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Abstract

 The PTEN gene, a candidate tumor suppressor, is one of the more commonly inactivated and extensively 
studied genes in cancer. However, few data are available about the role of germ line mutations of this gene 
in sporadic breast cancer cases. The purpose of this study was to determine extent of involvement of this 
gene in breast cancer in Pakistan. To test the hypothesis that genetic variations of PTEN play a role in the 
etiology of breast cancer, a population based case-control study was conducted in 350 breast cancer patients 
along 400 healthy controls. After extracting DNA from blood, the whole coding sequence of PTEN along 
with intron/exon boundaries was genotyped by polymerase chain reaction-single stranded conformational 
polymorphism. Sequencing analysis revealed nineteen different types of mutations in different regions of 
PTEN (in exon 2, 4, 5, 6, 7 and splicing sites of intron 2 and 4 and also in the 3’ UTR region), including 3 
silent, 8 missense, 2 frame shift and 6 splice site variations. Among the observed variations in this study, 
three missense mutations have already been reported i.e. 319G>A (Asp106Asn), 389G>A (Arg129Gln) and 
482G>A (Arg160Lys) in different populations. The present results suggest that a wide range of germline 
PTEN mutations may play a role in the pathogenesis of breast cancer.
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Introduction

 PTEN gene (phosphatase and tensin homologue 
deleted from chromosome 10) (Li et al., 1997), also 
termed as MMAC1 (mutated in multiple advanced 
cancers 1) (Steck et al., 1997), or TEP1 (TGF b regulated 
and epithelial cell enriched phosphatase 1) (Li and 
Sun 1997) is a candidate tumor suppressor located on 
chromosoma 10q23.3 (Steck et al., 1997). PTEN encodes 
a dual-specificity phosphatase that dephosphorylates 
focal adhesion kinase (FAK), which results in inhibition 
of cell migration, spreading, and focal adhesion 
formation. PTEN regulates cell cycle progression and 
cell survival (Tamura et al., 1998; Tamura et al., 1999). 
PTEN plays an important role in the modulation of 
phosphatidylinositol 3-kinase pathway (PI3K) that is 
involved in cell proliferation and survival (Besson et 
al., 1999). PI3K pathway aberrations play a distinct role 
in the pathogenesis of different breast cancer subtypes 
(Stemke-Hale et al., 2008). Genetic alterations at PTEN 
locus has also been described in a variety of neoplasms, 
including primary central nervous system, breast, 

prostate, colon and bladder tumors, Glioblastoma and 
non-Hodgkin’s lymphoma (Li et al., 1997; Cairns et al., 
1998; Nakaharavet al., 1998; Bismar et al., 2001; Jhawer 
et al., 2008; Zheng  et al., 2008). Studies of embryonic 
stem cells have shown that cells featuring mutations of 
the PTEN gene exhibited an increased growth rate and 
displayed an advanced entry into S-phase (Sun et al., 
1999). In breast cancer, cell line analyses have shown 
that PTEN appears to suppress breast cancer growth by 
down-regulation of PI3K, with resultant G1 arrest and 
cell death (Li et al., 1997; Weng et al., 1999). PTEN acts 
as a transcriptional repressor which inhibits cell-mediated 
survival signaling pathway and negatively regulates 
human breast carcinoma cell growth (Ghosh et al., 1999).
Germ line mutations of PTEN gene have also been 
found associated with rare, autosomal-dominant, familial 
cancer syndrome known as Cowden disease having risk 
of developing breast cancer (Lynch et al., 1997; Carroll 
et al., 1999; Nelen et al., 1999). 
 Prognostic significance of PTEN protein in breast 
cancer initiation and progression, however, is not well 
established. PTEN is involved in Cowden syndrome. A 
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familial cancer disease while additional work is needed 
to confirm its role in sporadic breast cancer cases (Martin 
and Weber, 2000). Immunohistochemical analysis of 
sporadic primary breast carcinomas has shown no or 
decreased expression in 33% of tumors. Loss of PTEN 
may therefore play an important role in the development 
of sporadic breast cancer (Perren et al., 1999). Expression 
of PTEN in a variety of breast cancer cell lines caused 
growth suppression via apoptosis (Li et al., 1997). These 
mentioned studies suggest that PTEN is an important 
gene mutated in many cancers but very little data is 
available regarding prognostic significance of PTEN 
germ line mutations in breast cancer. Current study 
investigated mutations of PTEN gene and the prognostic 
significance of these mutations in breast cancer from 
350 Pakistani female patients with the disease. The 
results of this study may aid in early diagnosis and help 
in understanding the correlation of regulation of its 
expression with breast cancer.

Materials and Methods

The Identification of Patients and Sample Collection
 The present case-control study consisted of 350 
pathologically confirmed breast cancer cases along with 
age and gender matched 400 healthy and disease free 
normal individuals as controls. Blood samples were 
recruited from National Oncology and Radiotherapy 
Institute (NORI) and Pakistan Institute of Medical 
Sciences (PIMS) Pakistan. These samples were collected 
with a prior approval from Ethical Committees of both 
CIIT and hospitals. All study subjects participated on a 
volunteer basis with informed consent. Subject’s blood 

was collected in EDTA-containing tubes and stored at 
−20 °C until further use. 

DNA Isolation and Quantification
 DNA was isolated from leukocytes, using organic 
method as previously described (Nosheen et al., 2010; 
Masood et al., 2011). Electrophoresis was performed on 
isolated DNA in 1% ethidium-bromide stained agarose 
gel and photographed (BioDocAnalyze Biometra). Five 
ng dilutions of DNA were made for amplification and 
stored at 4°C until further usage.

Primer designing and PCR Amplifications 
 Primers for whole coding region of PTEN gene 
were designed using primer 3 input software versions 
0.4.0. Intron/ exon junctions were also included in this 
study for identification of splice site variants. Exons 
1–9 were amplified in separate PCR assays. PCR 
amplifications were performed in 20µl PCR mixture 
containing 2µl PCR buffer, 2µl of each primer (10mM), 
0.24µl deoxynucleotide triphosphate (25mM) 0.2µl Taq 
polymerase (5u/µl) and 2µl  (10 ng/µl) extracted DNA. 
The reaction mixture was placed in 9700 thermal cycler 
of ABI systems with amplification conditions consisting 
of initial denaturing step of 5 minutes at 94˚C, followed 
by 35 cycles of 45 sec. at 94˚C, annealing temperature 
for 45 sec. and 1 min at 72˚C, with a final extension 
step of 10 minutes at 72˚C. All patient and control DNA 
samples was amplified for Pthe TEN gene with exon 
specific primers. 
 Amplification products were resolved on a 2% 
ethidium bromide–stained agarose gel along with 100bp 
DNA ladder. 

Table1. Mutations in the PTEN gene in Breast Cancer Patients      
No of          Frequency of   Location Nucleotide/       Amino Acid           Alteration       Change Effect    
Cases           Variation                        Position in          /Codon
   Transcript  
  27 0.056 Exon  2 92 31 A/- deletion Frame shift
  12 0.025 Exon  2 153, 163       50,54 T>C, A>C Asp to Asp,  Silent
      Arg to Arg
  12 0.025         3’splice site,  31598             intron T>C Splice site Splice site   
  Exon 2       variation
  36 0.075         5’splice site, 68527              intron -/T insertion Splice site  
  Exon 4       variation
  20 0.042 Exon 5 274 91 G>A Asp to Asn Missense
  32 0.067 Exon 5 319 106 G>A Asp to Asn Missense  
       (rs57374291)
  10 0.021 Exon 5 343 114 G>A Asp to Asn Missense
  23 0.048 Exon 5 396 132 T>G Gly to Gly Silent
  33 0.069 Exon 5 389 129 G>A Arg to Gln Missense  
                              (rs121909229)
  30 0.063 Exon 5 457 153 G>A Asp to Asn Missense
  18 0.037 Exon 5 482 160 G>A Arg to Lys Missense (37)
  42 0.088 Exon 6 572 190 T>G Val to Gly Missense
  28 0.059 Exon 6 621 206 T>G Ser to Arg  Missense
  63 0.132 Exon 7 676 225 -/A insertion Frame shift
  66 0.139 3’UTR  2634    Non coding T>A substitution 3’UTR   
       variation
  22 0.046 3’UTR 266,226,642,665  Non coding -/G, T>C, A>T Insertion,  3’UTR 2  
      substitution   variation
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SSCP Analysis
 PCR product was analyzed by single stranded 
conformational polymorphism (SSCP) (Amalio et al., 
1998) and results were analyzed with gel documentation 
system (BioDocAnalyze Biometra) after ethidium 
bromide staining and photographed for further analysis. 

Sequencing
 Amplification products showing abnormal SSCP 
patterns were selected for sequencing. Samples were 
prepared as per instructions and shipped to MCLab 
(USA). The sequenced results were made forward 
complementary before analysis using BioEdit v 7.0.5 
software and analyzed. 

Results 

 We have screened 350 patients, diagnosed with breast 
cancer for mutations in the coding region and at intron/ 
exon boundaries of the PTEN gene. Sixteen different 
types of novel mutations were identified in this study 
which includes three known mutations. 
 PTEN mutations were located in exon 2, 4, 5, 6, 7 and 
the splicing sites of intron 2 and 4 and also in 3’ UTR 
region of PTEN (Table 1). No mutations were detected 
in exon 1, 3, 8 and 9 while multiple mutations were 
also detected in some samples. Also no mutation was 
detected in any of control samples. In this data, out of 
nineteen variations 3 silent, 8 missense, 2 frame shifts, 
2 splice site and 4, 3’ UTR mutations were observed in 
35, 213, 90, 48 and 88 samples respectively, whereas 212 
samples among these have multiple mutations (Table 1, 
2). Substitution at 3’ UTR region of PTEN 2634 T>A had 
highest mutation rates of all detected mutations. It was 
detected in 66 cases and has highest frequency among 
all variations that is 0.139. Exon 5 has highest rate of 
mutations as compared to other exons (Table 1).

Synonymous Substitution (Silent):
 12 samples were found to have substitution mutations 
at exon 2 with no change in resultant amino acid i.e., 
153 T>C (Asp50Asp) and 163 A>C (Arg54Arg) with 
frequency 0.025. Another substitution was found at 
exon 5 in 23 samples i.e., 396 T>G (Gly131Gly) having 
frequency 0.048 (Figure 1A-C).

Non synonymous Substitution:
 Exon 5 have shown different types of missense 
substitutions i.e. 274G>A (Asp91Asn) in 20 samples, 

319G>A (Asp106Asn) in 32 samples, 343G>A 
(Asp114Asn) in 10 samples, 389 G>A (Arg129Gln) 
in 33 samples, 457G>A (Asp153Asn) in 33 samples, 
482G>A (Arg160Lys) in 18 samples with frequencies 
0.042, 0.067, 0.021, 0.069, 0.063, 0.037 respectively. In 
exon 6, 2 types of missense substitutions were observed 
i.e. 572T>G (Val190Gly) in 42 samples and 621T>G 
(Ser206Arg) in 28 samples with respective frequencies 
0.088 and 0.059 (Figure 2 A-H). 

Frame shift Mutations:
 Frame shift mutations were observed at frequencies 
0.056 and 0.132. These were found to be at exon 2 due 
to a deletion i.e. 92delA (Figure 3C) in 27 samples and 
exon 7 i.e. 675-676insA in 63 cases (Figure 3D).  

Splice site variations: 
 Splice site variants were found in different regions 

Table2. Multiple Mutations in Different Samples 
No. of   Multiple Mutations
Samples 

  20 92InsA, 153 T>C, 163A>C, 31598T>C 
  23 389G>A, 482 G>A 
  25 274 G>A, 319 G>A, 343 G>A, 396 T>G, 457 G>A 
  39 274 G>A, 343 G>A, 457 G>A 
  43 68526-68527InsT, 389 G>A 
  62 572T>G, T>G621 

Figure 1.  PTEN Sequences from Genomic DNA 
Showing Synonymous Substitutions A- 153 T>C 
(Asp50Asp), B- 163A>C (Arg54Arg), C- 396 T>G 
(Gly131Gly) and 3’ UTR Variations D- 2634T>A, E- 
2661-2662insG, F-2664T>C and 2665 A>T. Arrows 
shows observed change, M is for mutated sequence while W 
is wild sequence.

Figure 2. Sequences Showing Non Synonymous 
Substitution Mutations in PTEN Gene in Breast 
Cancer Patients. A-274G>A (Asp91Asn), B-319G>A 
(Asp106Asn), C-343G>A (Asp114Asn), D-457G>A 
(Asp153Asn), E-389 G>A (Arg129Gln), F-482G>A 
(Arg160Lys), G-572T>G (Val190Gly) and H- 621T>G 
(Ser206Arg). Arrows shows observed change, M is for 
mutated sequence while W is wild sequence.
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of PTEN. 3’splice site variation of exon 2 was due to 
substitution, 31598 T>C, in 12 cases with a frequency 
0.025 (Figure 3A). Insertion was observed in 36 samples 
at 5’splice site of Exon 4 i.e. 68526-68527insT with 
frequency 0.075 (Figure 3B). Different types of variation 
were found in 3’UTR region of PTEN that were 2634T>A 
in 66 samples (Figure 1D) and 2661-2662insG, 2664T>C 
and 2665 A>T in 22 samples with respective frequencies 
0.139 and 0.046 (Figure1E and 1F).

Discussion

In PTEN/MMAC-1 is a candidate tumor suppressor 
that appears to have a multifunctional role in cellular 
proliferation, migration, and invasion (Tamura et al., 
1998; 1999). Alterations at the PTEN locus have been 
described in numerous malignancies and reports have 
shown a regulatory role of PTEN in growth of breast 
carcinoma cells (Ghosh et al., 1999; Perren et al., 1999; 
Weng et al., 1999). Previous studies have demonstrated 
that inactivation of PTEN closely relate to the poor 
prognosis of breast cancers (Zhu et al., 2007). A loss of 
PTEN expression in 32–48% of breast cancers has been 
observed (Perren et al., 1999; Depowski et al., 2001; 
Bose et al., 2002; Chung et al., 2004). Although Cowden 
disease, a breast cancer susceptible syndrome, has higher 
frequency of PTEN germ-line mutation (Marsh et al., 
1998; Bussaglia et al., 2002) as compared to sporadic 
breast cancers (Rhei et al., 1997; Guenard et al., 2007).

The relationship between PTEN mutation and 
carcinogenesis of breast cancer remains unclear. Present 
study was undertaken in order to investigate the role of 
germ line mutations in PTEN gene on sporadic breast 
carcinogenesis. All 1–9 exons and splicing sites (intron/
exon boundries) of PTEN were analyzed in 350 cases 
of breast cancer along with 200 normal individuals as 
control from Pakistani population. The results describe 
the association of genetic changes in this gene in 
Pakistani population. 

In this study PTEN mutations were observed in 

Figure 3. Sequencing Analysis Showing Splice Site 
Variations (A- 31598 T>C and B- 68526-68527insT) 
and Frame Shift Mutations (C- 92delA and D-675-
676insA). Arrows shows observed change, M is for mutated 
sequence while W is wild sequence.

exons 2, 4, 5, 6, 7 and the splicing sites of intron 2 and 
4 and also in 3’ UTR region of PTEN (Table 1). No 
mutations were detected in exons 1, 3, 8 and 9, with 
most of the mutations found in exon 5. These findings 
are in concordance with previous findings that germ line 
mutations of PTEN occur in exons 2–8, are highest in 
exon 5, and seldom occur in exon 1 and 9 (Bonneau et 
al., 2000; Dicuonzo et al., 2001).

Synonymous substitutions having silent effect were 
found at exon 2 and 5 (Figure 1A, 1B and 1C). In exon 
2, 2 substitutions, 153 T>C and 163 A>C were observed 
which result in the formation of same amino acids at 
positions 50 and 54 that are asparagine and arginine 
respectively. Both of these substitutions were found in 
Phosphatase tensin domain of PTEN (fig 4). Another 
substitution was found at exon 5, 396 T>G at amino acid 
132 and results in same amino acid that is glycine. This 
glycine is part of important core phosphatase motif (fig 
4) found in tyrosine phosphatases and dual specificity 
phosphatases (Tonks et al., 1996). 

Most of the missense mutations are localized at the 
NH2-terminal portion especially in exon 5 (fig 4). Among 
these, three mutations have already been reported that are 
319G>A, Asp106Asn (rs57374291). Its effect is reported 
to be deleterious and possibly damaging, resulting in the 
complete loss of PTEN functions (Goliaei et al., 2009). 
389 G>A (Arg129Gln) (rs121909229) is another already 
reported mutation in Japanese (Kanaya et al., 2005) and 
in Chinese population (Yang et al., 2010) that is located 
in the phosphatase core motif where high mutational 
frequencies have been detected in various tumors. Base 
389 is also among the dinucleotide CpG. The mutation 
resulted in the change of arginine to glutamic acid. This 
is consistent with the observation that frequent C to T 
(or G to A) transition occurs at a much higher rate in 
methylated CpG dinucleotide than in unmethylated bases 
(Yang et al., 2010).

For 482G>A (Arg160Lys), 18 samples were found 
to have this missense mutation with the substitution of 
arginine for lysine where the encoding amino acid is 
probably important for stabilizing the tertiary structure 
of the protein. This mutation has also been reported by 
Yang in Chinese population (Yang et al., 2010). Another 
missense mutation observed at base 457 is reported to 
show variation 457G>C, Asp153His (rs9651492). In 
this study variation found was 457G>A (Asp153Asn). 

Novel missense mutations were also observed that 
are 274G>A which change amino acid aspartate in to 
asparagine at amino acid 91, 319G>A change amino 
acid aspartate in to asparagines,  106 amino acid and 
114th amino acid is also changed due to 343G>A that 
also change amino acid aspartate in to asparagine. Exon 
6 also contains 2 types of missense mutations that are 
572T>G (Val190Gly) and 621T>G (Ser206Arg). All 
these missense mutations are very important in context 
of their consequence. As exons 5 and 6 contain WPD 
loop, P loop, and TI loop, which are making the active 
site pocket of the phosphatase domain in PTEN. Mutation 
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