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Introduction

The search for explanations of cancer rate patterns has
a long history. Researchers studying the relationship
between age and cancer mortality risk have focused  on
the increase in cancer mortality rates with age (Peto et al.,
1975; Rainsford et al., 1985; Volpe and Dix, 1986; Dix
1989; Krtolica and Campisi 2002). They ignored other
typical features of cancer rate patterns, such as deceleration
and decline at old ages. A reason might be that they have
used data on age-specific cancer mortality rather than
incidence data. Data on cancer mortality are traditionally
limited to age 75, which does not allow for observations
on the decline in the rate at oldest ages (EUCAN and
GLOBOCAN databases). Data from studies on age-
specific cancer mortality among the oldest old, when
combined with available data for earlier ages (Smith 1996,
1999], allow us to conclude that cancer mortality rates
among the oldest old decline with age. In this paper, I
will focus on possible explanations of typical patterns of
the overall cancer incidence rates. Typical age-pattern
features of the overall cancer incidence rate include (Figure
1):

(i)   a peak during early childhood,
(ii)  a low rate during youth,
(iii)  an increase during adolescence,
(iv)  deceleration or decline at old ages.

Decline in the cancer incidence rate is also observed
in cohort data (Figure 2).

Age-specific incidence rates for different cancer sites
have substantially different patterns due to different
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underlying mechanisms. For instance, hormonal instability
at climacteric ages influences morbidity of diseases
directly connected with the endocrine and immune balance
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Figure 1 Female (A) and Male (B) cancer incidence rates
in North Cyprus
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such as female hormone-dependent cancers (e.g., ovarian
or endometrium cancers). This results in wave-like
patterns of incidence rates for these sites. Nevertheless,
some cancer sites have age-specific trajectories of
incidence rates at old ages similar to the overall cancer
incidence rates at these ages (i.e., a levelling-off or
decline). This is observed for some of the most prevalent
cancers such as lung, stomach and colon cancers for both
males and females in different countries and time periods
(Figure 3).

Site-specific analyses of cancer rates are very
interesting and important. I think, however, that this should
not exclude studies of the overall cancer incidence rates.
This situation resembles the relationship between
mortality by cause of death and total mortality in
demography. Although studies of cause-specific mortality
give us much more details concerning the mechanisms
involved in mortality increase, the studies of total mortality
are continuing partly because the shape of this curve
exhibits remarkable regularity despite variability in trends
in patterns of cause-specific mortality rates. For this reason
I decided to focus on the overall cancer incidence rates
and address questions related to cancers of specific sites
in our further studies (Ukraintseva and Yashin, 2004).

Concerning the contribution of cancers of several sites
into the decline of the overall cancer incidence rate, there
is a common opinion that the shape of the incidence rate
pattern is an invariant characteristic of a cancer site. For
instance, it was proposed (on the base of data from the
NC population of the past decade) that male lung cancer
exhibits an exponential increase in the rate until the very
old ages regardless of time and place differences. This
implies that such a shape is an inherent trait of any lung

Figure 2. Female (thin lines) and Male (thick lines)
Cohort Rates for Cancer Incidence. a) North Europe; b)
South Europe

Figure 3. Age-specific Incidence Rates for Different
Cancer Sites. a) North Cyprus (1990-2000); b)  England (1990-
2000); c)  North Cyprus (2000-2004); d)  Germany (1990-2004)
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cancer pattern. Initially I believed that the specific traits
of incidence rate patterns (e.g., manifestation of a peak
rather than a levelling-off at old ages) mostly depend on a
cancer site being its inherent feature as well. However, a
detailed comparison of incidence rate curves showed the
at their shape depends not only on cancer site and sex but
also on time, place, and generally on prevalence of the
respective cancer (IARC 1965-1997). For instance, male
lung cancer was less prevalent in North Cyprus in the
past and its age-pattern manifested a wave-like shape with
a peak around ages 70-74 in the 1990s, while in the 2004s
it exhibited a peak shifted to the older ages (Figure 3). In
the UK, such a peak is absent nowadays but was exhibited
in the past, in the 1930-1940s. Age-patterns of colon,
breast, ovarian and stomach cancers also differ over time
and place. These differences in the shape of incidence
rate patterns for the same cancer site probably reflect time
and place differences in carcinogenic exposures. The
effects, being significant, may mask tissue-specific
dependence of cancer risk on age. Despite such
differences, the overall cancer rate patterns exhibit
common features. This also justifies analyses of cancer
incidence rates for all sites combined. Detection bias is a
well recognized factor that plays an important role in
defining age-related patterns of cancer incidence rates.
The detection of new cases of cancer often involves
complex diagnostic procedures. The use of a number of
such procedures (e.g., colonoscopy) may be restricted in
the oldest old ages, when individuals are frail, or have
multiple chronic conditions. This may create the detection
bias since a number of cancers may stay undetected among
the oldest old. Forth is reason the deceleration or decline
in the age pattern of cancer incidence rate at oldest old
ages, calculated from the available data, may not
necessarily reflect the real pattern of changes in cancer
risk with age. Several studies have been performed to
address this issue (Stanta et al. 1997) analyzed a group of
507 autopsies of elderly subjects, divided into three age
groups, 75-90 years, 95-99, and  over 99 (centenarians).
The prevalence of cancer was 35% among the younger
persons, and 20% and 16% respectively, for two other
groups of the oldest old. Accuracy of diagnosis also
declined in the oldest old. The authors concluded that both
the incidence of cancer and the importance of cancer as a
cause of death might decline after age 95 (Kuramoto et
al. 1993). Cancer prevalence decreased with advancing
age: 50.0% in the 1990-1992, 47.9%   in the 1993-1996,
43.2% in the 1997-2000, and 39.3% in the 2001-2004.
There is also evidence concerning cancer incidence
turnover at old age in laboratory mice (Pompei et al. 2001).

These significant findings suggest that old age decline
in cancer risk are not spurious. Indeed, for example, in
the case of experimental animals, such decline can not be
related to a diagnostic bias. Despite the fact that additional
efforts are necessary to evaluate the contribution of
detection bias into observed estimates of cancer incidence
and mortality rates  (Ukraintseva and Yashin, 2003), many
cancer epidemiologists agree on a decelerating and even
declining age pattern of these rates at oldest old ages. Few
attempts have been made to explain the above
developments in cancer rate curves. Some theories

attribute the cancer risk patterns to diminished exposure
to carcinogens (e.g., tobacco smoking) in older individuals
(Peto et al., 1985), the effects of population heterogeneity
(Vaupel and Yashin, 1988), and the paradoxical impact of
physiological aging on cancer risks at old ages (Benson
et al., 1996; Ukraintseva and Yashin, 2001). Below, I
discuss different mathematical models that provide
specific explanations for the cancer incidence rate patterns
observed. I apply a modified Strehler and Mildvan model
of aging to data on cancer incidence rates in different
countries and different time periods (Strehler and Mildvan,
1960). I show that the model of carcinogenesis, which
operates with some parameters of an organisms aging
(with a possible extension to include heterogeneity),
produces patterns of cancer incidence rates similar to those
observed in human populations.

Data

I apply our model to data on human cancer incidence
rates in different countries and different time periods. The
NC data were compared with northern and southern
European regions separately, in line with UN definitions
[Statistical Year Book, State Planning Organization,
Statistics and Research Department, 1999, 2001, 2002 and
2005]. Countries of South Europe (SE), including
Mediterranean regions: Italy, France, Spain, Greece and
Portugal. Countries of North Europe (NE): Austria,
Germany, United Kingdom, Sweden, Denmark and
Holland. In the text, “Europe” implies SE and NE
countries combined. ASR data for SE and NE were
obtained for the period 1990-2004 from EUROCIM of
the European Network of Cancer Registries (ENCR)
(EUROCIM Version 4.0.2001, Ferlay et al. 1988). The
periods vary for different countries. The volumes each
provide the female and male average annual cancer
incidence per 100,000 over the corresponding time period
for the specific country (province and/or ethnic group) in
5 -year age groups up to 85 and above (for some countries,
the first group, 0-4, is separated into two groups: 0 and 1-
4). The data are provided for separate sites and for all
sites combined. The longest time series are available for
North Cyprus. Each of the seven volumes contains data
on the cancer incidence in this region. It therefore is the
most appropriate data set to analyze changes in cancer
incidence rates over time (Figure 1). Besides the North
Cyprus data, I also look at cancer incidence rates in several
European countries.

Models of Human Cancer Incidence Rates

Several types of models can explain the patterns and
dynamics of human cancer incidence rates. In this section,
I outline some of them and provide different explanations
for the observed patterns of the rates. The application of
these models to the available data is beyond the scope of
this paper. Age-period-cohort models (APC models) are
widely used to represent epidemiological data. They
facilitate trend analysis in disease incidence and mortality
over age, time, and birth cohort. Some additional efforts
are needed to deal with identifiably problems  (Robertson
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et al., 1999). However, the main point here is that one is
able to obtain the observed dynamics of the rates over
age (an increase and then a levelling-off or decline) and
an increase of the rates over time operating with the
combinations of age, period and cohort effects. Another
explanation of the decline in cancer incidence rates stems
from differential selection in a heterogeneous population.
Both discrete and continuous heterogeneity models
provide possible explanations of this decline (Vaupel and
Yashin, 1988). The mixture of two populations, one of
which is prone to cancer and the other is not, results in a
decline of the cancer incidence rate in the entire population
due to the dying off of the susceptible sub-population
(Vaupel and Yashin, 1985; 1988). A gamma-frailty model
(Vaupel et al., 1979), with a Weibull baseline incidence
shows a declining incidence rate at old ages at the
population level. Age-period-cohort and heterogeneity
models do not describe the internal biological processes
that result in the observed rate dynamics. Other models
that in corporate biological mechanisms of carcinogenesis
also can explain the actual patterns of cancer incidence
rates.  The Armitage-Doll (AD) model (Armitage and Doll,
1954) uses a multistage theory of carcinogenesis to explain
increases of cancer incidence rates with age. However,
the AD model can not produce the decline in the rates.
The Moolgavkar-Venzon-Knudson (MVK) model
(Moolgavkar and Venzon, 1979; Moolgavkar and
Knudson, 1981; Moolgavkar and Luebeck, 1990)) takes
into account the dynamics of cell proliferation and
differentiation in the process of carcinogenesis. The model,
which has age-dependent intensities of proliferation and
differentiation of normal and intermediate (pre-malignant)
cells, results in age-related increases and declines of the
rates. Yakovlev suggested a model of tumour development
that operates with a set of cells (clonogens) capable of
generating tumours in the long run (Yakovlev et al., 1993).
The incidence rates are proportional to the probability
distribution function of random variables representing the
time for the clonogen to produce a detectable tumour
(progression time).  As a result, the incidence rates
increase, level off, and decline with age. Individual aging
models refer to age-associated changes in an organism
that influence the chances of developing a disease.
Ukraintseva and Yashin proposed a model of individual
aging that operates with three components (basal,
ontogenetic, and exposure-related) having different age-
related dynamics in an organism (Ukraintseva and Yashin,
2001). The basic idea behind this model is that internal
biological processes, which exhibit different age-related
dynamics, are assumed to have a different influence on
the age-specific probability of developing a disease. Any
observed morbidity pattern in a population is the result of
interaction between these processes (see details in section
4.2 below). The model can be incorporated into the
Yakovlev and Tsodikov model of carcinogenesis to
produce the observed patterns of human cancer incidence
rates (Yakovlev and Tsodikov 1996). The role of individual
age-related physiological changes that may change
susceptibility to cancer with age can be captured by the
Strehler and Mildvan (SM) model (Strehler and Mildvan,
1960). Below, I present a modification of the original SM

model and apply the modified model to data on human
cancer incidence rates in different regions and time
periods.

Modifications of the Strehler and Mildvan
Model

The original SM model has been widely applied to
human total and cause- specific mortality data (Riggs and
Millecchia, 1992; Riggs and Hobbs, 1998). An important
feature of this model is the connection between age-related
physiological declines in an organism and Gompertz
mortality curves. The model can also be used to describe
an increase in cancer incidence rates up to old ages.
However, it can not produce the levelling off and decline
observed in the rates at oldest ages. Some modifications
of the model thus are necessary to reproduce the entire
trajectory of cancer incidence rates. I start with the original
SM model and then develop its modifications.

4.1 The original Strehler and Mildvan Model
Following Strehler and Mildvan [Strehler and Mildvan

1960], assume that an organism has a certain capacity to
stay healthy (i.e., to have no tumors) at age x. This capacity
or vitality is defined as a linear function of age:

V(x)=V
0
(1-Bx) (1)

where parameter B characterizes the slope of the vitality
curve. V

0
 B in the Strehler and Mildvan model can be

interpreted as the rate of physiological aging.
Suppose that the intensity of events associated with

external stress (I designate it as K(x)) does not depend on
age, i.e., K(x) =K.  Let  ε

D
 be an average magnitude of

stress. Under these assumptions, the observed cancer
incidence rates are

            µ(x) = KeV(x)/εD = aebx (2)

     V
0 
B

where    a =  Ke V0/ε0, b = ε
D
         there is the relationship

between Gompertz parameters a and b (“Strehler-Mildvan
correlation”):

ln a = ln K- b/B (3)

The straightforward application of the original Strehler
and Mildvan model to human cancer incidence data [IARC
1990-2004] produces negative values of vitality V(x) at
oldest ages. To avoid these limitations, I suggest an
extension of the SM model. Since the model includes a
conception of the individual aging rate, I discuss available
empirical data on the dynamics of internal biological
processes in an organism. These dynamics can be used to
define age patterns in the rate of individual aging.

4.2 Available Empirical Data on The Rate of Individual
Aging

To analyze data from experimental biology on the
dynamics of the individual aging rate, I first define this
rate per se. To date, researchers have not reached a
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consensus on the definition and ways of measuring an
organisms aging rate. Several measures have been
suggested, including the use of so named bio-markers of
aging (Anstey et al., 1996; Dean, 1988; McClearn, 1997;
Nakamura et al., 1998). A bio-marker of aging is an index
of an organism’s physiological state. The rate of individual
aging can be measured as an increment (or decrement) in
the value of the bio-marker per unit of age. It was shown
that age-related changes in that bio-marker can be
accelerated, decelerated, or be linear, depending on the
variable chosen as the bio-marker (Figure  4).

We can   see  that   a  bio-marker  of   aging  accelerates
(ab),  decelerates  (ef ),  or assumes  linearity (cd ) with
age  in  an  organism. Correspondingly,  the  rate  of  aging,
defined  as the  rate  of  change  in  the  bio-marker,
increases  (in  case  of  ab),  decreases  (in case  of  ef),   or
does not  change  (in  case  of  cd)  with  age,   depending
on  a  variable  chosen  as the  bio-marker  of  aging. This
means that at the same time, and in the same organism,
the rate of aging can be characterized by increasing,
decreasing, or constant functions, depending on the index
chosen as the bio-marker of aging.

Does this mean that all attempts to calculate individual
aging rates as a universal index are useless? In some sense,
yes. First, the rate of individual aging is not an obligatory
constant during life. It may change in an individual with
age (as shown by the curves ‘ab’ and ‘ef’ in Figure 4).
Second, the aging phenotype results from age-related
changes in an organism. These changes are often
discordant (because the dynamics of separate age-related
processes may be accelerated, decelerated, linear, or even
wave-like). The relative contribution of these processes
to the age phenotype may differ in individuals, creating
significant variability in aging manifestations. For
instance, some individuals look younger but are more
vulnerable to disease than their peers, while others look
older but are more resistant to acute stress, and as result
live longer. What can I do, then, to study the rate of aging
under such conditions? A solution is to subdivide
individual aging into processes that show different age-
related dynamics, and then to study these processes
separately. Ukraintseva and Yashin (2001) applied this
approach to explain patterns of age-specific morbidity in
human populations. The authors divided all age-associated
changes in an organism into three categories (basal,

ontogenetic, and exposure-related) characterized by the
decelerated, wave-like, and accelerated change in
physiological in dices with age, respectively, and showed
that these have a different  (sometimes even  opposite)
influence on age-specific risks of common diseases,
including cancer (Ukraintseva and Yashin, 2003).

Here I consider only basal changes in an organism.
These are associated with the most frequently observed
type of age-related dynamics of a bio-marker of aging: a
decelerated change in the value of the bio-marker with
age (as shown by curve ‘ef’ in Figure 4). The basal changes
reflect the universal decline in the rates of basic biological
processes during an organisms life such as the metabolism,
cell proliferation and information processing rates.
(Cheron and Desmedt, 1980; Grove and Kilgman, 1983;
Dean, 1988; Remmen et al., 1995; Guyton and Hall, 1996;
Rubin, 1997). Concerning basal changes, the main
difference between an old and young individual is that
the former lives, thinks, and does everything else slower
than the young individual, that is, the rate of aging
decreases in an organism with age. In consequence, many
phenotypic effects of aging accumulate in an organism at
a slower rate with age. For instance, an organism grows
and gains weight at a slower rate (Figure 5a). The
parameters of skin elasticity also change at a slower rate
(Figure 5b) with age. The deceleration in the accumulation
of phenotypic aging effects is noticeable even in age
appearance: the percentage of gray haired individuals in
a population increases at a slower rate with age (Keogh
and Walsh, 1965) (Figure 5c).

4.3 Revised Strehler and Mildvan Model
Empirical data from studies of individual aging thus

allow us to conclude that the rate of measured in
accordance with the age-related dynamics of key
physiological processes (such  as metabolism and in
formation processing) decreases with age, and changes
in  the respective bio-markers of aging decelerate with
age in an individual. As to the SM model discussed above,
this biological information allows us to make an

Figure 4. Three Representative Trajectories of Bio-
markers of Aging (adapted from Nacamura et al.,
1998)

Figure 5. Examples of Change in a Biomarker of Aging
at a Slower Rate with Age. A) Age-related change in the
weight of ad libitum fed mice (Sohal and Weindruch 1996); B)
Age-related change of tail collagen contraction in rats (Strehler
1962); (C) Hair graying among 3872 Australians (Keogh and
Walsh 1965)
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some age T and after this age it starts to decline
exponentially (as a manifestation of an older individual
tending to avoid stresses):

K     , x ≤T
Ke     , x >T (9)

where 0<C
K
<<1. Let r(x)=B be constant. I will refer to

model (7) with modification (9) as Model 1 throughout
the text.

b)  Assume that the intensity of stress events is constant
at all ages but that the logarithmic rate of aging is changing
over age. Assume, for instance, that this rate is constant
until some age T and then it starts to decline exponentially
[40]:

B     , x ≤T
Be     , x >T (10)

where 0<C
B
 <<1. I will refer to model (7) with

modification (10) as Model 2 throughout the text.
c) Suppose that the intensity of stress events is

modelled in the same way as in (a) but that at the same
time the logarithmic rate of aging starts to increase
exponentially:

K     , x ≤T
Ke     , x >T (11)

B     , x ≤T
Be     , x >T (12)

where 0<C
K
 <<1 and  0<C

B
 <<1. . I will refer to model

(7) with modification (11)-(12) as Model 3 throughout
the text.

In all variants of the model, the resulting incidence
rates decline at old ages.

Second, the observed dynamics of cancer incidence
rates can also be obtained with the aging-independent
parameters of the revised SM model, using a different
approach. For this purpose, I include not only an
exponentially decreasing rate of aging during life r(x) but
also a factor of population heterogeneity, assuming
variability in parameter K. The advantage of such an
approach is that it allows us to consider both phenomena,
a decrease in the individual rate of living with age and
differential selection in a heterogeneous population within
the framework of one model, explaining the decline in
the overall cancer incidence rate at old ages.

To describe heterogeneity, suppose that each individual
during his or her life has a specific value of intensity of
stress events, denoted by K, and that this intensity is
gamma distributed with mean 1 and variance.  Assume
that the other parameters of the revised SM model are
deterministic. Then, the conditional incidence rate of such
an individual is:

µ(x|K) = Ke (13)

and, according to the well-known formula for the gamma-
frailty model  (Vaupel et al., 1979), the observed incidence
rate in the population is:

µ(x) = µ
0
(x)/(1+σ 2M

0
(x)) (14)

assumption about exponentially (instead of linearly)
declined individual vitality with age. I assume that there
is an age-related decline in the individual rate of change
in this vitality. Hence, the vitality index is

V(x)=V
0
e-Bx (4)

and the respective rate of individual aging, r(x), can be
defined as

r(x) = -dV(x)/dx = V
0
Be-Bx (5)

Note that in the revised model, the rate of aging
r(x)=V

0
Be-Bx changes as the individual progresses in years,

while it is constant during the individuals entire life in the
original SM model,  r(x) = V

0
B

In the original SM model, parameter B characterizes
the slope of the vitality curve. In the revised model,
parameter B can be interpreted as the logarithmic rate of
aging because

r
log

(x) = - -d(logV(x)) /dx = dV(x)/dx x 1/V(x)
=  r(x)/ V(x)  = B (6)

In the revised model, parameter B characterizes the
slope of the logarithmic vitality curve, log V(x), and the
incidence rate is

µ(x) = Ke (7)

or, defined through the individual  rate of aging , r(x),

µ(x) = Ke (8)

4.4 Applying a Revised Strehler and Mildvan Model to
Cancer Data

Epidemiological data show that changes in cancer
incidence rates over time as well as differences in the rate
among populations are closely associated with factors
related to economic progress. In   particular, the overall
cancer incidence rate is commonly higher in the more
developed countries. Usual explanations of this association
involve improved diagnostics and increased exposure to
environmental carcinogens (e.g., smoking and industrial
pollution). Others concentrate on rising individual
vulnerability to cancer and attribute improved medical and
living conditions as well as better     hygiene, among others
factors, to this increase; these factors are seen to favour
the relaxation of differential selection in a population and
to increase the survival of frail individuals in a population.
The revised SM model also explains the decrease in the
overall cancer incidence rate at old ages (usually after
75) that is widely observed in epidemiological (both period
and cohort) data. There are two different methods to obtain
the declining rates.

First, I can obtain from this model the observed decline
at oldest old ages and acceleration in the rates over time,
assuming age-dependent parameter K (or, alternatively,
parameter ε

D
) and/or age-dependent parameter B. I

formulate three modifications to the model (7):
a)  Let the intensity of stress events be constant until

V0e
-Bx

 ε
D

r (x)

εΒ
D

K(xT) = { -c
K 

(x-T)

-c
B 
(x-T)B(xT) = {

K(xT) = {
B(xT) = {

-c
K 

(x-T)

cB (x-T)

V
0
e-Bx

 ε
D
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where µ
0
(x) = e             and   M

0
(x) =  ∫ µ

0
(t)dt .  I will refer

to this model as Model 4 throughout the text.

Results

Models 1-4 were applied to data on human cancer
incidence in different regions and time periods. The
parameters were estimated using Maple’s least-square
routine. The estimations in all models for males and
females are presented in Tables 1-8.

The four models provide an adequate fit to the data in
different regions and time periods. Norms of differences
and correlations between modelled and observed incidence
rates for the same data set in Models 1-3 are comparable
(see column s Norm and Corr in Tables 1-8). Model 3 has
greater flexibility because it has an additional parameter
and is capable of producing a better fit for some data sets.
Model 4 fit least according to the norms of differences
and correlations between modelled and observed incidence
rates. Nevertheless, all four models capture the observed
patterns of cancer incidence rates (except a peak in early
childhood): a low rate in youth, an increase in this rate
during adolescence, and a deceleration or decline at old
ages. The models also produce non-declining rates when
parameter T equals the maximal age of available data (85)
or parameters C

B
 or C

K
   are zeros.

Estimations of parameters  ε
D
  and B for the same data

set are similar in Models 1-3 most cases. This is a
predictable result because the models have, in essence,

V
0
e-Bx

 ε
D

x

Table 1.  Revised SM Model with Changing Parameter
B (Model 1) Applied to Female Cancer Incidence

Country      Period   K         10-5   B Norm  Corr

Germany 1990-1995 0.058 0.135 0.021 191.696 0.995
1995-2000 0.110 0.132 0.016 352.533 0.988
2000-2004 1.000 0.110 0.010 198.469 0.997

Denmark 1990-004 1.000 0.103 0.011 128.982 0.999
England 1990-1994 0.047 0.112 0.026 43.206 1.000

1995-1999 0.057 0.111 0.025 72.608 1.000
2000-2002 0.060 0.107 0.027 109.496 0.999
2003-2004 0.025 0.123 0.029 51.960 1.000

Fınland 1990-2004 0.305 0.107 0.015 65.901 1.000
North 1990-1992 0.012 0.074 0.048 102.150 0.997
 Cyprus 1993-1995 0.030 0.120 0.026 70.197 0.999

1996-1998 0.089 0.112 0.018 29.176 1.000
1999-2000 0.035 0.102 0.027 165.986 0.996
2001-2002 0.363 0.110 0.012 63.448 0.999
2002-2003 0.158 0.115 0.016 86.654 0.999
2003-2004 0.497 0.110 0.012 97.018 0.999

Norway 1990-2004 0.103 0.124 0.017 53.642 1.000
Austria 1990-2004 0.028 0.118 0.028 49.262 1.000
Sweden 1990-2004 0.045 0.123 0.024 60.639 1.000
France 1990-2004 0.164 0.124 0.016 100.404 0.999
South 1990-1993 0.023 0.085 0.044 94.760 0.999
 Europe 1994-1996 0.022 0.065 0.052 127.088 0.999

1997-1999 0.036 0.089 0.038 107.922 0.999
2000-2002 0.033 0.070 0.044 105.602 1.000
2003-2004 0.047 0.084 0.036 74.000 1.000

North 1990-1993 0.078 0.123 0.020 65.764 1.000
 Europe 1994-1996 0.051 0.119 0.024 60.194 1.000

1997-1999 0.063 0.126 0.023 17.026 0.998
2000-2002 0.036 0.095 0.034 46.124 1.000
2003-2004 0.062 0.102 0.028 42.899 1.000

Norm, norm of differences; Corr,  correlation between modelled and
observed incidence rates

Table 2.  Revised SM Model with Changing Parameter
B (Model 1) Applied to Male Cancer Incidence

Country      Period   K         10-5   B Norm  Corr

Germany 1990-1995 0.137 0.077 0.025 85..393 1.000
1995-2000 1.000 0.083 0.015 175.655 0.999
2000-2004 0.140 0.069 0.029 116.747 1.000

Denmark 1990-004 0.109 0.071 0.028 73.549 1.000
England 1990-1994 0.093 0.047 0.038 80.396 1.000

1995-1999 0.097 0.044 0.039 90.614 1.000
2000-2002 0.409 0.063 0.025 91.954 1.000
2003-2004 0.040 0.042 0.047 95.988 1.000

Fınland 1990-2004 0.046 0.039 0.048 92.821 1.000
North 1990-1992 0.037 0.047 0.044 179.777 0.997
 Cyprus 1993-1995 0.113 0.074 0.027 125.413 0.999

1996-1998 0.063 0.050 0.037 132.290 0.999
1999-2000 0.107 0.059 0.031 77.651 1.000
2001-2002 0.047 0.043 0.044 139.066 0.999
2002-2003 0.070 0.051 0.039 67.173 1.000
2003-2004 0.061 0.044 0.043 92.723 1.000

Norway 1990-2004 0.158 0.061 0.027 85.852 1.000
Austria 1990-2004 0.022 0.020 0.066 100.662 0.999
Sweden 1990-2004 0.059 0.047 0.039 95.218 1.000
France 1990-2004 0.071 0.048 0.041 122.441 1.000
South 1990-1993 0.088 0.047 0.039 120.991 1.000
 Europe 1994-1996 0.105 0.048 0.038 135.613 1.000

1997-1999 0.247 0.065 0.027 85.481 1.000
2000-2002 0.301 0.076 0.024 201.148 1.000
2003-2004 0.150 0.063 0.032 418.375 0.998

North 1990-1993 0.071 0.059 0.036 75.361 1.000
 Europe 1994-1996 0.092 0.054 0.035 75.385 1.000

1997-1999 0.361 0.069 0.024 183.061 0.999
2000-2002 0.118 0.053 0.035 100.591 1.000
2003-2004 0.289 0.066 0.026 72.377 1.000

Norm, norm of differences; Corr,  correlation between modelled and
observed incidence rates

Table 3.  Revised SM Model with Changing Parameter
K (Model 1) Applied to Female Cancer Incidence

Country      Period   K         10-5   B Norm  Corr

Germany 1990-1995 0.058 0.135 0.021 152.586 0.997
1995-2000 0.110 0.132 0.016 352.533 0.988
2000-2004 1.000 0.110 0.010 198.469 0.997

Denmark 1990-004 1.000 0.103 0.011 128.982 0.999
England 1990-1994 0.047 0.112 0.026 43.206 1.000

1995-1999 0.057 0.111 0.025 72.608 1.000
2000-2002 0.060 0.107 0.027 109.742 0.999
2003-2004 0.025 0.123 0.029 51.960 1.000

Fınland 1990-2004 0.305 0.107 0.015 65.901 1.000
North 1990-1992 0.012 0.074 0.048 102.150 0.997
 Cyprus 1993-1995 0.030 0.120 0.026 70.197 0.999

1996-1998 0.089 0.112 0.018 29.177 1.000
1999-2000 0.035 0.102 0.027 165.986 0.996
2001-2002 0.363 0.110 0.012 63.448 0.999
2002-2003 0.158 0.115 0.016 86.654 0.999
2003-2004 0.497 0.110 0.012 97.018 0.999

Norway 1990-2004 0.103 0.124 0.017 53.642 1.000
Austria 1990-2004 0.028 0.118 0.028 49.262 1.000
Sweden 1990-2004 0.045 0.123 0.024 60.639 1.000
France 1990-2004 0.164 0.124 0.016 100.404 0.999
South 1990-1993 0.023 0.085 0.044 94.760 0.999
 Europe 1994-1996 0.022 0.065 0.052 127.946 0.999

1997-1999 0.036 0.089 0.038 118.832 0.999
2000-2002 0.033 0.070 0.044 113.724 1.000
2003-2004 0.047 0.084 0.036 74.000 1.000

North 1990-1993 0.078 0.123 0.020 65.764 1.000
 Europe 1994-1996 0.051 0.119 0.024 60.194 1.000

1997-1999 0.063 0.126 0.023 173.026 0.998
2000-2002 0.036 0.095 0.034 46.124 1.000
2003-2004 0.062 0.102 0.028 46.894 1.000

Norm, norm of differences; Corr,  correlation between modelled and
observed incidence rates

0
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Table 4.  Revised SM Model with Changing Parameter
B (Model 1) Applied to Male Cancer Incidence

Country      Period   K         10-5   B Norm  Corr

Germany 1990-1995 0.125 0.076 0.026 81.041 1.000
1995-2000 1.000 0.083 0.015 175.655 0.999
2000-2004 0.621 0.078 0.019 82.233 1.000

Denmark 1990-004 0.109 0.071 0.028 73.549 1.000
England 1990-1994 0.093 0.047 0.038 80.396 1.000

1995-1999 0.097 0.044 0.039 90.614 1.000
2000-2002 0.552 0.065 0.023 100.755 1.000
2003-2004 0.040 0.042 0.047 90.716 1.000

Fınland 1990-2004 0.046 0.039 0.048 97.569 1.000
North 1990-1992 0.037 0.047 0.044 185.281 0.997
 Cyprus 1993-1995 0.103 0.073 0.028 126.693 0.999

1996-1998 0.636 0.073 0.019 92.801 1.000
1999-2000 0.107 0.059 0.031 77.651 1.000
2001-2002 0.047 0.043 0.044 139.066 0.999
2002-2003 0.070 0.051 0.039 67.173 1.000
2003-2004 0.061 0.044 0.043 92.723 1.000

Norway 1990-2004 0.138 0.059 0.028 81.403 1.000
Austria 1990-2004 0.022 0.020 0.066 100.662 0.999
Sweden 1990-2004 0.059 0.047 0.039 95.218 1.000
France 1990-2004 0.071 0.048 0.041 122.441 1.000
South 1990-1993 0.088 0.047 0.039 120.991 1.000
 Europe 1994-1996 0.105 0.048 0.038 135.613 1.000

1997-1999 0.251 0.065 0.027 84.515 1.000
2000-2002 0.301 0.076 0.024 201.148 1.000
2003-2004 0.149 0.063 0.032 418.375 0.998

North 1990-1993 0.104 0.067 0.030 74.717 1.000
 Europe 1994-1996 0.092 0.054 0.035 75.385 1.000

1997-1999 0.068 0.037 0.046 257.278 0.999
2000-2002 0.118 0.053 0.035 100.591 1.000
2003-2004 0.289 0.066 0.026 72.377 1.000

Norm, norm of differences; Corr,  correlation between modelled and
observed incidence rates

Table 5.  Revised SM Model with Changing Parameters
B and K (Model 2) Applied to Female Cancer Incidence

Country      Period   K         10-5   B Norm  Corr

Germany 1990-1995 0.058 0.135 0.021 152.586 0.997
1995-2000 0.018 0.082 0.042 167.098 0.997
2000-2004 0.122 0.133 0.016 155.432 0.998

Denmark 1990-004 0.117 0.123 0.018 66.652 1.000
England 1990-1994 0.034 0.102 0.032 26.622 1.000

1995-1999 0.043 0.102 0.029 40.340 1.000
2000-2002 0.041 0.092 0.033 57.376 1.000
2003-2004 0.018 0.109 0.035 42.603 1.000

Fınland 1990-2004 0.307 0.107 0.015 65.901 1.000
North 1990-1992 0.012 0.074 0.048 102.150 0.997
 Cyprus 1993-1995 0.030 0.120 0.026 70.197 0.999

1996-1998 0.089 0.112 0.018 29.177 1.000
1999-2000 0.035 0.102 0.027 165.986 0.996
2001-2002 0.359 0.110 0.013 63.448 0.999
2002-2003 0.157 0.115 0.016 86.654 0.999
2003-2004 0.492 0.110 0.012 97.018 1.000

Norway 1990-2004 0.085 0.125 0.018 52.801 1.000
Austria 1990-2004 0.031 0.120 0.027 48.530 1.000
Sweden 1990-2004 0.045 0.123 0.024 60.639 1.000
France 1990-2004 0.090 0.125 0.020 88.062 0.999
South 1990-1993 0.023 0.085 0.044 94.760 0.999
 Europe 1994-1996 0.020 0.055 0.056 121.883 0.999

1997-1999 0.034 0.087 0.039 118.832 1.000
2000-2002 0.038 0.080 0.040 104.415 1.000
2003-2004 0.053 0.089 0.033 70.029 1.000

North 1990-1993 0.043 0.118 0.026 56.034 1.000
 Europe 1994-1996 0.051 0.119 0.024 60.194 1.000

1997-1999 0.026 0.089 0.040 49.378 1.000
2000-2002 0.033 0.091 0.036 43.516 1.000
2003-2004 0.062 0.102 0.028 46.894 1.000

Norm, norm of differences; Corr,  correlation between modelled and
observed incidence rates

Table 6.  Revised SM Model with Changing Parameters
K and B (Model 2) Applied to Male Cancer Incidence

Country      Period   K         10-5   B Norm  Corr

Germany 1990-1995 0.133 0.077 0.025 73.954 1.000
1995-2000 0.042 0.059 0.039 134.202 0.999
2000-2004 0.769 0.079 0.018 74.564 1.000

Denmark 1990-004 0.077 0.063 0.032 63.769 1.000
England 1990-1994 0.170 0.059 0.030 62.464 1.000

1995-1999 0.138 0.052 0.033 86.959 1.000
2000-2002 0.525 0.066 0.023 100.755 1.000
2003-2004 0.040 0.042 0.047 90.169 1.000

Fınland 1990-2004 0.046 0.039 0.048 97.569 1.000
North 1990-1992 0.037 0.047 0.044 185.281 0.997
 Cyprus 1993-1995 0.103 0.073 0.028 126.693 0.999

1996-1998 1.000 0.073 0.017 66.644 1.000
1999-2000 0.107 0.059 0.031 77.651 1.000
2001-2002 1.000 0.079 0.016 87.701 1.000
2002-2003 0.110 0.062 0.032 44.426 1.000
2003-2004 0.075 0.051 0.039 86.862 1.000

Norway 1990-2004 0.167 0.062 0.026 77.042 1.000
Austria 1990-2004 0.024 0.024 0.061 98.582 0.999
Sweden 1990-2004 0.059 0.046 0.039 95.218 1.000
France 1990-2004 0.071 0.048 0.041 122.441 1.000
South 1990-1993 0.154 0.061 0.031 116.389 1.000
 Europe 1994-1996 0.323 0.066 0.025 95.222 1.000

1997-1999 0.251 0.065 0.027 84.515 1.000
2000-2002 1.000 0.079 0.018 172.146 1.000
2003-2004 1.000 0.078 0.019 318.194 0.999

North 1990-1993 0.108 0.068 0.030 65.152 1.000
 Europe 1994-1996 0.107 0.057 0.033 73.660 1.000

1997-1999 1.000 0.075 0.018 203.271 0.999
2000-2002 0.286 0.068 0.025 93.045 1.000
2003-2004 0.395 0.068 0.024 69.551 1.000

Norm, norm of differences; Corr,  correlation between modelled and
observed incidence rates

Table 7.  Revised SM Model with Heterogeneity in
Parameter K (Model 1) Applied to Female Cancer
Incidence

Country      Period   σ2          10-5   B Norm  Corr

Germany 1990-1995 4.871 0.087 0.016 371.808 0.981
1995-2000 0.359 0.111 0.010 360.808 0.987
2000-2004 1.769 0.099 0.013 396.752 0.987

Denmark 1990-2004 0.816 0.098 0.013 259.680 0.996
England 1990-1994 1.330 0.100 0.012 80.357 1.000

1995-1999 1.121 0.100 0.012 101.505 0.999
2000-2002 1.077 0.099 0.013 139.143 0.999
2003-2004 2.332 0.103 0.011 82.781 0.999

Fınland 1990-2004 1.786 0.089 0.014 113.617 0.999
North 1990-1992 9.903 0.072 0.019 264.653 0.999
 Cyprus 1993-1995 8.503 0.074 0.018 304.107 0.981

1996-1998 4.122 0.083 0.014 129.228 0.977
1999-2000 3.504 0.084 0.014 154.502 0.997
2001-2002 4.799 0.081 0.015 190.424 0.996
2002-2003 3.248 0.086 0.014 153.448 0.994
2003-2004 2.622 0.092 0.013 166.928 0.997

Norway 1990-2004 1.051 0.102 0.011 61.494 0.997
Austria 1990-2004 5.252 0.086 0.015 145.189 1.000
Sweden 1990-2004 4.112 0.087 0.015 194.733 0.996
France 1990-2004 0.494 0.107 0.011 111.439 0.995
South 1990-1993 2.534 0.098 0.015 137.054 0.999
 Europe 1994-1996 2.689 0.094 0.016 153.555 0.999

1997-1999 2.191 0.093 0.016 130.010 0.999
2000-2002 2.433 0.084 0.018 97.051 0.999
2003-2004 2.757 0.076 0.019 218.568 1.000

North 1990-1993 1.654 0.098 0.013 117.910 0.998
 Europe 1994-1996 1.988 0.097 0.013 82.540 0.999

1997-1999 0.840 0.108 0.011 207.190 0.999
2000-2002 1.803 0.095 0.014 68.730 1.000
2003-2004 2.654 0.084 0.017 101.588 0.999

Norm, norm of differences; Corr,  correlation between modelled and
observed incidence rates
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the same incidence rate until age T and then differ either
in the slope of the  vitality function or the intensity of
stress events in age interval [T, 85]. The estimations,
however, show variability between different data sets,
reflecting substantial variability between the observed
rates in different countries and changes in the rates over
time in the same country. For instance, the North Cyprus
prefecture incidence rates at oldest old ages almost
doubled from 1990-2004 (Figure 1). Parameters   K, and
B define the patterns of incidence rates and, therefore, are
also subject to variability over time and place. The models
are less sensitive to changes in parameter K and, in some
cases, this parameter varies to a greater extent in Models
1-3 and in different data sets with in the same model. I
restricted the parameter K to be less than 105 in our models.
In some cases, the estimations of K reach the upper
boundary, but the greater values of K would result only in
a minor improvement of fit. I also assumed T to be greater
than 70 (around the minimal age of decline in the incidence
rates) and the estimations are at boundary in some cases.
However, a further reduction of the lower boundary gives
no substantial improvement of fit.

Model 4 also captures the observed pattern of cancer
incidence rates, except for peak in early childhood.
Parameters  ε

D
  and B have the same meaning and the

same effect on the shape of the incidence rate as their
counterparts in Models 1-3, and their estimations lie within
the range of the estimations in Models 1-3. Estimations
of   (variance of the heterogeneity variable) lie within the

range   0.36-9.91. This reflects a possible variability in
the susceptibility to stress in different populations at
different times. Larger variances may be related to a more
pronounced decline of the rate in the mid-1995.

The models with a constant  logarithmic rate of aging
B over age (Model 1), a decreasing  B at oldest ages (Model
2) and an increasing B at oldest ages  (Model 3) result in
declining patterns of cancer incidence rates. This means
that the observed decline in the rates may be the result of
three different dynamics of the logarithmic rates of aging
and intensities of stress events related to cancer. I interpret
these changes as a more pronounced manifestation of the
basal component of aging within the context of
Ukraintseva and Yashin’s model (2001). The logarithmic
rate of aging possibly does not change with age, in contrast
to the   intensity. I can also assume that the intensity is
fixed over age, whereas the logarithmic rate of aging
declines at oldest old ages. As a variation of the first model,
I can assume that the declining intensity at advanced ages
is accompanied by an increasing logarithmic rate of aging.
Note that I rather can alternatively impose changes on the
average amplitude of stress events ε

D
  than intensity K.

Male and female cancer incidence rates are different.
Males have higher incidence rates at older ages than the
opposite sex. The stable relationship between the
estimations for male and female data in Model 4 reflects
this observation. The resulting estimates of    are higher
for females in all data set, while the estimates of B are
always higher for males (see Tables 7-8). A trade-off
between resource allocation strategies in the male and
female organisms, i.e., between average amplitudes of
stress events and the rates of physiological aging, possibly
explains this phenomenon. The female organism spends
a greater part of her resources on ‘protection’ against
physiological aging. As a result, the values of B are lower
and that of ε

D
  are higher. The male organism, on the

contrary, fights harmful influences and therefore reduces
the amplitude of stress events that reach the organism.
Thus, corresponding parameters  ε

D
   are lower than that

of females, but the trade-off is the higher rate of
physiological aging B.

The observed increase in cancer incidence rates over
time can be obtained in the Models 1-4 if, for instance,
one of the parameters ε

D
 and B is increasing over time

and second is constant or declining. Then, changes in
parameters  ε

D  
and B can also be interpreted in terms of

changes in resource allocation strategies over time.

Conclusion

The literature on mathematical models of
carcinogenesis is vast (Yakovlev and Tsodikov 1996;
Moolgavkar et al., 1999; van Leeuwen and Zonneveld
2001). In this paper, I mentioned several very specific
mathematical models only, and they had been selected to
explain observed trends in overall cancer incidence rates.
I also analyzed data on cancer incidence rates in different
region s at different periods, applying the revised SM
model (both with age-dependent parameters and with
heterogeneity). These models suggest different reasons

Table 8.  Revised SM Model with Heterogeneity in
Parameter K (Model 1) Applied to Male Cancer
Incidence

Country      Period   σ2         10-5   B Norm  Corr

Germany 1990-1995 2.683 0.061 0.021 110.189 1.000
1995-2000 1.624 0.066 0.020 337.911 0.996
2000-2004 1.283 0.063 0.021 130.952 1.000

Denmark 1990-004 1.641 0.064 0.020 204.059 0.998
England 1990-1994 1.401 0.055 0.024 113.275 1.000

1995-1999 1.107 0.057 0.023 83.649 1.000
2000-2002 0.703 0.062 0.022 149.752 1.000
2003-2004 2.219 0.066 0.020 80.981 1.000

Fınland 1990-2004 2.397 0.058 0.024 80.926 1.000
North 1990-1992 5.552 0.045 0.027 219.281 0.996
 Cyprus 1993-1995 6.596 0.033 0.033 398.346 0.987

1996-1998 4.108 0.040 0.028 273.474 0.996
1999-2000 2.912 0.042 0.027 388.519 0.995
2001-2002 3.285 0.047 0.026 252.474 0.997
2002-2003 2.174 0.053 0.024 194.626 0.999
2003-2004 1.948 0.055 0.024 166.106 0.999

Norway 1990-2004 2.170 0.058 0.021 73.705 1.000
Austria 1990-2004 6.482 0.036 0.031 281.685 0.993
Sweden 1990-2004 3.324 0.045 0.026 227.656 0.998
France 1990-2004 1.174 0.065 0.021 138.767 1.000
South 1990-1993 1.673 0.050 0.026 239.428 0.999
 Europe 1994-1996 1.493 0.050 0.026 184.484 1.000

1997-1999 1.024 0.060 0.023 102.437 1.000
2000-2002 1.082 0.058 0.024 289.353 0.999
2003-2004 1.462 0.046 0.028 492.903 0.998

North 1990-1993 1.541 0.066 0.020 66.905 1.000
 Europe 1994-1996 2.041 0.051 0.025 226.711 0.999

1997-1999 0.866 0.067 0.021 277.710 0.999
2000-2002 1.187 0.056 0.024 175.271 1.000
2003-2004 1.571 0.044 0.028 399.447 0.998

Norm, norm of differences; Corr,  correlation between modelled and
observed incidence rates
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to be ignored in data analysis.
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