RESEARCH COMMUNICATION

Pesticides and Breast Cancer Risk: a Comparison between Developed and Developing Countries

Mohammed K Shakeel¹, Preethi Sara George², Jesna Jose³, Josna Jose⁴, Aleyamma Mathew⁵*

Abstract

<u>Background</u>: A large number of studies in Europe and US find little or no association between pesticides and breast cancer, adding to the increasingly dominant view that pesticides are not causally related to breast cancer. We investigated whether there are any differences in the levels of pesticides like dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE), polychlorinated biphenyls (PCB), hexachlorobenzene (HCB) and hexachlorocyclohexane (HCH) and their effect for the development of breast cancer between developed and developing countries. <u>Methods</u>: A pubmed search for literature on pesticides, organochlorines, organophosphates and breast cancer risk from 1990 through 2009 was carried out. <u>Results</u>: The level of pesticide exposure is higher in developing world than the developed world. DDT is found to be positively associated with breast cancer risk. Results for other pesticides are equivocal. There is a dearth of studies in developing countries, which cannot be made up for generalizing the results from developed countries to the developing and third world. <u>Conclusions</u>: More studies are needed in the developing and third world countries, investigating the relation between pesticides and breast cancer risk as the sheer amount of pesticides being relentlessly used in these countries due to lack of proper government regulations.

Key Words: Breast cancer - pesticide exposure - developing world - government regulations

Asian Pacific J Cancer Prev, 10, 173-180

Introduction

Breast cancer is the most common cancer among women in almost all developed countries. Incidence rates of breast cancer are approximately 90-130 per 10⁵ women in developed countries and those in developing countries are approximately ten to sixty per 10⁵ women (Curado et al., 2007). Only about half of breast cancer risk can be attributed to established risk factors such as nulliparity and late age at first child birth (McPheron et al., 2000). Certain dietary factors are also important for breast cancer and have been reviewed by WCRF (1997). Since the past decade there has been continued interest in the role of environmental contaminants that may play in unexplained breast cancer risk (Davis et al., 2001).

Organochlorine compounds degrade slowly, are lipid soluble, bioaccumulate in the food chain, and may be found in human adipose tissue, blood, and breast milk. In recent years, attention has been focused on the potential of some chemicals to act as "endocrine disruptors". According to the US Environment Protection Agency, an endocrine disruptor is a chemical that interferes with the function of the endocrine system by mimicking a hormone, blocking the effect of a hormone, or by stimulating or inhibiting the production or transport of hormones (US Environmental Protection Agency 2002). The World Health Organization reported that organochlorines have been found to be carcinogenic in animal models (WHO 1997; 1998). These characteristics, in combination with the temporal concordance of their widespread use with increasing incidence rates of breast cancer, stimulated the hypothesis that exposure to these compounds may contribute to the occurrence of breast cancer.

Materials and Methods

A Pubmed search of literature was carried out covering studies conducted over a period of twenty years from (1990 to 2009) using keywords pesticides, organochlorines, organophosphates and "breast cancer". The full texts were obtained and information on study design, country, study period, sample size, study subjects, odds ratio (OR)/ relative risk (RR) and trend p–value were acquired if available. Only case-control and cohort studies conducted among women were considered for the present review. Reports from symposia, genetic studies, survival/ mortality studies of breast cancer patients and all studies not specifically associated with breast cancer and

¹Dept. of Psychology, Kent State University, USA, ²Regional Cancer Centre, Trivandrum-11, Kerala, India *For Correspondence: amathew@rcctvm.org, aleyammam@yahoo.com

Mohammed K Shakeel et al

pesticides in women were excluded from the present review.

We investigated the levels of dichlorodiphenyltrichloroethane (DDT), and its metabolite dichlorodiphenyldichloroethylene (DDE), polychlorinated biphenyls (PCB), hexachlorobenzene (HCB) and hexachlorocyclohexane (HCH); also known as benzene hexachloride (BHC) and their risk for breast cancer between developed and developing countries. For this we used the World Bank classification of countries and separated the studies accordingly (www.worldbank.org/ data/countryclass/classgroups.htm). The conversions used to express all values in the tables as parts per billion (ppb) are as follows.

 $1 \ ppb = ng/g = ng/kg \ x \ 10^{-3} = ng/mL = \mu g/g \ x \ 10^{3} = \mu g/$ L= $\mu g/kg = mg/kg \ x \ 10^{3} = ppm \ x \ 10^{3}$

Results

Risk of DDT and DDE between developed and developing countries

Six case-control studies from the developed countries reported positive associations with breast cancer risk (Falk et al., 1992; Djorjevic et al., 1994; Wolcott et al., 2001; Duell et al., 2000; Charlier et al., 2003; Charlier et al., 2004). Duell et al., (2000) examined the role of farming and pesticide exposure among 862 breast cancer cases and 790 controls in North Carolina. Among women who farmed, ORs were elevated for those who reported being present in fields during or shortly after pesticide application (OR=1.8; 95% CI: 1.1-2.8). Several studies found no association between pesticides and breast cancer risk (Table 1). Breast cancer mortality was inversely correlated with adipose DDE levels among both white and African American women in a study on 1968 adipose DDE levels of population samples from 22 U.S. states (Cocco et al., 2000).

Three cohort studies reported a positive association with breast cancer risk (Wolff et al., 1993; Hoyer et al., 2000; Bagga et al., 2000). Hoyer et al., (2000) found that high serum concentration of p,p'-DDT was associated with more than three fold significantly increased risk of breast cancer, and a dose-response relationship was apparent (Table 1).

Two case-control studies conducted in the developing world studies found a positive association between DDT and breast cancer risk (Olaya-Contreras et al., 1998; Pavuk et al., 2003) and two studies provided positive associations between DDE and breast cancer risk (Romieu et al., 2000; Pavuk et al., 2003). The mean levels for cases ranged from 3.30 ng/mL to 3.84 mg/g and for controls, 2.50 ng/mL to 2.52 mg/g. The ORs of these studies ranged from 1.95 to 5.26 (Table 2).

A study in 1992 reported that the average dietary intake of DDT in India was 48ng/person, which was higher than those observed in most developed countries (Kannan et al., 1992). Bhatnagar et al., (2004) found that the level of DDT in serum samples in Ahmedabad, India, were 32.61 \pm 2.32 mg/L (mean \pm SE) and level of pp'-DDE was 20.85 \pm 1.84 mg/L. Higher levels of DDT and its metabolites in human blood samples from India were reported as compared to other parts of the world (Sharma and Bhatnagar 1996; Bhatnagar 2001). In Jordan DDT levels in human adipose tissue were 3.8 ppm (30-44 years) and 4.6 ppm (45-59 years) (Alawi et al., 1999).

There have been several studies, which investigated the relation between pesticides and breast cancer when menopausal status is taken into consideration (Lopez-Carrillo et al., 1997; Moysich et al., 1998; Helzlsouer et al., 1999; Aronson et al., 2000; Romieu et al., 2000). Aronson et al. (2000) found a non-significantly higher risk of breast cancer in pre-menopausal women with the highest levels of breast adipose tissue DDE (OR= 1.52; 95% CI: 0.7-3.33) than for post-menopausal women (OR=1.05; 95% CI: 0.5-3.33). Helzlsouer et al. (1999) found similar results (pre-menopausal women OR = 1.42, post-menopausal women OR= 0.50). Lopez-Carrillo et al. (1997) did not observe elevated breast cancer risk associated with serum DDE levels in pre-menopausal women (OR= 0.64; 95% CI: 0.22-1.90) or postmenopausal women (OR= 0.79; 95% CI: 0.27-2.28). In contrast, Romieu et al. (2000) reported elevated serum DDE levels and risk of breast cancer in post-menopausal women, but non-significant (OR= 5.26; 95% CI: 0.80-34.30).

Risk of HCB between developed and developing countries

Three studies from the developed countries found positive association (Liljegren et al., 1998; Charlier et al., 2003; Charlier et al., 2004) between HCB and breast cancer risk with ORs ranging from 5.0 to 7.1. A Swedish study by Liljegren et al., (1998) reported adjusted odds ratio of 7.1 (95% CI: 1.1-45.0) for HCB > 40 ng/g lipid for postmenopausal women with estrogen receptor positive (Table 1).

A cohort study by Dorgan et al. (1999) in a developed country reported that women in the upper three quartiles of HCB were at twice the risk of breast cancer compared to those in the lowest quartile. However, there was no evidence for a dose-response relationship, and the association was limited to women whose blood was collected close to the time of diagnosis.

Pavuk et al. (2003) reported higher serum levels of HCB among breast cancer cases than controls in Eastern Slovakia (developing country), but the association was insignificant (Pavuk et al., 2003). Bhatnagar et al. (2004) reported that mean (\pm SE) levels of HCB in India were 0.20 (\pm 0.02) mg/L in serum samples.

Risk of PCB between developed and developing countries

Two studies (Aschengrau et al., 1998; Aronson et al., 2000) found positive associations between PCB and breast cancer risk. Four studies analyzed more specific relations (Moysich et al., 1998; Liljegren et al., 1998; Aronson et al., 2000; Stellman et al., 2000). Liljegren et al., (1998) reported that the adjusted OR was 33 (95% CI: 1.8-58.8) for co-planar PCB #77 > 4.5 pg/g lipid among postmenopausal women with estrogen receptor positive tumors. A study conducted in Canada reported positive associations for PCB #105 and PCB #118 with ORs 3.17 and 2.31 respectively (Aronson et al., 2000) (Table 1). Moysich et al. (1998) reported an increased risk for women

Table 1.	. Studies	on Pestic	ides and	Risk of	Breast	Cancer	in Dev	eloped	Countries

Control Control Control Co	Reference	Country	Period	Cases/	Type of	Pesticides	Pesticide con	Controls	o), OP* (05% CI)	A n trend	ssociation
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0 11 2007	TTC A		255/227		DCD			OK (95% CI)	p-tiellu	N
Barhaca, 2004 Spain P96-58 P98-290 PIC DDE 2369 (2.78) 207, 31 (3.6.2) 1.22 (0.88-2.2) 0.30 None Charlier, 2004 Belgian 231/290 CE DDE 746 (3.17) 72.70 (1.4) 0.31 (0.74-2.31) 0.30 None Charlier, 2003 Belgian 1999-200 159 (2.50) CC DDE 72.01 (3.4) 133 (1.98) 133 (1.98) 133 (1.98) 133 (1.98) 133 (1.98) 133 (1.98) 133 (1.98) 133 (1.98) 133 (1.98) 133 (1.98) 133 (1.98) 133 (1.98) 133 (1.98) 133 (1.98) 133 (1.98) 133 (1.98) 133 (1.98) 133 (1.98) 130 (9.90) 100 PDD	Gatto, 2007	USA		355/ 321	cc	DDE	2.28 (2.48) 9.90 (12.8)	2.09 (2.16) 8.13 (7.78)		0.27	None
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ibarlueza, 200	4 Spain	1996-98	198/260	HC	DDE	326.9 (2.78)	307.3 (3.62)	1.22 (0.68-2.21)	0.40	None
						TEXB-α	44.6 (14.7) ¹	31.79 (14.3)	1.31 (0.74-2.31)	0.30	None
Canaber 2007 Polyani P	Charlier 2004	Relaium		231/200	CC	ΤΕΧΒ-β DDF	76.48 (13.7)	72.70 (14.4)	0.99 (0.55-1.79)	0.99	None
	Charnel, 2004	Deigiuiii		251/ 290	cc	HCB	0.66 (0.25)	0.2 (1.02)	<	0.0001	
Charlier, 2003 Belgium 199-2000 15/9 1/CB 0.797 (1.65) 0.90 (1.41) 8.86 (2.8-3) 0.0005 Positive Gammon, 2002 USA 199-570 646 (4.29) CC DDT 639 (3.8) 0.83 (1.79) 1.15 (0.74-1.79) 0.80 None Wolcott, 2001 Canada 1995-1997 217 213 HC Sinc (1.64) 931 (1.73) 1.41 (0.74-1.79) 0.80 None WOLFF, 2000a USA 1757 355 BC DDT 66 (682-1203) 96 (30.70) 2.14 (0.6-3.2) None Phote F1CB 0.01 (88-1203) 96 (30.70) 2.14 (0.6-3.2) None DDT 30 (2.140) 280 (30.17) 0.31 (0.32.2) 0.24 None Phote F1CB 600 (1.800 620 (1.800) 0.93 (0.36-1.10) 0.50 (0.81.3) None Damers, 2000 Canada 1995-197 715 (52 BD DDE FCB 73.14 74 76ppt 0.96 (0.67.1.36) 0.60 (0.800) Demers, 2000 Canada 1995-197						DDE	()		2.21, 1.41-3.48		
Charlier, 2005 Bergum 1999-2000 1992-200 CC 1010/D1 3-94 (5.88) 1.83 10.98 3.54 (1.9.5.2) < 0.0000 Positive Gammon, 2002 USA 1996-97 646 (429 CC DDF 67,210 (2.76) 64.57 (2.59) 1.20 (0.76,190) 0.52 Nome OPEN ESIM OF PILS, 153, 313, 0.000 (1.9.10, 1.0.1, 0.53) (1.9.10, 0.52 Nome OPEN ESIM OF PILS, 153, 313, 0.000 (1.9.10, 1.0.1, 0.53) (1.9.10, 0.54, 1.20) (1.9.10, 0.54, 0.54, 1.20) (1.9.10, 0.54, 0.54, 1.20) (1.9.10, 0.54, 0.54, 1.20) (1.9.10, 0.54, 0.54, 1.20) (1.9.10, 0.54, 0.54, 1.20) (1.9.10, 0.54, 0.54, 1.20) (1.9.10, 0.54, 0.54, 1.20) (1.9.10, 0.54, 0.54, 1.20) (1.9.10, 0.54, 0.54, 1.20) (1.9.10, 0.54, 0.54, 1.20) (1.9.10, 0.54, 0.54, 1.20) (1.9.10, 0.54, 0.54, 1.20) (1.9.10, 0.54, 0.54, 1.20) (1.9.10, 0.54, 0.54, 1.20) (1.9.10, 0.54, 0.54, 1.20) (1.9.10, 0.54, 0.54, 0.54, 1.20) (1.9.10, 0.54	CI 1: 2002	D 1 ·	1000 2000	150/250	00	HCB	2.04 (2.99)	1.02 (1.00)	4.99, 2.95-8.43	. 0. 000 1	Positive
Gammon, 2002 USA 1996-97 646 (429 CC DDE DDT 72 (2, 72, 6) 120 (75, 72, 19) 120 (75, 19, 10) 0.52 Nome Wolcott, 2001 Canada 1995-1997 177, 121 a HC All PCB 1096 (632, 120) 17 (0, 83, 9) Nome Nome Wolcott, 2001 Canada 1995-1997 177, 121 a HC All PCB 109 (66, 632, 120) 96 (30, 670) 24 (1, 0, 54, 129) All Nome WOLFF, 2000a USA 175, 535 BDC DP 50 (2, 660) 730 (1, 0, 132, 10) Nome Partent HPCB 600 (1880) 0.93 (0, 56, 1.5) 0.49 Nome MOLFF, 2000a USA 1995-1997 175, 52 BDD Ed 450, 2pb 0.96, 0, 67, 1.36 (0, 0, 0, 0, 0, 0, 1.36 (0, 32, 1.7) 0.75 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	Charlier, 2003	Belgium	1999-2000	159/ 250	cc	HCB	3.94 (3.88) 0.79 (1.65)	1.83(1.98) 0.09(0.41)	5.36(1.9-15.2) < 8.68(2.8 to 26.6)	0.0001	Positive Positive
Wolcott, 201 Canada 1995-1997 217/213 IK All PCBs, SLM OF ILS, 153, 138, 189 38.7 (1.00) 931.7 (1.74) 0.80 None Wolcott, 2001 Canada 1995-1997 217.213 IC All PCB 906 (082-1003) 56 (3.050-07) 2.4 (1.0-5.4) 0.40 None WOLFF, 2000a USA I.7 / 3.55 BBD.CC 600 (082) 600 (082) 0.23 (1.07.3) 1.41 (0.82-2.2) 0.49 None Paber 100 (1.000) 600 (1880) 0.21 (1.60) 0.34 (1.62) 0.22 None Paber 100 (1.000) 0.16 (1.600) 0.36 (1.66) 0.34 (1.62) None Paber 100 (1.000) 10 (1.800) 0.36 (1.63-1) 0.22 None Paber 100 (1.000) 10 (1.800) 0.96 (0.83-1.1) 0.21 None Paber 100 (1.000) 10 (1.800) 0.96 (1.63-1.1) 0.20 (1.63-1.3) 0.20 (1.63-1.3) 0.20 (1.63-1.3) 0.20 (1.63-1.3) 0.20 (1.63-1.3) 0.20 (1.63-1.3) 0.20 (1.63-1.3) 0.20 (1.63-1.3) 0.20 (1.63-1.3)	Gammon, 200	2 USA	1996-97	646/429	CC	DDE	672.0 (2.76)	645.7 (2.59)	1.20 (0.76-1.90)	0.52	None
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						DDT	68.98 (1.83)	69.32 (1.79)	1.15 (0.74-1.79)	0.89	None
WOLOM, 2001 Canada 195/1997 21/1713 TC PDE Space (682-1203) Space (Wolcott 2001	Canada	PCB	s, SUM OF	ч 118,153 нс	,138,180	386.7 (1.69)	391.7 (1.74)	0.83 (0.54-1.29) 1 7 (0 8 3 9)	0.7	None
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	wolcon, 2001	Callada	1995-1997	217/215	пс	DDE	906 (682-1203	3) 596 (530-670)	2.4 (1.0-5.4)	0.03	Positive
						β-НСН	56.2 (38-82)	41.5 (36-47.6)	1.4 (0.6-3.2)		None
WOLPF, 2000a USA 175/353 BBD CE pp-DDT 610 (324) 640 (2/30) 633 (0.25-1.5) 0.449 None Zheng 2000a USA 1995-197 475/52 BD DDE 460.1 ¹⁸ 620 (1860) 0.78 (0.45-1.3) 0.22 None Demers, 2000 Canada 1994-197 314/218HC β-HCH 21.1 (40.5) 19.4 (37.1) 0.80 (0.47-1.35) 0.54 None Demers, 2000 Canada 1990'S 217/213BBD PCB 93.0 (1.47.3) 0.90 (0.47-1.35) 0.54 None Aronson, 2000 Canada 1990'S 217/213BBD PCB 19 12.6 (1.72) 15.0 (1.67.2) None Positive Positive Positive PCB 18 30.3 (27.7 32) 2.17 (21.447.7) 1.00 (0.00.01.67) 0.39 None Positive POSI 10.68 (1.68.2) None Positive PCB 18 30.3 (27.7 32) 2.37 (21.47.7) 3.31 (1.11-4.78) Positive POSI 10.68 (1.79.9) 9.6 (0.30.47.01.11) 1.0 (9.61.1-2) None POSI 136 (3.68.9) None				105/055		DDT	23.5 (17.3-32.0	0)	19.3 (17.3-21.6)	0.40	N.
	WOLFF, 2000	la USA		1/5/355	ввр,сс	pp-DDE	30(2140)	28 (2090)	0.93(0.56-1.5) 1 34 (0 82-2 2)	0.49	None
Lange USA USA <thusa< th=""> <thusa< td="" th<=""><td></td><td></td><td></td><td></td><td></td><td>HPCB</td><td>600 (1880)</td><td>620 (1860)</td><td>0.78 (0.45-1.3)</td><td>0.21</td><td>None</td></thusa<></thusa<>						HPCB	600 (1880)	620 (1860)	0.78 (0.45-1.3)	0.21	None
Zheng 2000a USA 1995-197 475 502 BBD DDE 460.1 ^b 456.2ppb 0.96.067-1.36 0.06 None Demers, 2000 Canada 1994-1997 314/218HC β-HCH 21.1 (40.5) 19.4 (37.1) 0.80 (0.47-1.35) 0.54 None Aronson, 2000 Canada 1990's 217/213BED PCB 97.87 (27.5) 353 (20.9) 1.28 (0.60-1.67) 0.39 None Aronson, 2000 Canada 1990's 217/213BED PCB 99 155 (18.21.2) 17.7 (16.19.3) 1.92 (0.95.3.86) None PCB 105 (94.112) 98.3 (91.8-105) 1.04 (0.04.1.27.1) None Positive PCB 105 105 (94.112) 95.8 (10.21.2) 1.77 (16.19.8) 1.30 (0.64-2.6) None PCB 183 105 (94.112) 95 (8.8-10.2) 1.27 (10.62.4.6) None PCB 183 105 (94.112) 95 (8.8-10.2) 1.27 (0.66-2.4.6) None PCB 170 3.43 (13.64.30) 1.51 (0.06-2.40) None None PGB 130						LPCB	110 (2000)	110 (1890)	0.96 (0.53-1.7)	0.75	None
Demers, 2000 Canada 1994-1997 314/2181C FeB 73.1 74/2000 0.50, 0.63-1.32 None pr-DDE 508.9 (491.1) 46(37.1) 0.50, 0.06-1.35 0.54 None Aronson, 2000 Canada 1990's 217/2138 BD PCB 953 58.7 (27.5) 53.3 (20.9) 1.28 (0.74-1.39) 0.85 None Aronson, 2000 Canada 1990's 217/2138 BD PCB 95 (18-21.2) 1.77 (16-19.3) 1.92 (0.95-3.86) None PCB 153 58.7 (27.5) 53.3 (20.97) 3.17 (15.1-6.68) Positive PCB 150 (58-11.2) 95 (18-21.2) 1.56 (0.80-3.06) None PCB 153 (150 (58-11.2) 95 (3.80-1.2) 1.50 (0.80-3.06) None PCB 153 (150 (74.19.9) 1.72 (16.01.9.3) 1.92 (0.06-2.40) None PCB 153 (150 (74.19.9) 1.22 (10.61.2.40) None None ProB 153 (157.80) 95 (18-2.0) 1.26 (0.66-2.40) None ProB 163 (13.849)	Zheng 2000a	USA	1995-1997	475/ 502	BBD	DDE	460.1 ^b	456.2ppb ^b	0.96, 0.67-1.36)	0.60	None
Millikan, 2000 Canada 1990's 217/213BD FOR 508,9 (491,1) 462,7 (42,7,7) 100 (0,60-1,67) 0.39 None Aronson, 2000 Canada 1990's 217/213BD PCB 53,8 (27,5,5) 53,3 (20,9) 1.28 (0,74,21)9 0.88 None Aronson, 2000 Canada 1990's 217/213BD PCB 99 9,5 (18,21,2) 17,7 (16,1-68) PCB (15,77,0) 3.17 (15,1-668) Positive PCB 153 105 (98,-112) 98.3 (91,8-105) 1.04 (0,51-2,11) None PCB 153 105 (98-112) 98.3 (91,8-105) 1.27 (0,662,46) None PCB 156 156 (17-19) 1.27 (0,662,46) None None PCB 150 163 (15,700) 3.10 (23,-32) 1.48 (0,62,-24) None PCB 150 106,641.1) 9.5 (63,643,-12) 1.27 (0,662,46) None PDDT 22.0 (19,6-25) 19.3 (17,23,-14) 1.5 (0,67,2-24) None PCB 180 105 (98-110) 9.5 (18,70,30,30,12,33) 1.28 (0,64,3,11) None <tr< td=""><td>Demers 2000</td><td>Canada</td><td>1994-1997</td><td>314/ 218H</td><td>IC</td><td>РСВ В-НСН</td><td>755.1° 21.1 (40.5)</td><td>747.oppb[*] 19.4 (37.1)</td><td>0.95, 0.68 - 1.52) 0.80(0.47 - 1.35)</td><td>0.54</td><td>None</td></tr<>	Demers 2000	Canada	1994-1997	314/ 218H	IC	РСВ В-НСН	755.1° 21.1 (40.5)	747.oppb [*] 19.4 (37.1)	0.95, 0.68 - 1.52) 0.80(0.47 - 1.35)	0.54	None
Aronson, 2000 Canada 1990's 217/213B ED PCB 153 S87 (27.5) S33 (20.9) 1.28 (0.74.21) 9.28 (0.74.21) 9.08 (0.84.1.37) 0.70 None Aronson, 2000 Canada 1990's 217/213B ED PCB 193 553 (20.9) 1.27 (1.1) 1.26 (1.1) 1.92 (0.95-3.86) None PCB 118 30.3 (27.7-32) 24.7 (2.24-27.3) 2.31 (1.11-4.78) Positive Positive PCB 150 150 (58.112) PCB 150 30.3 (27.7-32) 2.47 (2.24-27.3) 2.31 (1.11-4.78) None PCB 150 150 (58.112) PCB 150 3.3 (32-60.3) 1.50 (0.05-2.04) None PCB 150 150 (58.112) 9.33 (1.91-60.55) 1.52 (0.662-2.40) None PCB 170 0.3 (36-11.1) 9.5 (8.8-10.2) 1.27 (0.662-2.40) None PCB 180 71.9 (67.75.5) 6.7 (61.73.32) 1.16 (0.67-2.40) None ProDE 9.30 (1.11) 9.5 (8.8-10.2) 1.27 (0.662-2.40) None ProDE 20.2 (27.5) 1.9 (3.17-32) 1.16 (0.72-2.31) None Millikan, 2000 USA, MH 456 (380) CC	2000	Cuntur	1771 1777	01.0 2101		pp-DDE	508.9 (491.1) ^b	462.7 (447.7) ^b	1.00 (0.60-1.67)	0.39	None
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						pp-DDT	12.7 (17.1)	12.5 (11.8)	0.81 (0.48-1.37)	0.70	None
Autorson, 2000 Cantal 1990 8 217/21365D Feb 97 13.0 (13-21.2) 17.1 (16-19.3) 12.9 (13-35.360) None PGB 105 7.1 (6.4.7.8) 6.3 (5.7.7.0) 3.17(1.51-668) Positive PGB 138 30.3 (27.7.32) 2.47 (2.4.27.3) 2.31 (1.11-4.78) Positive PGB 138 73.8 (68.9.79) 66.8 (62.1.72) 1.56 (0.80.30.0) None PGB 153 105 (98-112) 98.7 (14-91.9) 17.2 (16.0.18.5) 1.35 (0.68-2.90) None PGB 170 34.3 (32.36.6) 32.0 (29.7.34.4) 1.15 (0.60-2.22) None PGB 180 71.9 (67.76.5) 65.7 (61.5-70.2) 1.27 (0.66-2.46) None PGB 180 10.3 (0.6-11.1) 9.5 (8.8-10.2) 1.27 (0.66-2.46) None PGB 180 10.3 (0.6-11.1) 9.5 (8.8-10.2) 1.27 (0.66-2.46) None PGB 181 01.3 (0.61-1.1) 9.5 (8.8-10.2) 1.27 (0.66-2.46) None PGB 181 01.3 (0.61-1.1) 9.5 (8.8-10.2) 1.27 (0.66-2.46) None PGB 187 10.3 (0.5-11.1) 9.5 (8.8-10.2) 1.27 (0.66-2.46) None PGB 187 25.7 (24.27.7) 24.2 (22.6-2.6.0) 1.26 (0.66-2.40) None PD-DT 22.0 (19.6-25) 19.3 (1.73.22) 1.18 (0.61-2.29) None HCB 32.0 (29.35) 30.1 (28.43) 1.15 (0.57-2.34) None PD-DT 22.0 (19.6-25) 19.3 (1.15 (0.57-2.34) None PD-DT 22.0 (19.6-25) 19.3 (1.15 (0.57-2.34) None PD-DT 22.0 (19.6-25) 19.3 (1.15 (0.57-2.34) None PD-DT 22.0 (19.6-25) 19.4 (1.1) 8.82 (8.9) 0.45 None PD-DT 22.0 (19.6-25) 19.3 (1.03.92) 1.15 (0.57-2.34) None PD-DT 20.0 (19.6-25) 19.4 (None PD-DT 10.5 (Noppb 0.8, 0.5-1.5 p 0.46 None DDT 51.8 pp 55.6 (ppb 0.8, 0.5-1.5 p None PDT 51.8 pp 55.6 (pb 0.8, 0.5-1.5 p None PDT 51.8 pp 10.2 (1.00.4) 12.0 (1.10.4) 12	Anonaon 2000	Canada	1000%	217/2120	חח	PCB 153	58.7 (27.5)	53.3 (20.9)	1.28 (0.74-2.19)	0.85	None
Milikan, 2000 USA, AM 292/270 CC DDE 9.36 (13.77-32) 2.47. (22.4-27.3) 2.31 (1.11-4.78) Positive Milikan, 2000 USA, AM 292/270 CC Dis (10.71-09) 17.2 (16.0-18.5) 1.35 (0.68-2.69) None Milikan, 2000 USA, AM 292/270 CC Dis (10.71-09) 17.2 (16.0-18.5) 1.35 (0.68-2.69) None Milikan, 2000 USA, AM 292/270 CC Dis (10.71-09) 17.2 (16.0-18.5) 1.35 (0.62-24) None Milikan, 2000 USA, AM 292/270 CC Dis (10.72-05) 0.31 (12.8-33) 1.15 (0.57-2.3.4) None HCB 32.0 (29-35) 30.1 (28-33) 0.15 (0.57-2.3.4) None None JUSA, WH 456/380 CC DDE 9.6 (11.1) 8.5 (2.6 (2.3) 0.21 None JUSA, WH 456/380 CC DDE 3.52 (2.4) 3.94 (5.1) None JUSA, WH 456/380 CC DDE 7.63 (D.09) 0.71 (D.64) (0.71 (D.64) (0.71 (D.64) (0.71 (D.64) (D.64) (D.64) (D.64) (D.64) (D.64	Aronson, 2000	Canada	1990 8	217/2130	Ъ	PCB 99 PCB 105	7.1 (6.4-7.8)	63(5.7-7.0)	3.17(1.51-6.68)		Positive
Field Field 73.8 (68.9-79) 66.8 (62.11-2) 1.5 (6.00-3.06) None PCB 15.6 10.5 10.4 (5.05) 1.04 (5.05) 1.04 None PCB 15.6 18.6 (17-19.9) 17.2 (16.0-18.5) 1.35 (0.60-2.22) None PCB 15.0 7.05 55.7 (15.7-02) 1.27 (0.60-2.22) None PCB 17.9 (7.7-55) 55.7 (15.7-02) 1.27 (0.60-2.22) None PCB 17.9 (25.7) 24.2 (25.62.00) 1.26 (0.62-2.40) None PCB 18.3 10.3<(9.6-11.1)						PCB 118	30.3 (27.7-32)	24.7 (22.4-27.3) 2.31(1.11-4.78)		Positive
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						PCB 138	73.8 (68.9-79)	66.8 (62.1-72)	1.56 (0.80-3.06)	None	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						PCB 153	105 (98-112) 18 6 (17, 10, 0)	98.3 (91.8-105)	1.04(0.51-2.11)		None
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						PCB 130	34.3 (32-36.6)	32.0 (29.7-34.4	1.15(0.60-2.09)		None
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						PCB 180	71.9 (67-76.5)	65.7 (61.5-70.2) 1.27 (0.66-2.46)	None	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						PCB 183	10.3 (9.6-11.1)	9.5 (8.8-10.2)	1.27 (0.66-2.45)		None
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						PCB 187	25.7 (24-27.7)	24.2 (22.6-26.0	1.26 (0.66-2.40)	None	None
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						pp-DDE pp-DDT	22.0 (19.6-25)	19.3 (17.3-22)	1.18 (0.61-2.29)	None	None
Millikan, 2000USA, AM292/270CC β HCH43.1 (38-49)41.5 (36-48)0.69 (0.34-1.40)NoneMillikan, 2000USA, AM-456/389CCDDE 9.96 (11.1) 8.82 (8.9)-0.45NoneZheng, 1999USA1994-1997304/186BBDDDE 73.62 ppb 78.41 ppb0.9 .0.5-1.5 p0.46NoneZheng, 1999, 1998USA1994-1997304/186BBDHCB $21.0ppb$ (17.7) $19.1ppb$ (15.0) 0.9 .0.5-1.5 pNoneZheng, 1998Sweden1993-1995 $43/35$ BBDDDE 76.7 $1026ng'g$ 0.4 (0.1-1.2)NoneMoysich, 1998Sweden1993-1994 $45/20$ BBD β HCH 79 93 0.4 (0.1-1.2)NoneGuttes, 1998Germany1993-1994 $45/20$ BBD β -HCH 79 93 0.4 (0.1-1.2)NoneGuttes, 1998Germany1993-1994 $45/20$ BBD β -HCH 79 93 0.4 (0.1-1.2)NoneHunter, 1997USA1989-1900 $236/236$ CCDDE 601 (4.56) 6.97 (5.59) $0.72, 0.37-1.40$ 0.002 Porb $236/236$ CCDDE 1350 (1150-1580) 1510 (1310-1730) 0.73 (0.44-1.21) 0.16 NonePort Vere, 1997Europe1991-92 $256/341$ HC, CC DDE 1350 (1150-1580) 1510 (1310-1730) 0.73 (0.44-1.21) 0.16 NonePord Vere, 1997Europe1991-192 $265/341$ HC,						HCB	32.0 (29-35)	30.1 (28-33)	1.15 (0.57-2.34)	None	
				202/270	66	β-HCH	43.1 (38-49)	41.5 (36-48)	0.69 (0.34-1.40)	0.45	None
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Millikan, 2000	USA, AM		292/270	LL.	All PCBs	9.96 (11.1)	8.82 (8.9) 2 56 (2 3)		0.45	None
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		USA,WH		456/389	CC	DDE	3.52 (4.4)	3.94 (5.8)		0.09	None
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zheng, 1999	USA	1994-1997	304/186	BBD	DDE	736.5 ppb	784.1 ppb0.9, 0	.5-1.5 p	0.46	None
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Zhang 1000a	LISA	100/ 1007	304/186	BBD	DDT	51.8ppb 21.0ppb (17.7)	55.6ppb	0.8, 0.5-1.5 p	0.37	None
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Liljegren, 199	8 Sweden	1993-1995	43/35	BBD	DDE	767	1026ng/g	0.9, 0.3-1.0	0.57	None
Guttes, 1998 Germany 1993-1994 45/ 20 BBD β-HCH 79 93 0.36 HCB 309 261 0.40	Moysich, 1998	8 USA	1986-1991	154/192	CC	DDE	11.5 (10.49) ^b	10.77 (10.64) n	g/g b1.34(0.71-2.5	5) p0.25	None
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Guttes, 1998	Germany	1993-1994	45/20	BBD	β-HCH	79	93		0.36	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						HCB nn-DDE	309 805	261 496		0.40	Positive
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						pp-DDT	30	28		0.71	1 001010
Hunter, 1997 USA 1989-1990 236/256 CC DDE 6.01 (4.56) 6.97 (5.99) 0.72, 0.37-1.40 0.47 None 230/230 PCBs 5.08 (2.51) 5.16 (2.26) 0.66, 0.32-1.37 0.72 None Van't Veer, 1997 Europe 1991-92 265/341 HC, CC DDE 1350 (1150-1580)1510 (1310-1730) 0.73 (0.44-1.21) 0.16 None Djordjevic, 1994 USA 1990's 05/05/09 HC HCB 16.1 (6.8) 10.0 (6.9)	II / 100-	110.4	1000 1000	0001005	00	PCB 118	81	65	0.70.0.27.1.10	0.04	N
Van't Veer, 1997 Europe Djordjevic, 1994 USA1991-92 1990's $265/341$ $05/05/09$ HC, CC DDE HC $1350 (1150-1580) 1510 (1310-1730) 0.73 (0.44-1.21)$ 0.72 0.16 None NoneDewailly, 1994 Canada1991-1992 $9/17$ BBDDDE HC $765.3 (526.9)$ $608.9 (338.9)$ HC HCH HCB $33.4 (13.2)$ $31.1 (11.5)$ α -HCH $334.7 (15.7)$ Falk, 1992USA1987 $20/20$ BBDHCB HCB $23 (8)$ $20 (10)$ $20 (10)$ DDE $2177 (1283)$ $1174 (630)$	Hunter, 1997	USA	1989-1990	236/236	CC	DDE	6.01 (4.56) 5.08 (2.51)	6.97 (5.99) 5 16 (2 26)	0.72, 0.37 - 1.40 0.66, 0.32, 1.37	0.47	None
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Van't Veer, 19	97 Europe	1991-92	265/341	HC, CC	DDE 1	1350 (1150-1580)	1510 (1310-173	0) 0.73 (0.44-1.21)	0.16	None
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Djordjevic, 19	94 USA	1990's	05/05/09	HC	HCB	16.1 (6.8)	10.0 (6.9)			
Dewailly, 1994 Canada 1991-1992 9/17 BBD DDE 765.3 (526.9) 608.9 (338.9) PCB 233 (145) 124 (65.7)ppb Dewailly, 1994 Canada 1991-1992 9/17 BBD DDE 765.3 (526.9) 608.9 (338.9) HCB 33.4 (13.2) 31.1 (11.5) α-HCH 39.7 (23.4) 34.7 (15.7) Falk, 1992 USA 1987 20/20 BBD HCB 23 (8) 20 (10) DDE 1877 (1283) 1174 (630) 1174 (630) 1174 (630)						β-HCH	12.5 (8.5)	10.1 (9.5)			Desitive
PCB223 (145)124 (65.7)ppbDewailly, 1994Canada1991-19929/17BBDDDE765.3 (526.9)608.9 (338.9)HCB 33.4 (13.2) 31.1 (11.5) α -HCH 39.7 (23.4) 34.7 (15.7)All PCBs 397 (161.5) 331.5 (74.7)Falk, 1992USA198720/20BBDHCB23 (8)20 (10)DDE1877 (1283)1174 (630)						pp-DDE	10.7 (10.4)	4.1 (4.5)			Positive
Dewailly, 1994 Canada 1991-1992 9/17 BBD DDE 765.3 (526.9) 608.9 (338.9) HCB 33.4 (13.2) 31.1 (11.5) \u03c6 - HCH 39.7 (23.4) 34.7 (15.7) All PCBs 397 (161.5) 331.5 (74.7) Falk, 1992 USA 1987 20/20 BBD HCB 23 (8) 20 (10) DDE 1877 (1283) 1174 (630)						PCB	223 (145)	124 (65.7)ppb			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dewailly, 199	4 Canada	1991-1992	9/17	BBD	DDE	765.3 (526.9)	608.9 (338.9)			
All PCBs 397 (161.5) 34.7 (15.7) Falk, 1992 USA 1987 20/20 BBD HCB 23 (8) 20 (10) DDE 1877 (1283) 1174 (630)						HCB	33.4 (13.2)	31.1 (11.5)			
Falk, 1992 USA 1987 20/20 BBD HCB 23 (8) 20 (10) DDE 1877 (1283) 1174 (630)						All PCBs	397 (161.5)	331.5 (74.7)			
DDE 1877 (1283) 1174 (630)	Falk, 1992	USA	1987	20/20	BBD	HCB	23 (8)	20 (10)			
						DDE	1877 (1283)	1174 (630)			
$\begin{array}{cccc} DD1 & 1/9 (155) & 14 (49) \\ 41/33 & PCB_8 & 1669 (894) & 1105 (424) \end{array}$				41/33		PCBs	179 (135) 1669 (894)	14 (49) 1105 (424)			
Mussalo- Finland 1985-1986 44/33 PMW pp-DDT 70 (90) 60 (70)	Mussalo-	Finland	1985-1986	44/ 33	PMW	pp-DDT	70 (90)	60 (70)			
Rauhamaa, 1990 pp-DDD 30 (50) 80 (130)	Rauhamaa, 1	990				pp-DDD	30 (50)	80 (130)			
pp-DDE 96 (63) 980.0 (890.0) None						pp-DDE	96 (63) 1050 (620)	980.0 (890.0)			None
HCB 140 (80) 1500 (750)						HCB	140 (80)	110 (50)			
β -HCH 130 (60) 80 (30) 10.5 (2.00-55.3) Positive						β-НСН	130 (60)	80 (30)	10.5 (2.00-55.3)		Positive

Asian Pacific Journal of Cancer Prevention, Vol 11, 2010 175

Table 1 (continued). Studies on Pesticides and Kisk of Dreast Cancer in Developed Cot

Reference	Country	Period	Cases/	Type of I	Pesticides	Pesticide con	centration (pp	ıb),	А	ssociation
	-		Controls	Control		Cases	Controls	OR* (95% CI)	p-trend	
Iwasaki, 2008	Japan	1990-2002	139/ 278	CC	p,p' DDT	Median (IQR)	1.10 (0.64- 2.04)1.12 (0.72, 1.83)	0.19	None
					p,p' DDE	7.04 (4.36, 10.	42)	6.08 (3.72-9.70)	0.42	None
					HCB	0.29 (0.15, 0.5	1)	0.29 (0.18- 0.51)	0.73	None
					β-HCH	0.51 (0.22-1.1	0) 0.50 (Not De	etailed, 0.94)	0.77	None
Laden, 2001	USA	1997-Follov	w 381/ 381	DDE	768	817		0.82, 0.49-1.37e	0.15	None
					All PCBs	544	543	0.84, 0.47-1.52e	0.56	None
					PCB	327.7 (306.3)	332.9 (279.6)	0.76 (0.38-1.51)	0.60	None
Wolff, 2000	USA	1987-1992	110/213		DDE	977(2.46) ^b	1097 (2.29) ^b	1.30, 0.51-3.35 p	0.99	None
					PCBs	683 (1.64)	663 (1.62)	2.02, 0.76-5.37	0.23	None
Bagga, 2000	USA	1995-1996	73/73	BBD	DDT	231.4 (130.1- 3	332.8)197.6 (96	.3-298.9)	0.22	None
					DDE	693.6 (570-81)	7) 642.1 (382.7-	901.4)	< 0.01	Positive
					DDD	9.2 (2.4-16.0)	21.7 (1.5-41.9)	0.8	None
				DDT+	DDE+ DDD	934.3 (742-112	26)861.4 (569-1	153)	0.02	Positive
Ward, 2000	USA	1973-1991			p,p' DDE	1230	1260		0.84	None
					p,p' DDT	119.5	137.7		0.27	None
					All PCBs	776.1	806.6	0.47	None	
Zheng, 2000	USA	1994- 1997	304/186		PCB	478.6 (454-504	4)494 (462-528)	0.7 (0.4, 1.1)	0.46	None
Dorgan, 1999	USA	1977-1987	105/208		DDE	NA	16.3	0.8, 0.4-1.5p	0.77	None
Helzlsouer, 199	9 USA	1989	105/105		DDE	1311.9 (1036) ^t	⁹ 1586.3 (1557) ^b	0.58 (0.29-1.17)	0.15	None
Krieger 1994	USA	1964-1971	150/150		DDE	43.3 (25.9)	43.1 (23.7)	1.33, 0.68-2.2 p	0.43	None
Ţ.					PCB	4.4 (1.8)	4.8 (2.5)	0.59	0.90	
Wolff, 1993	USA	1985-1991	58/171		DDE	11.0 (9.1)	7.7 (6.8)	3.68, 1.01-13.50p	0.04	Positive
					PCB	8.0 (4.1)	6.7 (2.9)	4.35	0.16	

Std.dev- Standard deviation, *-All OR's, except where otherwise noted; PMW- post-menopausal women; BBD-Benign Breast Disease Controls; HC- Hospital Controls (Hospitalized for non-breast disease and non-cancer related conditions); CC- Community or population controls; TEXBalpha-Total Effective Xenoestrogen Burden mg/g- microg/g; HPCB, LPCB- higher and lower chlorinated biphenyls; a- geometric mean serum levels; b- serum DDE adjusted for lipid concentration; c- age and lipid-adjusted geometric mean adipose-tissue levels; d- HR estimates for the highest compared to lowest exposure categories; e- Multivariate relative risk of breast cancer for women in the highest quintile of exposure as compared with women in the lowest quintile; f- Plasma DDE adjusted for cholesterol; g- Lipid adjusted geometric mean ; p OR adjusted for potential confounding factors, comparison between highest and lowest levels (i.e. tertile, quartile, or quintile); Ref. No.- Reference number ; Std.dev-Standard deviation; *-All OR's, except where otherwise noted; PMW- post-menopausal women; OP-Organophosphates; DDT-Total amount of DDT isomers; SIR- Standardized Incidence Ratio; Eeq/g- Picomolar of Estradiol equivalent of lipid; Total DDT -- DDT+DDE isomers; AM: African American, WH: whites

with detectable levels of less chlorinated PCBs (OR=1.66; 95% CI: 1.07-2.88). Among parous women who had never lactated, increased risk was observed for total PCBs (OR=2.87; 95% CI: 1.01-7.29), moderately chlorinated PCBs (OR=3.57; 95% CI: 1.10-8.60), and greater numbers of detected PCB congeners (OR=3.31; 95% CI: 1.04-11.3) in serum concentrations. Stellman et al., (2000) found that PCB congener 183 (2, 2', 3, 4, 4', 5', 6-heptachlorobiphenyl) was significantly associated with breast cancer risk (OR=2.0; 95% CI: 1.2-3.4).

None of the cohort studies from developed countries found any association between PCB and breast cancer risk (Hunter et al., 1997; Helzlsouer et al., 1999; Hoyer et al., 2000; Wolff et al., 2000; Laden et al., 2001) (Table 1). A study conducted by Pavuk et al. (2003), reported no association between PCBs and risk of breast cancer in eastern Slovakia (developing country). The median levels of total PCBs were similar in cases (2586 ng/g of lipid) and controls (2682 ng/g of lipid) (Table 2).

Risk for HCH between developing and developed countries

Mussalo-Rauhamaa et al. (1990) conducted a study in Finland and reported that residues of β - HCH were found more frequently in breast cancer patients. After adjusted for age and parity, β -HCH was found as a significant risk factor for breast cancer. Using a cutoff point for the residue level of β -HCH in breast adipose tissue of more than 0.1 mg/kg fat the OR was 10.51 (95% CI: 2.00-55.26).

Studies which assessed the storage of HCH-derived material in adipose tissue of the general population,

reported that in Jordan (Alawi et al., 1999) it was reported to be 1.9 ppm respectively. An Egyptian study (Soliman et al., 2003) found no association between β -HCH and breast cancer risk. In India the average dietary intake of HCH was reported to be 115 ng/person, which was higher than those observed in most developed countries (Kannan et al., 1992). Joshi et al., (1996) conducted a study in India on the effect of HCH exposure in spray men (n=260) and general population. The mean residue level of α , β , and γ isomers and the total β , β , and β isomers in spray men were twice those of the general population. A significant association (p < 0.05) was observed between their length of exposure and the levels of HCH isomers in the blood of spray men. In another study by Bhatnagar et al., (2004), the mean levels (\pm SE) of α , β , and γ -HCH in serum samples in India were found to be $4.49 (\pm 0.73)$, 35.06(±3.50), and 1.69 (±0.15), respectively. The study also reported HCH level as 41.23 (±3.77). In a pilot study in Kerala, India, Rusieki et al. (2005) reported that the mean concentrations of β -HCH among the breast cancer cases were 14.45 ppb and 2876.15 ppb for lipid unadjusted and adjusted respectively. Also the Indian Council of Medical Research (ICMR, 2001) reported levels of β -HCH in human fat samples to range from 1,060 ppb to 16,850 ppb (μ =3,490 ppb) (ICMR 2001; 2003). It is reported that the average Indian dietary intake of HCH exceeds that of the US and UK by a hundred fold (PAN, 1993) (Table 1).

Discussion

In the present review, it is observed that the data are

Reference Country Period Cases/ Type of Pesti				Pesticides	Pesticide concentration (ppb),				ssociation	
			Controls (Control		Cases	Controls	OR* (95% CI)	p-trend	l
Waliszewski,	Mexico		127/ 127		HCB	0.099 (0.091)	0.045 (0.032)	2.01 (1.94- 2.07)	0.05	Positive
2005					β-НСН	0.265 (0.210)	0.163 (0.119)	1.58 (1.54- 1.62)	0.05	Positive
					p,p'-DDE	0.980 (0.627)	0.782 (0.282)	1.17 (1.11- 1.23)	0.05	Positive
					op DDT	0.094 (0.098)	0.035 (0.027)	2.27 (2.18-2.37)	0.05	Positive
					p,p'-DDT	0.351 (0.291)	0.296 (0.230)	1.33 (1.25- 1.41)		
Pavuk, 2003	Slovakia	1998-1999	24/88	CC	All PCBs	2586ng/g	2682ng/g	0.42, 0.10-1.82	0.31	None
Soliman, 2003	Egypt		69/53	HC	DDE	12.7 (20.3)ppt	0 16.6 (30.1)		0.60	
					β-НСН	2.1(3.8)	2.1(3.9)		0.71	
					Total DDT	13.4 (21.8)	17.3 (31.0)			
Mathur, 2002	India		135/ 50	CC	β-НСН	466 (45)	80 (30)		$<\!\!0.05$	Positive
					DDE	862 (154)	47 (18)		$<\!\!0.05$	Positive
					DDD	569 (73)	249 (59)		< 0.05	Positive
					DDT	2254 (405)	1034 (221)		$<\!\!0.05$	Positive
					All	7468 (771)	1857 (311)		$<\!\!0.05$	Positive
Romieu, 2000	Mexico	1990-1995	120/126	CC	DDE	3840 (5980) ^b	2520 (1970) ^b	3.81, 1.14-12.80p	0.02	Positive
Mendonca, 199	9 Brazil	1995-1996	151/306	CC	DDE	5.1	4.8	0.83, 0.40-1.6 p		None
Olaya-Contrera	is, 1998 Mex	kico 1995-199	96 153/ 153	HC	DDE	3.30 (4.12)	2.50 (3.60)	1.95, 1.10-3.52	0.03	Positive
Schechter, 199'	7 North Viet	tnam 1994	20/20		BBDDDE	12.2 (2.41)	16.7 (4.14)	1.14, 0.23-5.68 p		None
					DDT	2.33 (0.46)	2.37 (0.58)	1.21 (0.15-9.65)		None
					All DDT	15.9 (3.05)	20.95 (5.14)	1.06 (0.18-5.67)		None
Lopez-Carrillo	1997 Mexico	o 1994-1996	141/141		HCDDE	562.5 (676.2) ^b	505.5 (567.2) ^b	0.76, 0.41-1.42 p	0.44	None
					p,p'-DDT	61.45 (139.77)) 84.53 (180.95))	0.23	

Table 2. Studies on Pesticides and Risk of Breast Cancer in Developed Countries

Std.dev- Standard deviation; *-All OR's, except where otherwise noted; BBD-Benign Breast Disease Controls; HC- Hospital Controls (Hospitalized for non-breast disease and non-cancer related conditions); CC- Community or population controls; ^bSerum DDE adjusted for lipid concentration; p - OR adjusted for potential confounding factors, comparison between highest and lowest levels (i.e. tertile, quartile, or quintile) # All case control studies

strongest for DDT and its metabolite DDE. A total of six case-control (Falk et al., 1992; Djorjevic et al., 1994; Wolcott et al., 2001; Duell et al., 2000; Charlier et al., 2003; Charlier et al., 2004) and one cohort study (Wolff et al., 1993) in developed countries and two case-control studies (Olaya-Contreras et al., 1998; Romieu et al., 2000) in developing countries found a positive association between DDT and breast cancer. Among the studies, which investigated the relation between pesticides and breast cancer according to menopausal status, two studies found a higher risk of breast cancer in pre-menopausal women with the highest levels of breast adipose tissue DDE (Aronson et al.; 2000 and Helzlsouer et al. 1999) and one study reported a significant association between elevated serum DDE levels and risk of breast cancer in post-menopausal women (Romieu et al., 2000). Only two studies reported positive association for HCB (Charlier et al., 2003; Charlier et al., 2004) and two for α -HCH (Mussalo-Rauhamaa et al., 1990; Djordjevic et al., 1994) and no association between PCBs and cancer in either in the developing or developed world was reported.

There are huge differences in amount of exposures, type of pesticides used and mode of exposure between the developing and developed countries. There is a dearth of studies to assess the risk of breast cancer in developing countries, which cannot be made up for by generalizing the results from developed countries to the developing and third world.

As case-control and cohort studies are observational epidemiological studies, the extraneous factors could not be manipulated. Although information of such extraneous factors is collected and quantitatively adjusted for when they are known to be present, findings from observational epidemiological studies are generally less conclusive than those from experimental studies because of the less strict control of extraneous factors. The main contrast between case-control and cohort studies lies in their differing potential for bias and in the resources required. The pesticide concentration after the treatment may change though its concentration from various sources may not be the same prior to breast cancer diagnosis and after diagnosis. However cohort studies are normally considered free of the most common biases that potentially affect case-control studies such as selection and information bias. So the results from the cohort studies can be considered more authentic.

There have been discussions among researchers about the relative merits and demerits of using serum vs adipose tissue levels to determine body burden of organochlorines. There have been some case-control studies in the developed world, which analyzed adipose tissue levels (Mussalo-Rauhamaa et al., 1990; Falk et al., 1992; Djordjevic et al., 1994; Dewailly et al., 1994; van't Veer et al., 1997; Guttes et al., 1998; Aschengrau et al., 1998; Zheng et al., 1999; Aronson et al., 2000; Woolcott et al., 2001; Ibarluzea et al., 2004) and some which analyzed serum levels (Wolff et al., 2000; Zheng et al., 2000; Demers et al., 2000; Gammon et al., 2002; Charlier et al., 2003). There is evidence that blood levels of pesticides are a good approximation of the levels stored in adipose tissue (ICMR, 2001; Rusiecki et al., 2005).

There are biologically plausible reasons to suspect that the use of these pesticides may be linked to human health. Many organochlorines, including DDE and some PCBs, are considered endocrine disruptors because they are weakly estrogenic or antiestrogenic in experimental assays (Kelce et al., 1995; Soto et al., 1995). Animal and laboratory evidence have demonstrated carcinogenic activity of some organochlorines. PCBs have consistently induced hepatocellular carcinomas in rats, as well as thyroid adenomas and gastric and intestinal tumors in individual studies. PCBs have also been shown to have a tumor-promoting effect in studies using rats and mice

Mohammed K Shakeel et al

when administered together with tumor initiators. Animal studies of DDT have shown a number of positive results. Mice are relatively susceptible; mouse studies of DDT and DDE have yielded tumors of the liver, lung, thyroid and lymphomas. Results from other species have been more equivocal (Calle et al., 2002). Still, chemicals known to cause cancer in humans were in many cases first discovered to be carcinogenic in animals (Wolff et al., 1996).

The absolute levels of pesticides found in different parts of the world vary widely, as can be inferred from the values given under each pesticide. There are also differences in types, usage and time of exposure. Due to economic conditions and disparity in developed countries, industrialized countries use more of chemicals like PCBs while developing countries use more of HCH, DDT and its derivatives. One important reason why most North American and European studies have failed to find an association between blood or adipose tissue levels of DDE and breast cancer risk may be that since the 1970s the major route of exposure to DDT has not been through the more estrogenic o,p'-DDT found in technical DDT that was sprayed as an insecticide but through the far less estrogenic p, p'-DDE via the diet. Another factor is that although pesticide use varies widely, we do not always see a proportionate rise in the tissue levels of pesticides. India uses a hundred fold more of pesticides like HCH (PAN, 1993), but we do not, fortunately, find a proportionate increase of HCH in tissue samples, or cancers. There seems to be some resilience at work here. This is consistent with the finding that Asian women in their countries of origin, and even when living in countries like the US, have lower rates of breast cancer, perhaps due to nutritional or genetic factors (Allen et al., 1997). Joshi and colleagues noticed this sort of resilience when studying spraymen in Allahabad, India (Joshi et al., 1996). Another major drawback of the studies reviewed here is that very few studies have taken into consideration the fact that there can be a synergistic effect of pesticides. Payne et al (2001) assessed the combined effects of 1-(ochlorophenyl)-1-(p-chlorophenyl)-2,2,2-trichloroethane (o,p'-DDT), 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE), _-HCH, and 1,1-bis(p-chlorophenyl)-2,2,2trichloroethane (p,p'-DDT) on the induction of cell proliferation in MCF-7 cells and demonstrated that there were combination effects even when each mixture component was present at levels at or below its individual no-observed-effect-concentration. Studies provided evidence that the synergistic activity of many common pesticides may be significant (Soto et al., 1994; Arnold et al., 1996). For example, one study reported that a mixture of endosulfan and dieldrin was 160 to 1600 times more potent than each chemical acting alone (Arnold et al., 1996). Since these compounds occur as mixtures in the environment, their partnership potencies require special consideration.

In conclusion, there is a need for more studies, especially in the developing and poor countries, investigating the relation between pesticides and breast cancer before conclusions can be drawn. The most important reason for is the sheer amount of pesticides being relentlessly used in these countries due to lack of proper government regulations. The economic impact of pesticides in non-target species including humans has been estimated at approximately US \$8 billion annually in developing countries (Environews Forum, 1998). ICMR stresses on this, stating: "Our approach on use of pesticides should be pragmatic... all activities on pesticides should be based on scientific judgments and not commercial considerations" (ICMR, 2001).

References

- Abdalla MH, Gutierrez-Mohamed ML, Farah IO (2003). Association of pesticide exposure and risk of breast cancer mortality in Mississippi. *Biomed Sci Instrum*, **39**, 397-401.
- Adami HO, Lipworth L, Titus-Ernstoff L, et al (1995). Organochlorine compounds and estrogen-related cancers in women. *Cancer Causes Control*, **6**, 551-66.
- Ahlborg UG, Lipworth L, Titus-Ernstoff L, et al (1995). Organochlorine compounds in relation to breast cancer, endometrial cancer, and endometriosis: an assessment of the biological and epidemiological evidence. *Crit Rev Toxicol*, **25**, 463-531.
- Alawi MA, Tamimi S, Jaghabir M (1999) Storage of organochlorine pesticides in human adipose tissue of Jordanian males and females. *Chemosphere*, **38**, 2865-73.
- Allen RH, Gottlieb M, Clute E, et al (1997). Breast cancer and pesticides in Hawaii: the need for further study. *Environ Health Perspect*, **105**, 679-83.
- Arnold SF, Klotz DM, Collins BM, et al (1996). Synergistic activation of estrogen receptor with combination of environmental chemicals. *Science*, 272, 1489-92.
- Aronson KJ, Miller AB, Woolcott CG, et al (2000). Breast adipose tissue concentrations of polychlorinated biphenyls and other organochlorines and breast cancer risk. *Cancer Epidemiol Biomarkers Prev*, 9, 55-63.
- Aschengrau A, Coogan PF, Quinn M, Cashins LJ (1998). Occupational exposure to estrogenic chemicals and the occurrence of breast cancer: an exploratory analysis. *Am J Ind Med*, **34**, 6-14.
- Bagga D, Anders KH, et al (2000). Organochlorine pesticide content of breast adipose tissue from women with breast cancer and control subjects. J Natl Cancer Inst, 92, 750-3.
- Bhatnagar VK, Kashyap R, Zaidi SSA, Kulkarni PK, Saiyed HN (2004). Levels of DDT, HCH, and HCB residues in human blood in Ahmedabad, India. *Bull Environ Contam Toxicol*, **72**, 261-5.
- Bhatnagar VK: Pesticide pollution: trends and perspectives. ICMR Bull 2001, 31: 85-93.
- Brody JG, Rudel RA (2003). Environmental pollutants and breast cancer. *Environ Health Perspect*, **111**, 1007-19.
- Calle EE, Frumkin H, Henley SJ, Savitz DA, Thun MJ (2002). Organochlorines and breast cancer risk. *CA Cancer J Clin*, 52, 301-9.
- Charlier C, Albert A, Herman P, et al (2003). Breast cancer and serum organochlorine residues. *Occup Environ Med*, **60**, 348-51.
- Charlier C, Foidart JM, Pitance F, et al (2004). Environmental dichlorodiphenyltrichlorethane or hexachlorobenzene exposure and breast cancer: is there a risk? *Clin Chem Lab Med*, **42**, 222-7.
- Cocco P, Kazerouni N, Zahm SH (2000). Cancer mortality and environmental exposure to DDE in the United States. *Environ Health Perspect*, **108**, 1-4.
- Curado MP, Edwards B, Shin HR, et al (eds) (2007). Cancer Incidence in Five Continents, IARC Scientific Publications,

Pesticides and Breast Cancer Risk in Developed and Developing Countries

Vol 9, No 160, Lyon, IARC.

- Davis DL, Axelrod D, Osborne MP, Telang NT (2001). Environmental influences on breast cancer risk. *Sci Med*, **4**, 56-63.
- Dello Iacovo R, Celentano E, Strollo A, et al (1999). Organochlorines and breast cancer; a study on Neapolitan women. Adv Exp Med Biol, 472, 57-66.
- Demers A, Ayotte P, Brisson J, et al (2000). Risk and aggressiveness of breast cancer in relation to plasma organochlorine concentrations. *Cancer Epidemiol Biomarkers Prev*, 9, 161-6.
- Dewailly E, Dodin S, Verreault R, et al (1994). High organochlorine body burden in women with estrogen receptor- positive breast cancer. *J Natl Cancer Inst*, **86**, 232-4.
- Djordjevic MV, Hoffmann D, Fan J, et al (1994). Assessment of chlorinated pesticides and polychlorinated biphenyls in adipose breast tissue using a supercritical fluid extraction method. *Carcinogenesis*, **15**, 2581-5.
- Dorgan JF, Brock JW, Rothman N, et al (1999) Serum organochlorine pesticides and PCBs and breast cancer risk: results from a prospective analysis (USA). *Cancer Causes Control*, **10**, 1-11.
- Duell EJ, Millikan RC, Savitz DA, et al (2000). A populationbased case-control study of farming and breast cancer in North Carolina. *Epidemiology*, **11**, 523-31.
- Falk F Jr, Ricci A Jr, Wolff MS, Godbold J, Deckers P (1992). Pesticides and polychlorinated biphenyl residues in human lipids and their relation to breast cancer. *Arch Environ Health*, **47**, 143-6.
- Gammon MD, Wolff MS, Neugut AI, et al (2002). Environmental toxins and breast cancer on Long Island. II. Organochlorine compound levels in blood. *Cancer Epidemiol Biomarkers Prev*, 2, 686-697.
- Gatto NM., Longnecker MP, et al (2007). Serum organochlorines and breast cancer: a case-control study among African-American women. *Cancer Causes Control*, **18**, 29-39.
- Guttes S, Failing K, Neumann K, et al (1998). Chlororganic pesticides and polychlorinated biphenyls in breast tissue of women with benign and malignant breast disease. Arch Environ Contam Toxicol, 35, 140-7.
- Helzlsouer KJ, Alberg AJ, Huang HY, et al (1999). Serum concentrations of organochlorine compounds and the subsequent development of breast cancer. *Cancer Epidemiol Biomarkers Prev*, **8**, 525-32.
- Hoyer AP, Grandjean P, Jorgensen T, Brock JW, Hartvig HB (2000). Organochlorine compounds and breast cancer-Is there a connection between environmental pollution and breast cancer? *Ugeskr Laeger*, **162**, 922-6.
- Hoyer AP, Jorgensen T, Grandjean P, Hartvig HB (2000). Repeated measurements of organochlorine exposure and breast cancer risk (Denmark). *Cancer Causes Control*, **11**, 177-84.
- Hunter DJ, Hankinson SE, Laden FC, et al (1997). Plasma organochlorine levels and the risk of breast cancer. N Eng J Med, 337, 1253-8.
- Ibarluzea J J, Fernandez MF, Santa-Marina L, et al (2004). Breast cancer risk and the combined effect of environmental estrogens. *Cancer Causes Control*, **15**, 591-600.
- International Agency for Research on Cancer (1997). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: DDT and Associated Compounds, IARC, Lyon, France.
- International Agency for Research on cancer (1998). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Polychlorinated Biphenyls, IARC, Lyon, France.
- Iwasaki M, Inoue M, et al (2008). Plasma organochlorine levels

and subsequent risk of breast cancer among Japanese women: a nested case-control study. *Sci Total Environ*, **402**, 176-83.

- ICMR (2001). Pesticide pollution: trends and perspective. ICMR Bulletin: ICMR.
- ICMR (2003). National Institute of Occupational Health. Generation of Database on Environmental Health Problems. http://icmr.nic.in/000004/achievements2.htm.
- Joshi PL, Bhattacharya M, Yadava RL, et al (1996). A community-based study on the effect of hexachlorocyclohexane (HCH) exposure in spraymen and general population. *J Commun Dis*, **28**, 189-98.
- Kannan K, Tanabe S, Ramesh A, Subramanian A, Tasukawa R (1992). Persistent organochlorine residues in food stuffs from India and their implications on human dietary exposure. J Agric Food Chem, 40, 518-24.
- Kelce WR, Stone CR, Laws SC, et al (1995). Persistent DDT metabolite p,p'-DDT is a potent androgen receptor antagonist. *Nature*, **375**, 581-5.
- Krieger N, Wolff MS, Hiatt RA, et al (1994). Breast cancer and serum organochlorines: a prospective study among white, black, and Asian women. J Natl Cancer Inst, 86, 589-99.
- Laden F, Hankinson SE, Wolff MS, et al (2001). Plasma organochlorine levels and the risk of breast cancer: an extended follow-up in the Nurses' Health Study. *Int J Cancer*, **91**, 568-74.
- Liljegren G, Hardell L, Lindstrom G, Dahl P, Magnuson A (1998). Case-control study on breast cancer and adipose tissue concentrations of congener specific polychlorinated biphenyls, DDE and hexachlorobenzene. *Eur J Cancer Prev*, 7, 135-40.
- Lopez-Carrillo L, Blair A, Lopez-Cervantes M, et al (1997). Dichlorodiphenyltrichloroethane serum levels and breast cancer risk: a case-control study from Mexico. *Cancer Res*, 57, 3728-32.
- Mathur V, Bhatnagar P, et al (2002). Breast cancer incidence and exposure to pesticides among women originating from Jaipur. *Environ Int*, **28**, 331-6.
- McPheron K, Steel CM, Dixon JM (2000). Breast cancerepidemiology, risk factors, and genetics. *BMJ*, **321**, 624-8.
- Mendonca GA, Eluf-Neto J, Andrada-Serpa MJ, et al (1999). Organochlorines and breast cancer: a case-control study in Brazil. *Int J Cancer*, **83**, 596-600.
- Millikan R, DeVoto E, Duell EJ, et al (2000). Dichlorodiphenyldichloroethene, polychlorinated biphenyls, and breast cancer among African-American and white women in North Carolina. *Cancer Epidemiol Biomarkers Prev*, 9, 1233-40.
- Moysich KB, Ambrosone CB, Vena JE, et al (1998). Environmental organochlorine exposure and postmenopausal breast cancer risk. *Cancer Epidemiol Biomarkers Prev*, 7, 181-8.
- Mussalo-Rauhamaa H, Hasanen E, et al (1990). Occurrence of beta-hexachlorocyclohexane in breast cancer patients. *Cancer*, **66**, 2124-8.
- Olaya-Contreras P, Rodriguez-Villamil J, Posso-Valencia HJ, Cortez JE (1998). Organochlorine exposure and breast cancer risk in Colombian women. *Cad Saude Publica*, 14, 125-32.
- PAN-UK (1993). High residues in India. In: Sharma D et al: A history of HCH contamination. http://www.pan-uk.org/ pestnews/pn21/pn21p15c.htm .
- Pavuk M, Cerhan JR, Lynch CF, et al (2003). Case-control study of PCBs, other organochlorines and breast cancer in Eastern Slovakia. J Expo Anal Environ Epidemiol, 13, 267-75.
- Payne J, Scholze M, Kortenkamp A (2001). Mixtures of four organochlorines enhance human breast cancer cell proliferation. *Environ Health Perspect*, **109**, 391-7.

Mohammed K Shakeel et al

- Romieu I, Hernandez-Avila M, Lazcano-Ponce E, Weber JP, Dewailly E (2000). Breast cancer, lactation history, and serum organochlorines. *Am J Epidemiol*, **52**, 363-70.
- Rusiecki JA, Holford TR, Zahm SH, Zheng T (2004). Polychlorinated biphenyls and breast cancer risk by combined estrogen and progesterone receptor status. *Eur J Epidemiol*, **19**, 793-801.
- Rusiecki JA, Matthews A, Sturgeon S, et al (2005). A correlation study of organochlorine levels in serum, breast adipose tissue, and gluteal adipose tissue among breast cancer cases in India. *Cancer Epidemiol Biomarkers Prev*, **14**, 1113-24.
- Safe SH, Zacharewski T (1997). Organochlorine exposure and risk for breast cancer. *Prog Clin Biol Res*, **396**, 133-45.
- Schecter A, Toniolo P, Dai LC, Thuy LT, Wolff MS (1997). Blood levels of DDT and breast cancer risk among women living in the north of Vietnam. *Arch Environ Contam Toxicol*, 33, 453-6.
- Sharma M, Bhatnagar P (1996). Organochlorine pesticides and preterm labor in human beings. *Curr Sci*, **71**, 628-31.
- Soliman AS, Wang X, Digiovanni J, et al (2003). Serum organochlorine levels and history of lactation in Egypt. *Environ Res*, **92**, 110-7.
- Soto AM, Chung KL, Sonnenschein C (1994). The pesticides endosulfan, toxaphene, and dieldrin have estrogenic effects on human estrogen-sensitive cells. *Environ Health Perspect*, **102**, 380-3.
- Soto AM, Sonnenschein C, Chung KL, et al (1995). The E-SCREEN assay as a tool to identify estrogens: An update on estrogenic environmental pollutants. *Environ Health Perspect*, **103**, 113-22.
- Stellman SD, Djordjevic MV, Britton JA, et al (2000). Breast cancer risk in relation to adipose concentrations of organochlorine pesticides and polychlorinated biphenyls in Long Island, New York. *Cancer Epidemiol Biomarkers Prev*, 9, 1241-9.
- The World Bank: Data and Statistics, Country Classification, available at www.worldbank.org/data/countryclass/ classgroups.htm
- US Environmental Protection Agency (2002, 2001). Endocrine Disruptor Screening Program: What are Endocrine Disruptors? Office of Pesticide Program and Toxic Substances, Washington DC.
- van't Veer P, Lobbezoo IE, Martin-Moreno JM, et al (1997). DDT (dicophane) and postmenopausal breast cancer in Europe: case-control study. *BMJ*, **315**, 81-5.
- Waliszewski SM, Bermudez MT, et al (2005). Persistent organochlorine pesticide levels in breast adipose tissue in women with malignant and benign breast tumors. *Bull Environ Contam Toxicol*, **75**, 752-9.
- Ward EM, Schulte P, et al (2000). Serum organochlorine levels and breast cancer: a nested case-control study of Norwegian women. *Cancer Epidemiol Biomarkers Prev*, **9**, 1357-67.
- Wassermann M, Nogueira DP, Tomatis L, et al (1976). Organochlorine compounds in neoplastic and adjacent apparently normal breast tissue. *Bull Environ Contam Toxicol*, **15**, 478-84.
- Wassermann M, Sofoluwe GO, Tomatis L, et al (1972). Storage of organochlorine insecticides in people of Nigeria. *Environment Physiol Biochem*, 2, 59-67.
- WCRF/AICR (1997).World Cancer Research Fund: American Institute for Cancer Research Expert Panel; Food, Nutrition and the Prevention of Cancer: A Global Perspective. American Institute for Cancer Research, Washington, DC.
- Wolff MS, Berkowitz GS, Brower S, et al (2000). Organochlorine exposures and breast cancer risk in New York City women. *Environ Res*, **84**, 151-61.
- Wolff MS, Collman GW, Barrett JC, Huff J (1996). Breast Cancer

and environmental risk factors: epidemiological and experimental findings. *Annu Rev Pharmacol Toxicol*, **36**, 573-96.

- Wolff MS, Toniolo PG, Lee EW, Rivera M, Dubin N (1993). Blood levels of organochlorine residues and risk of breast cancer. J Natl Cancer Inst, 85, 648-52.
- Wolff MS, Toniolo PG (1995). Environmental organochlorine exposure as a potential etiologic factor in breast cancer. *Environ Health Perspect*, **103**, 141-5.
- Wolff MS, Zeleniuch-Jacquotte A, Dubin N, Toniolo P (2000). Risk of breast cancer and organochlorine exposure. *Cancer Epidemiol Biomarkers Prev*, 9, 271-7.
- Woolcott CG, Aronson KJ, Hanna WM, et al (2001). Organochlorines and breast cancer risk by receptor status, tumor size, and grade (Canada). *Cancer Causes Control*, 12, 395-404.
- Zheng T, Holford TR, Mayne ST, et al (1999). Environmental exposure to hexachlorobenzene (HCB) and risk of female breast cancer in Connecticut. *Cancer Epidemiol Biomarkers Prev*, 8, 407-11.
- Zheng T, Holford TR, Mayne ST, et al (2000). Risk of female breast cancer associated with serum polychlorinated biphenyls and 1,1-dichloro-2, 2'-bis (p-chlorophenyl) ethylene. *Cancer Epidemiol Biomarkers Prev*, 9, 167-74.
- Zheng T, Holford TR, Mayne ST, et al (1999). DDE and DDT in breast adipose tissue and risk of female breast cancer. *Am J Epidemiol*, **150**, 453-8.