Cisplatin Combination Chemotherapy Induces Oxidative Stress in Advance Non Small Cell Lung Cancer Patients

Anand Narain Srivastava*, Abhilasha Gupta*, Shruti Srivastava, SM Natu, Balraj Mittal, MPS Negi, Rajendra Prasad

Abstract

Background: This study determine oxidative stress and survival prospectively in advanced stage non small cell lung cancer (NSCLC) patients following cisplatin based combination chemotherapy. Materials and Methods: The oxidative stress levels (LPO, NO, GSH and SOD) of 144 control subjects and 203 advanced stage (IIIA/IIIB/IV) newly diagnosed NSCLC patients were assessed at pre-treatment (day 0), and after the 3rd and 6th cycles of chemotherapy. Groups were compared by repeated measures ANOVA while comparison of survival curves was conducted by Kaplan-Meier methods. Results: The pre-treatment mean levels of LPO and NO in patients were significantly (P<0.01) higher while GSH and SOD were significantly (P<0.01) lower as compared to control. The oxidative stress was elevated more significantly (P<0.01) after the chemotherapy and was more evident in higher stage than lower stage patients. The two year overall survival (%) of stage IV patients was significantly lower (P<0.05) as compared to stage III A and III B. The proportional mortality was also maximal in stage IV patients (37.0%) followed by stage III B (31.7%) and III A (20.0%). Conclusion: Cisplatin based combination chemotherapy induces oxidative stress in NSCLC patients.

Keywords: Chemotherapy - oxidative stress - stages - survival - non small cell lung cancer (NSCLC) patients

Introduction

Lung cancer is the leading cause of cancer mortality worldwide among both men and women (Parkin et al., 2005). Non small cell lung cancer (NSCLC) accounts for approximately 80% of all lung cancer cases. Lung cancer staging using tumor-node-metastasis (TNM) system has undergone modifications since 1970 (Mountain, 1997). Tumors restricted to the lung in stage I and stage II should be removed surgically. Most patients with NSCLC are diagnosed in advanced stages III or IV disease at presentation (Jemal et al., 2007). The overall 5 year survival for NSCLC remains poor (15%); however if the cancer is detected at stage IA, the 5 year survival often exceeds 80% and stage IIIA, IIIB, and IV remains 13%, 7% and 1% respectively (Mulshine and Sullivan, 2005).

Prognostic factors are essential in the management of patients with lung cancer (Kumar et al., 2009). It is well known that survival is strongly related to the performance status and to the stage of the disease at diagnosis in lung cancer patients (Albain et al., 1991). In accordance with the literature, the comparison among the survival curves for each clinical stage revealed more aggressive behaviour and more rapidly progressing disease in more advanced stages (Novaes et al., 2008). Most patients with a diagnosis of lung cancer are treated with cisplatin based combination chemotherapy and the response is related to tumor and clinical characteristics, such as stage and performance status, as well as to drug, sensitivity of the host and tumor tissues (Relling and Dervieux, 2001).

Of the most active and widely used anticancer drugs, cisplatin is known to generate reactive oxygen species (ROS) (Weijl et al., 1997). These highly ROS can cause extensive tissue damage through reaction with all biological macromolecules e.g. lipids, proteins and nucleic acids, leading to the formation of oxidized substances such as the membrane lipid peroxidation (LPO) product malondialdehyde (MDA) (Sangeetha et al., 1990; Look and Musch, 1994). To circumvent the damages caused by the ROS, multiple defence systems, collectively called antioxidants; superoxide dismutase (SOD), catalase, glutathione peroxidase and glutathione (GSH) etc. are present in human serum as well as erythrocytes (Patterson and Leake, 1998; Kaynar et al., 2005). It was demonstrated that plasma concentration of various antioxidants decreased significantly during cisplatin based chemotherapy in cancer patients (Weijl et al., 1998) resulting oxidative stress. The high level of...
oxidative stress during chemotherapy may overcome the antioxidant defence of cancer cells, halting cancer cell proliferation and interfering with antineoplastic activity (Esme et al., 2008). Thus the antioxidant status of cancer patients may play an important role in their response to chemotherapy (Nowak and Janczak, 2006).

As survival of the patients is strongly related to the stage of disease in NSCLC, therefore this study was aimed to investigate oxidative stress status in different stages of NSCLC patients and their response and survival after the cisplatin based combination chemotherapy.

Materials and Methods

Two hundred and three NSCLC patients (age, range 30-88 years) (155 males, 48 females) previously untreated, histologically or cytologically confirmed and admitted in the Department of Pulmonary medicine, of the related institute, and 144 age and sex matched healthy subjects (Controls) were recruited for the study from October 2006 to December 2008. Eligible patients had an eastern cooperative oncology group (ECOG) performance status (PS) of 0, 1, 2 and 3. Chest radiographs and computed tomography (CT) for staging, sputum cytology, lavage examination, bronchoscopic biopsy, fine needle aspiration biopsy and cytology (if required) were performed in all lung cancer patients for histological diagnosis. Histology (adenocarcinoma, squamous cell carcinoma, large cell, and others), stage (IHA, IIB and IV), side of lesion, date of therapy initiation, date of therapy discontinuation, date of death, date of last follow-up, status at last follow-up was recorded. The survival time was defined as the interval between the date of initial treatment and the date of last follow-up examination. Patients who were not diseased were censored at the last date they were known to be alive based on the date of last contact. This date was verified by inpatient and outpatient medical records, and/or confirmation with the patient’s primary care physician and/or family. Details of demographic characteristics of patients are given in Table 1.

The study protocol was approved by the ethical committee of the related institute (vide communication, ref. code- XXII ECM/P9). Before enrolment, written informed consent from each subject was obtained.

Patients received cisplatin (50-75 mg/m² of body surface area) divided in to 3 doses on day 1, 2 and 3 and etoposide (70-100 mg/m² of body surface area) on 1, 2 and 3 days repeated every 3 weeks for a maximum six cycles.

Blood specimens (5ml) were aseptically drawn in EDTA prior to initiation of each chemotherapy course (first day). Blood was also taken after 3rd and after 6th cycle of the chemotherapy for oxidative stress measurement. Erythrocytes were separated from whole blood (Beutler et al., 1976). EDTA blood was centrifuged at 3000 rpm for 15 minutes in cold centrifuge at 4°C, Plasma was carefully separated. Erythrocytes were washed with chilled normal saline (0.85% NaCl) three times, haemolysed by adding chilled water, and haemolsate made up to original volume followed by freezing and thawing. After centrifugation at 3000 rpm for 15 minutes at 4°C in cold at 3000 rpm for 15 minutes, precipitate was removed and cleared supernatant was collected for antioxidants activity. Protein was estimated in haemolsate (Lowry et al., 1951).

Table 1. Demographic Characteristics of Patients

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Number(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td>203(100%)</td>
</tr>
<tr>
<td>Sex- Male:Female</td>
<td>155(76.4%): 48(23.6%)</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>55, 30-88</td>
</tr>
<tr>
<td>- Median, range</td>
<td>40(19.7%): 107(52.7%): 56(27.6%)</td>
</tr>
<tr>
<td>ECOG performance status 0 : 1 : 2</td>
<td></td>
</tr>
<tr>
<td>Disease stage</td>
<td></td>
</tr>
<tr>
<td>- IIA : III B : IV</td>
<td>15(7.4%): 142(70.0%): 46(22.7%)</td>
</tr>
<tr>
<td>Histological type</td>
<td>82(40.4%): 57(28.1%): 27(13.3%)</td>
</tr>
<tr>
<td>- 'SCC': 'AC': 'LCC': 'O'</td>
<td>37(18.2%)</td>
</tr>
<tr>
<td>Follow-up time (wks)</td>
<td>88</td>
</tr>
</tbody>
</table>

*ECOG-Eastern Co-operative Oncology Group performance status, 'SCC'-Squamous Cell Carcinoma, 'AC'-Adenocarcinoma, 'LCC'-Large Cell Carcinoma, 'O'-Others(Mixed)
Cisplatin Combination Chemotherapy Induces Oxidative Stress in Advance Non Small Cell Lung Cancer Patients

Plasma nitrite levels were measured (Green et al., 1982) with the use of Griess reagent ({sulfanilamide and N-(1-naphthyl) ethylenediamine}). The method is based on two step process. The first step is the conversion of nitrate to nitrite using nitrate reductase. The second step is the addition of Griess reagent, which converts nitrite into a deep-purple azo compound photometric measurement of the absorbance at 540 nm due to this azochromophore accurately determines the nitrite concentration (sodium nitrate is used as standard). Protein interference was eliminated by treatment of the reacted samples with zink sulfate and centrifugation for 5 min at 10,000 g. (MERCK, Microlab 300, Semi automated clinical chemistry analyser, Vital scientific; The Netherlands).

Statistical analysis

The independent groups were compared by one way analysis of variance (ANOVA) followed by Dunnett’s post hoc test and dependent groups by repeated measures ANOVA followed by Tukey’s post hoc test. The dependent and independent groups were also compared respectively by two sample paired and unpaired t-test. The Kaplan-Meier methods (Log rank test and Cox proportional hazard ratio) were used to compare the survival between the groups. A two-tailed (α=2), probability (P) value P<0.05 was considered to be statistically significant. Graph Pad Prism (version 5) and STATISTICA (version 7) were used for the analysis.

For easy interpretations of the data, the percent change between two groups/variables was evaluated as

\[
\text{% change} = \frac{\text{Mean}_2 - \text{Mean}_1}{\text{Mean}_1} \times 100
\]

where,

\[
\text{Mean}_1: \text{Mean of I}^{\text{st}} \text{ group/variable}
\]

\[
\text{Mean}_2: \text{Mean of II}^{\text{nd}} \text{ group/variable}
\]

Results

The biochemical parameters of normal healthy subjects (control) and non small cell lung cancer patients (patients) are summarized in Table 2 and also shown graphically by Figure 1. Both Table 2 and Figure 1 showed that the base line (‘0’ cycle) mean values of LPO and NO in patients were higher while GSH and SOD were lower as compared to respective level of control subjects. After treatment, the mean levels of LPO and NO in patients increases linearly with increasing cycles of chemotherapy while GSH and SOD decreases. Comparing the levels of each parameter between the stages, the baseline mean levels of all the parameters in all the three stages were found to be the same (P>0.05) i.e. not differed significantly (Figure 2). Similarly, the mean levels of LPO, NO, GSH and SOD in patients of stage IIIA and IIIB at 3rd and 6th cycles were found to be the same (P>0.05) while the levels of all these in patients of stage IV at both 3rd cycles and 6th cycles were found to be significantly (P<0.01) different than patients of stage IIIA and IIIB (Figure 2). Similarly comparing the levels of each parameter within the stages, the levels of LPO, NO,
Anand Narain Srivastava et al

468

GSH and SOD in patients of all three stage at 3rd cycles and 6th cycles were found to be significantly (P<0.01) different than respective levels at 0 cycle while the levels of all these in all three stages at 6th cycles were also found to be significantly (P<0.01) different than the respective levels at 3rd cycles (Table 3). The effect size (i.e. mean change from base line to end of the treatment i.e. 6th cycle) of treatment in all parameters and stages showed a linear increase with increasing stages (last column, Table 3) i.e. treatment affected stage IIIA the least and stage IV the most. The oxidative damage in patients is evident more due to decrease (GSH: 27.5; SOD: 22.8%) than increase (NO: 11.4%; LPO: 5.9%).

The two years overall survivals of all patients were summarized graphically in Figure 3. The overall mean (± SD) and median survival of patients were found to be 31.33±20.25 and 25.10 weeks respectively. Similarly, the stage wise survivals of patients were further sub-grouped and summarized graphically by Figure 4. Figure 4 showed that the median survival of patients of stage IIIA (median=65.10 weeks) were higher than the survival of patients of stage IIIB (median=24.35 weeks) and stage IV (median=22.20 weeks) while the survival between patients of stage IIIB and stage IV were almost same. On comparing, the survival proportions in patients of all three stage groups were found to be significantly (χ²=7.17, P<0.01) different.

Table 3. Stage Wise Biochemical Parameters Summary (Mean±SD) of Patients with Non Small Cell Lung Cancer

<table>
<thead>
<tr>
<th>Variables</th>
<th>Stages</th>
<th>0cycle</th>
<th>3rdcycle</th>
<th>6thcycle</th>
<th>% change (from 0 cycle to 6th cycle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPO</td>
<td>Stage III A</td>
<td>6.16±0.83</td>
<td>6.63±0.97</td>
<td>6.93±0.75</td>
<td>11.2%</td>
</tr>
<tr>
<td></td>
<td>(15)</td>
<td>(15)</td>
<td>(13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage III B</td>
<td>6.30±0.60</td>
<td>6.90±0.65</td>
<td>7.37±0.67</td>
<td>14.6%</td>
</tr>
<tr>
<td></td>
<td>(142)</td>
<td>(132)</td>
<td>(103)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage IV</td>
<td>6.44±0.92</td>
<td>7.22±0.54</td>
<td>7.76±0.49</td>
<td>17.1%</td>
</tr>
<tr>
<td></td>
<td>(46)</td>
<td>(45)</td>
<td>(39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage III A</td>
<td>24.78±2.98</td>
<td>26.79±3.42</td>
<td>28.74±2.52</td>
<td>13.8%</td>
</tr>
<tr>
<td></td>
<td>(15)</td>
<td>(15)</td>
<td>(13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>Stage III B</td>
<td>25.63±4.60</td>
<td>29.09±4.17</td>
<td>32.34±3.87</td>
<td>20.7%</td>
</tr>
<tr>
<td></td>
<td>(142)</td>
<td>(132)</td>
<td>(103)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage IV</td>
<td>26.48±4.75</td>
<td>32.45±4.58</td>
<td>35.40±4.33</td>
<td>25.2%</td>
</tr>
<tr>
<td></td>
<td>(46)</td>
<td>(45)</td>
<td>(39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage III A</td>
<td>4.51±0.62</td>
<td>3.68±0.79</td>
<td>3.43±0.63</td>
<td>24.0%</td>
</tr>
<tr>
<td></td>
<td>(15)</td>
<td>(15)</td>
<td>(13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSH</td>
<td>Stage III B</td>
<td>4.28±0.87</td>
<td>3.19±0.81</td>
<td>2.75±0.76</td>
<td>35.6%</td>
</tr>
<tr>
<td></td>
<td>(142)</td>
<td>(132)</td>
<td>(103)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage IV</td>
<td>3.98±1.08</td>
<td>2.37±0.73</td>
<td>1.93±0.61</td>
<td>51.5%</td>
</tr>
<tr>
<td></td>
<td>(46)</td>
<td>(45)</td>
<td>(39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage III A</td>
<td>1.75±0.53</td>
<td>1.43±0.55</td>
<td>1.31±0.52</td>
<td>25.2%</td>
</tr>
<tr>
<td></td>
<td>(15)</td>
<td>(15)</td>
<td>(13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOD</td>
<td>Stage III B</td>
<td>1.56±0.56</td>
<td>1.22±0.54</td>
<td>1.01±0.46</td>
<td>35.0%</td>
</tr>
<tr>
<td></td>
<td>(142)</td>
<td>(132)</td>
<td>(103)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage IV</td>
<td>1.44±0.57</td>
<td>0.96±0.47</td>
<td>0.75±0.33</td>
<td>48.0%</td>
</tr>
<tr>
<td></td>
<td>(46)</td>
<td>(45)</td>
<td>(39)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The superscript ‘a’ compares mean level at 0 cycle with 3rd cycle and 6th cycle and were significant at P<0.01. Similarly, superscript ‘b’ compares mean level at 3rd cycle with 6th cycle and were significant at P<0.01.

The two years overall survivals of all patients were summarized graphically in Figure 3. The overall mean (± SD) and median survival of patients were found to be 31.33±20.25 and 25.10 weeks respectively. Similarly, the stage wise survivals of patients were further sub-grouped and summarized graphically by Figure 4. Figure 4 showed that the median survival of patients of stage IIIA (median=65.10 weeks) were higher than the survival of patients of stage IIIB (median=24.35 weeks) and stage IV (median=22.20 weeks) while the survival between patients of stage IIIB and stage IV were almost same. On comparing, the survival proportions in patients of all three stage groups were found to be significantly (χ²=7.17, P<0.01).

Figure 3. Graph showing Cumulative Survival (2 year) Proportions in Non Small Cell Lung Cancer Patients with SE (vertical bars)

Figure 4. Graph showing stage wise survival (2 years) proportions in non small cell lung cancer patients with SE (vertical bars)
stage IV patients (37.0%) followed by stage III B (31.7%) and III A (20.0%).

Discussion

Lung cancer is one of the most lethal cancers throughout the world owing to its high incidence and mortality. The incidence of Lung cancer is rising each year by 0.5%, resulting 1.04 million new patients each year worldwide (Maas et al., 2007). Depending on TNM stages at diagnosis, response rates to chemotherapy for inoperable NSCLC vary from 30-60% with platinum combined chemotherapy (Spira and Ettinger, 2004; Pflister et al., 2004).

Although platinum based chemotherapy have demonstrated clinical activity against NSCLC, advanced disease remains fatal with low response rates and short survival outcome (approximately 5% at 5 years, and <15% at 2 years) (Bunn and Kelly, 1998; Blackhall and Thatcher, 2004). The present findings are in agreement with these studies, which suggested that survival of stage III is high as compared to stage IV.

Tumor related factors (anatomic factors): Tumor size (T stage) anatomical structures involved (T4 vs. T3 lesions), the presence of regional lymph node metastasis have a significant impact on both prognosis and response to appropriate therapy. Goldie et al. 1979, also mentioned in their study that the chemotherapy response is related with illness stage, they showed in their model, response to chemotherapy is directly related with global tumour mass (Goldie and Coldman, 1979).

The high level of oxidative stress during chemotherapy may overcome the antioxidant defence of cancer cells resulting in lipid peroxide production and interfering with antineoplastic activity (Abdel-Aziz and El-Naggar, 1997). There is evidence that variety of anticancer drugs exert antineoplastic activity (Abdel-Aziz and El-Naggar, 1997). These drugs include anthracyclics, such as cisplatin, etoposide Adriamycin, bleomycin, cyclophosphamide (Look and Musch, 1994). These highly ROS can cause extensive tissue damage through reactions with all biological macromolecules, e.g. lipids, proteins, and nucleic acids leading to the formation of oxidized substances such as the membrane lipid peroxidation product malondialdehyde (MDA) (Halliwell and Chirico, 1993). Cisplatin based combination chemotherapy induces a fall in plasma antioxidant levels that may reflect a failure of the antioxidant defence mechanism against oxidative damage. This probably results from consumption of antioxidants caused by chemotherapy induced oxidative stress (Weijl et al., 1998).

Free radical induced lipid peroxidation is associated with membrane lipid destruction. (Esme et al., 2008) reported that increased lipid peroxidation was associated with clinical progression of the tumor. Our findings showed an increase in MDA levels in NSCLC as compared to control subjects, which are consistent with those of some previous studies (Seven et al., 1999; Bakan et al., 2002; Taysi et al., 2003), and also confirming the fact that as the stage of the lung cancer advances, levels of lipid peroxidation increases.

Nitric oxide (NO) has an unpaired e- and its derivatives produced by activated phagocytes may also play a role in the multi stage carcinogenic process (Ohshima and Bartsch, 1994). NO is known together with other ROS to induce cytotoxicity and cytostasis. It has been found that the concentration of NO under non-pathological conditions is at nanomolar levels and under condition of oxidant injury at micromole levels (Ma et al., 2000) and also shows cytotoxic and mutagenic effects (Taysi et al., 2003). NO reacts rapidly with superoxide anion to form peroxynitrite, which may be cytotoxic by itself or easily decompose to the highly reactive and toxic hydroxyl radical and NO2 (Nitrogen dioxide) (Ohshima and Bartsch, 1994). The present study revealed an increase in nitrite levels in patients with NSCLC compared with control subjects. In addition high level of nitrite was measured in advanced stages of lung cancer. It was also seen that the levels of Lipid peroxidation and nitrates were high in stage III after chemotherapy when compared to stage IV diseased NSCLC patients.

Glutathione is a well known antioxidant. The reduced form of the tripeptide glutathione is the most abundant low molecular weight thiol in all mammalian cell system (Gul et al., 2000). GSH protects cell against free radical injury and toxic effects of chemicals (Meister, 1984). SOD plays an essential role in the conversion of superoxide anion into H2O2 in the mitochondrial matrix, and a key survival factors in cells. For ex. SOD is a determinant of cell resistant to pro oxidant cytokines and contributes to the survival of cells against ionizing radiations and tumoricidal chemotherapeutic drugs (Kuminaka et al., 2000).

Although some studies have reported reduced antioxidant activities in the patients with lung tumor (Guner et al., 1996; Weijl et al., 1998), others have shown increased antioxidant activity in tumor cells (Zachara et al., 1997; Kaynar et al., 2005). The present study showed decrease in GSH and SOD in patients with advanced NSCLC as compared with control subjects. However it has been suggested that a decrease in antioxidant enzyme activity may be a response to increased ROS production, and in time, antioxidant enzyme activity may be inadequate for detoxification of high levels of ROS. In addition it was also observed that after chemotherapy the levels of SOD and GSH were low, when compared to stage III with stage IV NSCLC patients.

In conclusion, our study data suggests that as the lung cancer stage advances, the levels of oxidative stress increases. It was also observed after chemotherapy; oxidative stress increases with advanced stages, so that survival for patients in these late stages of disease remains poor. Although the major prognostic determinant for lung cancer is stage at presentation, there are differences in survival for patients with same stage disease. Therefore more accurate assessment of prognosis should be helpful in deciding therapeutic option for NSCLC patients.
Acknowledgement

The authors would like to thank the patients and their family for participating in this study; the participating physicians of Department of Pulmonary Medicine and Pathology, Chhatrapati Shahuji Maharaj Medical University Uttar Pradesh Lucknow, India for their generous support.

References

Cisplatin Combination Chemotherapy Induces Oxidative Stress in Advance Non Small Cell Lung Cancer Patients
