
Asian Pacific Journal of Cancer Prevention, Vol 12, 2011 99

Identification of Pathways Involved in Paclitaxel Activity in Cervical Cancer

Asian Pacific J Cancer Prev, 12, 99-102

Introduction

Cervical cancer is the leading cause of cancer-related 
death in the female population worldwide. Tumorigenesis 
is associated with alterations in cellular signaling pathways 
that control the crucial events of cell function. These 
pathways are essential to normal cell growth regulation 
and cell fate determination, and their disregulation is 
crucially implicated in cancer development.

Paclitaxel is one of the key chemotherapeutic drugs 
widely used to treat various types of cancer such as 
cervical cancer, ovarian cancer, lung cancer, breast 
cancer, and gastric cancer (Gogas et al.; Hogberg; Kim 
et al.; Komuta et al.; Park et al., 2009; Saito et al., 2010). 
Despite impressive initial clinical responses, the majority 
of patients eventually develop some degree of resistance 
to paclitaxel-based therapy. Many cervical cancer patients 
exhibit selectivity for paclitaxel, which is considered to 
be correlated with drug-gene-pathway. But the drug-
gene-pathway relationship is complex, and it has not 
been analyzed. Therefore, in this study we performed a 
bioinformatics analysis with the aim to identify pathways 
involved in paclitaxel activity in cervical cancer. 
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Abstract

 Paclitaxel is one of the key chemotherapeutic drugs widely used to treat various types of cancer. Many cervical 
cancer patients exhibit selectivity in response to thereapy, however, which is considered to be correlated with 
drug-gene-pathways. The aim of this study was to identify pathways involved in paclitaxel activity in cervical 
cancer. Gene expression data was obtained from the NCBI Gene Expression Omnibus and the associations 
between paclitaxel and genes from DrugBank, MATADOR, TTD, CTD and SuperTarget databases. Differentially 
expressed genes in cervical cancer were identified using the significance analysis of microarrays (SAM) statistical 
technique. Pathway analysis was performed according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database using the software package SubpathwayMiner to predict target genes of paclitaxel in cervical cancer 
and regulated pathways. We found that paclitaxel, which exhibits anticancer activity in cervical cancer, may 
interact with these differentially expressed genes and their corresponding signaling pathways. Our study presents 
the first in-depth, large-scale analysis of pathways involved in paclitaxel activity in cervical cancer. Interestingly, 
these pathways have not been reported to be involved in other tumors. Thus our findings may contribute to the 
understanding of the mechanisms underlying paclitaxel resistance in cervical cancer.
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Materials and Methods

Description of Data Sets 
Based on previously reported studies (Biewenga et 

al., 2008; Scotto et al., 2008; Rajkumar et al., 2009), the 
gene expression data were obtained from National Center 
for Biotechnology Information (NCBI) Gene Expression 
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/, 
accession numbers: GSE7410, GSE9750, GSE14404), 
and we used the “*.cel” files as raw data for this analysis. 
The data regarding the association between paclitaxel 
and genes were obtained from DrugBank, the Manually 
Annotated Targets and Drugs Online Resource (Matador), 
Therapeutic Targets Database (TTD), Comparative 
Toxicogenomics Database (CTD), and SuperTarget 
databases.

Extraction of Differentially Expressed Genes in Cervical 
Cancer

Differentially expressed genes in cervical cancer were 
extracted using the significance analysis of microarrays 
(SAM) statistical tool and the false discovery rate (FDR) 
was set as 0.05. 



Wen-Juan Qiao et al

Asian Pacific Journal of Cancer Prevention, Vol 12, 2011100

Detection of Significantly Regulated Pathways involved 
in Paclitaxel Activity

Differentially expressed genes in cervical cancer 
were mapped to the pathways involved in paclitaxel 
activity according to the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database (Kanehisa et al., 2006). 
KEGG is a collection of manually drawn pathway maps 
based on molecular interaction and reaction networks 
for metabolism, genetic information processing, cellular 
processes and human diseases (http://www.genome.jp/
kegg/kegg2.html). The SubpathwayMiner subpathway 
identification system (Li et al., 2009) was used to analyze 
the detected pathways and the differentially expressed 
genes.

Results

Significantly Enriched Sub-pathways involved in 
Paclitaxel activity in Cervical Cancer
 We identified differentially expressed genes using 
SAM (FDR=0.05) and these genes were mapped to KEGG 
pathways which have been associated with paclitaxel. The 
predicted gene targets in cervical cancer and the regulated 
pathways (including entire pathways and sub-pathways) 
were identified by SubpathwayMiner (Tables 1 and 2).

Relationship between Paclitaxel and Two Signaling 
Pathways in Cervical Cancer

Among the identified pathways, we described the 
epidermal growth factor receptor (ErbB) and mitogen-
activated protein kinase (MAPK) signaling pathways in 
more detail. There are three sub-pathways significantly 
associated with paclitaxel in the ErbB signaling pathway 
(P < 0.01) (Figure 1A-C). As shown in Figure 1D, the 
ErbB pathway is associated with both the MAPK and 
mammalian target of rapamycin (mTOR) pathways. 
Enzymes were marked by blue letters surrounded by a 
red line if they were identified in the submitted sets of 
genes as both target genes of paclitaxel and differentially 
expressed genes. On the other hand, the MAPK signaling 

Table 1. The Statistically Significant Enriched Sub-pathways Identified by Subpathway Miner for Paclitaxel 
and Differentially Expressed Genes in Cervical Cancer

Pathway Name Subpathway ID(p-value) Differentially expressed genes (geneID)
MAPK signaling pathway path:04010_10 (2.11E-09) 4609;5601;5599; 5595;5594;4137;

path:04010_15 (1.55E-15) 5601;5599;836;208;207;10000;5595;5594;
path:04010_19 (7.49E-08) 836;208;207;10000;
path:04010_23 (1.43E-11) 5601;5599;836;208;207;10000;5595;5594;
path:04010_5 (2.59E-09) 836;208;207;10000; 

ErbB signaling pathway path:04012_5 (6.70E-07) 208;207;10000;
path:04012_6 (4.32E-09) 208;207;10000;1026;
path:04012_9 (2.25E-10) 5595;5594;4609;5601;5599;

p53 signaling pathway path:04115_1 (3.32E-09) 836;54205;
path:04115_2 (1.08E-08) 27113;54205;581;1026;5728;

mTOR signaling pathway path:04150_1 (1.85E-06) 208;207;10000;7422;
path:04150_3 (4.32E-09) 208;207;10000;5595;5594;

Apoptosis path:04210_2 (5.65E-09) 208;207;10000;581;
path:04210_4 (0) 54205;840;330;329;836;
path:04210_5 (0) 54205;840; 330;329;836;596;598;
path:04210_6 (0) 840; 330;329;836;596;598;
path:04210_7 (1.46E-10) 208;207;10000;
path:04210_8 (1.24E-13) 54205;840;330;329;836;

VEGF signaling pathway path:04370_2 (0.000549) 208;207;10000;
path:04370_6 (1.17E-08) 208;207;10000;

Focal adhesion path:04510_11 (1.01E-07) 5601;5599;5595;5594;
path:04510_16 (1.23E-09) 5601;5599;208;207;10000;
path:04510_5 (8.82E-08) 7422;5728;208;207;10000;
path:04510_8 (3.23E-11) 5595;5594;596;330;329;

T cell receptor signaling pathway path:04660_5 (2.05E-05) 208;207;10000;
path:04660_6 (0.000444) 5595;5594;

Pathways in cancer path:05200_15 (3.23E-08) 4609;5595;5594;
path:05200_16 (0) 596;1026;54205;598;208;207;10000;
path:05200_17 (0) 330;329;596;581;54205;598;208;207;10000;
path:05200_18 (3.22E-15) 7422;596;332;4609;5595;5594;598;
path:05200_19 (1.55E-11) 332;4609;598;208;207;10000;
path:05200_2 (8.92E-10) 1026;208;207;10000;
path:05200_32 (3.87E-08) 7422;5925;4609;5595;5594;
path:05200_33 (1.04E-11) 1026; 208;207;10000;
path:05200_36 (0) 596;581;54205;208;207;10000;

Table 2. Gene ID Numbers(http://www.ncbi.nlm.nih.
gov/gene)

geneID gene geneID gene geneID gene
5594 MAPK1 581 BAX 840 CASP7
5595 MAPK3 598 BCL2L1 4609 MYC
5601 MAPK9 596 BCL2 1026 CDKN1A
5599 MAPK8 54205 CYCS 5728 PTEN
207 AKT1 330 BIRC3 7422 VEGFA
208 AKT2 329 BIRC2 4137 MAPT
10000 AKT3 836 CASP3 27113 BBC3
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pathway has five sub-pathways significantly associated 
with paclitaxel (P < 0.01) (Figure 2). Similarly, enzymes 
were emphasized by blue letters surrounded by a red line 

if they were the targets of paclitaxel in cervical cancer.

Discussion

Paclitaxel is an effective chemotherapeutic agent for 
cancer patients. Resistance to chemotherapy represents a 
major obstacle to improving the survival rate of cervical 
cancer patients. The resistance of cancer cells to paclitaxel 
and other chemotherapeutic agents frequently results in the 
subsequent recurrence and metastasis of cancer. However, 
the mechanisms underlying the resistance to paclitaxel in 
cancer cells are not fully understood.

In this study, we found the predicted gene targets of 
paclitaxel in cervical cancer and the regulated pathways 
(Table 1), i.e. apoptosis, pathways in cancer, p53 pathway, 
focal adhesion, MAPK pathway, mTOR pathway, ErbB 
pathway, vascular endothelial growth factor (VEGF) 
pathway, and T-cell receptor pathway. One signaling 
pathway is coordinately associated with another signaling 
pathway. For example, there are crosstalks between the 
p53 pathway and the IGF-1-AKT and mTOR pathways 
(Feng et al., 2007). Activation of p53 inhibits mTOR 
activity and regulates its downstream biological effects 
including autophagy, a tumor suppression process. P53 
and mTOR signaling can crosstalk with each other and 
coordinately regulate cell growth, proliferation and death 
(Feng et al., 2005).

Among these pathways, we focus on the MAPK 
and ErbB signaling pathways which are associated 
with paclitaxel. The MAPK cascade is involved in 
various cellular processes including cell proliferation, 
differentiation and migration (Yang, Sharrocks, and 
Whitmarsh, 2003). It has been demonstrated that the 
inhibition of MAPK pathway could markedly promote 
the apoptosis of colon cancer cells induced by paclitaxel. 
Selective blockage of the MAPK pathway by small 
interfering RNA (siRNA) also increases the apoptotic 
cell death induced by paclitaxel. The alternative use of 
ERK1/2 and p38 MAPK pathways may be necessary for 
the transition from proliferation state to paclitaxel-induced 
apoptosis in human ovarian carcinoma cells (Seidman 
et al., 2001). These findings highlight the importance 
of the MAPK pathway in paclitaxel-induced apoptosis. 
As shown in Table 1, among the differentially expressed 
genes in cervical cancer AKT and MAPK were identified 
as the targets of paclitaxel in the MAPK pathway. Protein 
kinase B (PKB/AKT) is a serine/threonine kinase, which 
comprises three highly homologous members known as 
PKBalpha (AKT1), PKBbeta (AKT2) and PKBgamma 
(AKT3) in mammals. PKB/AKT is activated in cells 
exposed to diverse stimuli such as hormones, growth 
factors and extracellular matrix components (Nicholson 
and Anderson, 2002). When paclitaxel interferes with 
the activation of AKT and MAPK, the cell proliferation 
promoted by MAPK pathway is inhibited.

The ErbB family of receptor tyrosine kinases plays 
an important role in tumor formation and is a target 
for the development of advanced cancer drugs. ErbB2 
is overexpressed in invasive breast, ovarian, stomach, 
bladder, salivary, and lung cancers (de Graeff et al., 2008; 
Abdel Salam, 2009; Pryczynicz et al., 2009; Simonetti 

Figure 2. MAPK Signaling Pathways (Path: 04010). 
A-E. Visualization of sub-pathways as the undirected graph. 
Enzymes are colored red if the corresponding genes are 
identified as differentially expressed genes in cervical cancer. 
Enzymes are marked in blue if the corresponding genes are 
identified as both target genes of paclitaxel and differentially 
expressed genes in cervical cancer. F. Visualization of the 
MAPK signaling pathway (path: 04010) through the linkage 
to the KEGG website. * Differentially expressed genes in 
cervical cancer

Figure 1. ErbB Signaling Pathways (Path: 04012). 
A-C. Visualization of sub-pathways as the undirected graph. 
Enzymes are colored red if the corresponding genes are 
identified as differentially expressed genes in cervical cancer. 
Enzymes are marked by blue letters if the corresponding genes 
are identified as both target genes of paclitaxel and differentially 
expressed genes in cervical cancer. D. Visualization of the ErbB 
signaling pathway (path: 04012) through linkage to the KEGG 
website. *Differentially expressed genes in cervical cancer



Wen-Juan Qiao et al

Asian Pacific Journal of Cancer Prevention, Vol 12, 2011102

et al., 2009; Idirisinghe et al.). ErbB is activated by the 
binding of growth factors that belong to the epidermal 
growth factor (EGF) family (Yarden and Schlessinger, 
1987). The binding of EGF-like ligands to ErbB receptor 
induces a conformational change in the extracellular 
domain of the receptor, leading to the formation of an 
activated receptor dimmer (Greenfield et al., 1989). The 
ErbB2 receptor exhibits structural features that promote 
its oncogenic potential. Two pathways induced by ErbB2-
containing heterodimers are the MAPK and AKT, which 
are involved in cell proliferation. AKT activation also 
induces a strong anti-apoptotic response and protects cells 
against apoptosis. High AKT activity is responsible for 
the enhanced resistance of ErbB2-overexpressing cancer 
cells to chemotherapeutic agents. Interference with AKT 
activation resulted in the restoration of normal sensitivity 
of breast cancer cells to Taxol (Kunz et al., 2006). Drugs 
targeting the ErbB2 receptor not only interfere with cell 
proliferation but also result in an improvement of the 
therapeutic efficacy of chemotherapy (Piccart-Gebhart et 
al., 2005; Romond et al., 2005).

In conclusion, our study presents the first in-depth, 
large-scale analysis of sub-pathways involved in paclitaxel 
activity in cervical cancer. Interestingly, these pathways 
have not been reported to be involved in other tumors. 
Thus our findings may contribute to the understanding 
of the mechanisms underlying paclitaxel resistance in 
cervical cancer.
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