some GST species are good substrates falr (1993) in terms of the rapidity with which adducts are
calcium-phopholipid-dependent kinase suggests that thiemoved.
effects might be modulated by phosphorylation and
dephosphorylation (Pyerin et al., 1987). e) Signal transduction

Other phase Il drug metabolizing enzymes for which
consistent increase in GSF and MCF has been describedrhe loss or decrease of adenylate cyclase activity reported
are uridine-diphosphate-gluronyl-transferase (Bock et alin nitrosomorpholine-induced lesions (Enemann et al., 1986)
1982; Fischer et al., 1983) and microsomal epoxideuggests a shift in regulatory mechanisms away from cCAMP-
hydrolase (Enomoto et al., 1981; Levin et al., 1978dependent pathways and PKA. However, in Solt-Farber
Buchmann et al., 1985; Tsuda et al., 1987). This latter ikesions the enzyme appears to be increased (De Canniere et
linked to hypomethylation of the gene (Ding et al., 1990)al., 1992). The finding of increased PKCa/b (La Porta et al.,
Epoxide hydrolase may be importance in toxicity becaus&993; 1994) but not PKCd (La Porta et al., 1995) on the
of effects on toxic bile acid transport, mediating for exampleother hand is indicative that the phospholipid pathway is
transport of taurocholate into hepatocyte smoottswitched on.
endoplasmic reticulum vesicles (Alves et al., 1993). Expression of the insulin receptor substrate 1 (IRS-1) has
Expression of epoxide hydrolase isoenzymes in APF haseen found to be increased in GSF but not APF (Nehrbass
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et al., 1998;1999).Insulin-like growth factor Il becomes reMoore et al., 1998). The question of whether the biochemical
expressed during hepatocarcinogenesis induced khenotype of preneoplastic foci in the liver may be in some
3MeDAB (Ueno et al., 1988) and also in woodchuck noduleway linked to altered hormone sensitivity has, however,
(Yang and Rogler, 1991; Yang et al., 1993) and irfeceived only scant regard up till the present (Bannasch et
precancerous lesions in transgenic mice with antithrombial, 1997; Pearline et al., 1996).
[11-SV40 gene (Cariani et al., 1991). In addition to the direct proof of stimulation of
The involvement of alterations in oncogenes inhepatocarcinogenesis provided by Dombrowski in a series
hepatocarcinogenesis in rodents and man has been reviev@gapers, there are a number of lines of evidence in favour
(Mehta, 1995). One study demonstrated increase in foci ad insulin being a promoter of neoplasia in the liver. In terms
nodules (Galand et al., 1988), and another in nodules (Beef focal lesion and tumor development associated with
etal., 1986), but not in Solt-Farber lesions despite increasBgrmonal imbalance in man, three disease states clearly
in c-myc and c-fos (Posch-Hallstrom et al., 1989). Thus, théeserve mention.
presence or absence of farnesyl PP may be a more importaritirstly, the association between type | (von Gierke’s)
determinant of signalling than the absolute level of c-raglycogen storage disease and liver cancer development is
expression (Maltese, 1990). of obvious significance (Bannasch et al., 1997; Bianchi,
The possibility that the central signalling pathway is indeed993). In this case the insufficient glucose-6-phosphatase
switched on, however, is indicated by the elevated c-raictivity leads to glycogenosis, and glycogen-rich lesions with
expression found in FAH induced by NNM (Strobel et al. @ background of elevated glucagon in the blood (Greene,
1990) and other carcinogens (Beer et al., 1988; Huber et al982; Moses; 1995). The second disease is leprechraunism
1989). Increase has also been documented for c-efBonohue’s syndrome), due to mutations in the insulin
(Alexandre et al., 1990). receptor gene (Elsas, 1985), characterized in some cases by
The increment in density of nuclear pores in fq8ugie  multiple small nodules in the liver, composed of large pale
etal., 1994) might also reflect increased trafficking betweehepatocytes with a great quantity of glycogen and a little fat
the nucleus and the cytoplasm. Within the nucleus, a commdé@rdway and Stout, 1973).
finding is elevated expression of c-myc in rat foci and The third disease is cirrhosis, whereby in man a persistent
nodules induced by the Solt-Farber system (Nagy et alfcrease in serum insulin levels has been reported, caused
1988; Huber et al., 1989; Porsch-Hallstrom et al., 1991). Nby reduced degradation along with higher secretion (Letiexhe
myc 2 is coordinately expressed with insulin-like growthet al., 1993). Also in rats, CCl4-induced cirrhosis is
factor Il on precancerous altered hepatic foci in woodchucissociated with lower serum glucose and elevated insulin,
hepatitis virus carriers (Yang et al., 1993). Elevated c-fol this case largely due to reduced clearance (Wu et al., 1994).
has also been described in hepatic nodules (Corral et dpietary restriction and reduced body growth also correlate
1985; Simile et al., 1994) and c-jun in approximately onavith decrease in foci and tumor development as well as
third of focal lesions (Suzuki et al., 1995) insulinaemia (Lagopoulos et al., 1991).
With the long periods required before neoplasms become
Focus Physiology and Processes Underlying dﬁtectable, any relati\ée advantage that”the ;;\rer;]eoplaztic
; ; phenotype gives to the constitutent cells, whether it be
Hepatocarcinogenesis because of increase in the inherent ability to progress through

. . . .the cell cycle, an enhanced responsiveness to stimulatory
The two major phenotypes of foci induced by carcinogeni ; .
a(ljptors, or a decreased relative propensity to undergo

regimens in the rat liver demonstrate separate directed agpoptosis, could be of interest to preventive efforts,

apparently co-ordinated sh|ﬂ§ n b|ochem|st.ry.Many of thﬁ?egarding chemoprevention or alteration of the lifestyle,
changes in enzyme expression observed in preneoplasttlg]c

: - . . —the findings for preneoplastic lesions in the liver would thus
hepatocyte foci are reminiscent of the influence of insulin g P P

in the liver. Thus. catabolic brocesses appear to bseuggest that measures taken to reduce hyperinsulinemia
‘ ' b bp might be effective, including both increased intake of soluble

downregulqted while a”.abo'.'sm IS favpured (see .F'g Aq"lbre in the diet and frequent exercise (Moore et al., 1998a-
Indeed, a direct role for insulin in inducing such lesions is o . . )
¢). In addition, insulin sensitizers and compounds targeting

indicated by the hepatomegaly and massive glycogen storag)é . . . . i
associated with high dose hormone treatment (Nakamuta .'ilrucular phyS|oIog|ca}I pathways., like for example HMG
OA reductase inhibitors, might deserve especial

al., 1993) as well as the experimental findings with islet . .
. . . _consideration.
implants, which eventually cause tumors (Dombrowski e%
al., 1994; 1997). Interestingly, implants of thyroid or ovarian
tissue also produce hyperproliferative lesions, this timé‘CknOV\/ledgements
reminiscent of APF (Dombrowski et al., 2000; Klotz et al.,
2000).

Recently, attention has been drawn to the possible role
insulin as a promoter of neoplasia (Bruning et al., 199
McKeown-Eyssen, 1994; Giovannucci, 1995; Kazer, 199
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