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Introduction

	 Lung cancer is very often a deadly disease with 5-year 
survival rates of about 14%. It have shown that epigenetics 
plays an important role in cancer biology. High throughput 
genome-wide methylation analysis methods have been 
applied in cancer research. One of these approaches was 
Restriction Landmark Genomic Scanning (RLGS). The 
frequently used assays for high throughput methylation 
analysis include expression microarray analysis, 
restriction landmark genomic scanning, BeadArray-
based methylation analysis, and microarray analysis in 
combination with immunoprecipitation of methylated 
DNA . Using these high throughput approaches, 
methylation status of thousands of genes has been 
analyzed. For lung cancer, more than 40 genes were found 
to have some degree of alteration in DNA methylation 
patterns, such as DAPK, APC (4), RASSF1 . 
	 DNA methylation contributes to the regulation of 
the transcriptional activity of not only one gene but 
also a set of genes. DNA methylation are key regulation 
mechanism which affects the binding of transcription 
factors to DNA, resulting either in gene activation or 
gene silencing . Numerous genes which are involved in 
different pathways relevant for lung cancer pathogenesis 
have been identified. Together with other epigenetic 
mechanisms, the methylation of these genes leads to 
gene silencing. The DNA methylation of TFs plays a vital 
role in the transcriptional regulation, even in pathway 
regulation. Many transcription regulation networks have 
been constructed by different methods . 
	 In this paper, we constructed a lung cancer regulation 
network with methylation data. We found new pathways, 
genes, and regulation relationships associated with lung 
cancer. 
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Abstract

	 Lung cancer is a prevalent cancer with a high death rate. Underlying mechanisms havebeen found to be highly 
correlated with epigenetics, especially with DNA methylation. With methylation array and other regulation data, 
we constructed a TF-gene regulation network and a TF-pathway network. Through those networks, we identified 
lung cancer related genes that were found by previous studies, and supposed a number of new examples. Our 
work demonstrated the new potential methylation for lung cancer. 
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Materials and Methods

Affymetrix Microarray Data
	 One transcription profile of squamous lung cancer 
GSE5816 were obtained from a public functional 
genomics data repository GEO (http://www.ncbi.nlm.nih.
gov/geo/).

Pathway Data
	 KEGG (Kyoto Encyclopedia of Genes and Genomes) 
is a collection of online databases dealing with genomes, 
enzymatic pathways, and biological chemicals. The 
pathway database records networks of molecular 
interactions in the cells, and its’ variants are specific to 
particular organisms (http://www.genome.jp/kegg/). Total 
130 pathways, including 2287 genes, were collected from 
KEGG.

Regulation Data
	 There are approximately 2600 proteins in the human 
genome that contain DNA-binding domains, and most of 
which are supposed to function as transcription factors. 
These transcription factors are grouped into 5 super class 
families, based on the presence of conserved DNA-binding 
domains. 
	 774 pairs of regulatory relationship between 219 
transcription factors (TFs) and 265 target genes were 
collected from TRANSFAC . 5722 pairs of regulatory 
relationship between 102 transcription factors (TFs) and 
2920 target genes were collected from TRED . Combined 
datasets, total 6328 regulatory relationships between 276 
TFs and 3002 target genes were collected.

Differentially Expressed Genes Analysis
	 For the GSE5816 dataset, the limma method was used 
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to identify DEGs. The original expression datasets from all 
conditions were processed into expression estimates using 
the RMA method with the default settings implemented 
in Bioconductor, and then construct the linear model. The 
133 DEGs with the fold change value larger than 4 were 
selected .  Of the 133 DEGs, 67 genes with CpG islands 
were kept for further analysis.

Gene Ontology Analysis
	 The BiNGO analysis was used to identify over-
represented GO categories in biological process. 

Regulation Network Construction
	 Using the regulation data that have been collected from 
TRANSFAC database and TRED database, we matched 
the coexpression between differentially expressed TFs 
and its differentially expressed target genes.
	 Base on the above two regulation datasets and the 
pathway relationships of the target genes, we build the 
regulation networks by Cytoscape . Base on the significant 
relationships (PCC > 0.6 or PCC < -0.6) between TFs and 
its target genes, 57 putative regulatory relationships were 
predicted between 12 TFs and 45 target genes. 

Significance Analysis of Pathway
	 We adopted an impact analysis that includes the 
statistical significance of the set of pathway genes but 
also considers other crucial factors such as the magnitude 
of each gene’s expression change, the topology of the 
signaling pathway, their interactions, etc al. In this model, 
the Impact Factor (IF) of a pathway Pi is calculated as the 
sum of two terms:

 
The first term is a probabilistic term that captures the 
significance of the given pathway Pi from the perspective 
of the set of genes contained in it. 
It is obtained by using the hyper geometric model in which 
pi is the probability of obtaining at least the observed 
number of differentially expressed gene, Nde, just by 
chance. 
The second term is a functional term that depends on 
the identity of the specific genes that are differentially 
expressed as well as on the interactions described by the 
pathway. 
The second term sums up the absolute values of the 
perturbation factors (PFs) for all genes g on the given 
pathway Pi. 
	 The PF of a gene g is calculated as follows: 

   
In this equation, the first term ΔE (g) captures the 
quantitative information measured in the gene expression 
experiment. The factor ΔE (g) represents the normalized 
measured expression change of the gene g. The first term 
ΔE (g)in the above equation is a sum of all PFs of the 

genes u directly upstream of the target gene g, normalized 
by the number of downstream genes of each such gene 
Nds(u), and weighted by a factor βug, which reflects 
the type of interaction: βug = 1 for induction, βug = −1 
for repression (KEGG supply this information about the 
type of interaction of two genes in the description of 
the pathway topology). USg is the set of all such genes 
upstream of g. We need to normalize with respect to the 
size of the pathway by dividing the total perturbation 
by the number of differentially expressed genes on the 
given pathway, Nde(Pi). In order to make the IFs as 
independent as possible from the technology, and also 
comparable between problems, we also divide the second 
term in equation 1 by the mean absolute fold change ΔE, 
calculated across all differentially expressed genes. 
Regulation Network between TFs and Pathways 
To further investigate the regulatory relationships between 
TFs and pathways, we mapped DEGs to pathways and got 
a regulation network between TFs and pathways. 

Results 

Regulation Network Construction 
	 To get DEGs of lung cancer methylation, we obtained 
publicly available microarray data set pmid0030486 . 
After normalization analysis of pmid0030486 dataset, 
the 67 differentially expressed genes with the fold change 
value larger than 4 were selected.  After mapped to the 
regulation datasets (TRANSFAC and TRED database), we 
got 77 regulatory relationships between 44 TFs and their 
21 target genes. By integrating the regulatory relationships 
above, a regulation network of lung cancer methylation 
was built between TFs and its target genes (Figure 1). In 
this network, CDKN1A as a methylation gene regulates 
lots of target genes with a higher degree form a local 
network, suggesting roles in lung cancer. 

GO Analysis of he Regulation Network in SCC		
	 Several Gene Ontology (GO) categories were enriched 
among these genes in the regulatory network, including 
positive regulation of biological process, positive 
regulation of cellular process and positive regulation of 
macromolecule biosynthetic process (Figure 2).

Regulation Network between TFs and Pathways
	 To further investigate the regulatory relationships 

Figure 1. Regulation Network of Squamous Lung 
Cancer. Triangles denote transcription factors and circles 
targeting genes. Green nodes stand for methylation genes 
and pink for other genes.
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Figure 2. GO-biological Process Analysis. The pie chart 
listd the significant GO categories with the p-value <0.05. 

Figure 3. Regulation Network of the TF-PATHWAY. 
Triangles denote transcription factor, and rectangles 
denote pathways. 

between TFs and pathways, we mapped methylation 
genes to pathways and constructed a regulation network 
between TFs and pathways (Figure 3). In the network, 
acute myeloid leukemia, complement and coagulation 
cascades, pathways in cancer and melanoma pathways 
shown as hub nodes were regulated by many TFs. 

Discussion

lLung cancer accounts for the most cancer related 
deaths for both men and women. DNA methylation 
in the promoter region of certain genes is associated 
with transcriptional silencing. Methylation affects gene 
expression directly by interfering with transcription factor 
binding and/or indirectly by recruiting histone deacetylases 
from methyl-DNA-binding proteins. The identification of 
methylation associated genes in lung cancer is essential to 
provide an important possibility in the prevention of this 
disease. In our method, we used public functional genomic 
data and regulation data to construct a network between 
TFs and their target genes. From the constructed regulation 
network in lung cancer, many TFs and pathways, which 
are highly related to lung cancer, have been linked by our 
method. The gene CDKN1A, RUNX1, TFPI2, AREG, 
FOXA2 are also hub nodes in our transcriptome network 
and have a close relationship with lung cancer proved by 
previous studies. Although the role of F3 in lung cancer 
has not been investigated to date, some evidence suggests 
that F3 may play an important role in lung cancer.

CDKN1A, also known as P21, encodes a potent 
cyclin-dependent kinase inhibitor. The encoded protein 

binds to and inhibits the activity of cyclin-CDK2 or 
-CDK4 complexes, and thus functions as a regulator of 
cell cycle progression at G1. It have been suggested that 
hypermethylation around the consensus Sp1-binding 
sites may directly reduce Sp1/Sp3 binding, therefore 
leading to a reduced p21(Cip1) expression in response to 
depsipeptide treatment . 

RUNX1 is susceptible to aberrant methylation 
and associated with lung cancer as a DNA marker . 
RUNX1 has been shown to interact with SUV39H1, a 
histone methyltransferase responsible for histone H3K9 
methylation, and this interaction disrupts the binding of 
RUNX1 to DNA .

CCNA1 were previously described to be frequently 
methylated in cervical cancer . 

The role of AREG in cancer development and 
progression is also supported by clinical data. It has been 
established a significant correlation between elevated AR 
mRNA levels in bladder tumour tissue and poor patient 
survival. In patients with advanced non-squamous non-
small cell lung cancers increased levels of circulating 
AR in serum are predictors of poor response to Gefitinib, 
which is a drug used in the treatment of certain types of 
cancer.

Tissue factor pathway inhibitor-2 (TFPI-2) is a Kunitz-
type serine proteinase inhibitor that inhibits plasmin-
dependent activation of several metalloproteinases. 
Down regulation of TFPI-2 could thus enhance the 
invasive potential of neoplastic cells in several cancers, 
including lung cancer. In non-small-cell lung cancer, 
TFPI-2 promoter hypermethylation was frequently found 
in patients with late-stage cancer (stages III and IV) and 
with lymph node metastases.

Down-regulation of HNF3 beta expression in a 
large proportion of lung cancer cell lines examined and 
identified two novel mutants of HNF3 beta, as well as 
hypermethylation of the HNF3 beta promoter .Conditional 
expression of HNF3 beta led to significant growth reduction, 
proliferation arrest, apoptosis, and loss of clonogenic 
ability, suggesting additionally that HNF3 beta is a novel 
tumor suppressor in lung cancer. It have been showed 
that genetic abnormalities of lung-specific differentiation 
pathways in the development of lung cancer. The protein 
encoded by F3 is a member of the immunoglobulin 
superfamily. It is a glycosylphosphatidylinositol (GPI)-
anchored neuronal membrane protein that functions as a 
cell adhesion molecule. It may play a role in the formation 
of axon connections in the developing nervous system. 
Two alternatively spliced transcript variants encoding 
different isoforms have been described for this gene.

This gene encodes coagulation factor III which is 
a cell surface glycoprotein. This factor enables cells to 
initiate the blood coagulation cascades, and it functions 
as the high-affinity receptor for the coagulation factor 
VII. The resulting complex provides a catalytic event that 
is responsible for initiation of the coagulation protease 
cascades by specific limited proteolysis. Unlike the other 
cofactors of these protease cascades, which circulate as 
nonfunctional precursors, this factor is a potent initiator 
that is fully functional when expressed on cell surfaces. 
This protein is the only one in the coagulation pathway 
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for which a congenital deficiency has not been described.
TP53 and its downstream target gene, CDKN1A were 

demonstrated to play an important role in sagopilone 
(SAG) chemotherapeutic agent sensitivity in lung cancer. 
Treatment of A549 cells with a low concentration of SAG 
revealed an up-regulation of CDKN1A. TP53 mediates G1 
arrest mainly by increasing protein levels of CDKN1A. 
Furthermore, knockdown of TP53, which inhibited the 
transcriptional induction of CDKN1A, led to a significant 
increase in apoptosis induction in A549 cells when treated 
with a low concentration of SAG. These results indicated 
that activation of TP53 and its downstream effectors 
CDKN1A by low concentrations of SAG is responsible 
for the relative apoptosis resistance of A549 cells .

The PPARG is a member of the nuclear receptor 
superfamily of ligand-dependent transcriptional factors. 
Previous reports indicated that PPARG ligands inhibit 
human lung cancer cell growth and induce apoptosis 
by stimulating the cyclin-dependent kinase inhibitor 
CDKN1A and by reducing cyclin D1 gene expression. 
The induction of CDKN1A gene expression by PPARG 
ligands may be mediated through increased Sp1- and 
NF-IL6 (C/EBP)-dependent transcriptional activation, 
two transcription factors with regulatory elements in the 
promoter region of the CDKN1A gene. These observations 
unveil a mechanism for CDKN1A gene regulation in lung 
cancer that represents a potential target for therapy .

Tamoxifen(Tam) was reported to exert an anti-cancer 
effect on a number of estrogen receptor (ER)-negative 
lung cancer. Inhibition of growth of ER-negative 
human lung cancer cells by Tam is associated with the 
induction of CDKN1A, and mutation of Sp1-binding 
sites dramatically attenuated Tam-induced CDKN1A 
promoter activity. Furthermore, PKA activators activated 
CDKN1A promoter activity and increased CDKN1A 
protein level in lung cancer cells. Taken together, these 
results demonstrated that Tam activated the CDKN1A 
promoter via Sp1-binding sites and suggested that PKA 
may be involved in the induction of CDKN1A by Tam in 
ER-negative lung cancer cells .

The IF analysis method yields 11 pathways significant 
at the 5% level and the top five pathways contained 
complement and coagulation cascades: ECM-receptor 
interaction, P53 signaling pathway, cell adhesion 
molecules (CAMs), Focal adhesion, Cell cycle.

The impact analysis agrees well with known lung 
cancer related pathways which are supported by the 
existing literature, such as P53 signaling pathway, cell 
adhesion molecules (CAMs), focal adhesion and cell 
cycle. Moreover, this analysis also identifies additional 
lung cancer related pathways that have not been detected, 
such as complement and coagulation cascades.   

In this research, we identified pathways crosstalk 
network by integrating biological pathways and expression 
data. Many expected pathway crosstalk have been 
identified by this approach. Sets of key pathway were 
identified that can be found in the lung cancer disease. 
It turned out that this analysis method is well suited for 
microarray data and therefore is proposed as a powerful 
tool for the search for new and so far undiscovered 
pathways related to other cancer. 
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