RESEARCH COMMUNICATION

Expression of Type IV Collagen, Metalloproteinase-2, Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 in Laryngeal Squamous Cell Carcinomas

Xiao-Lin Cao¹, Ru-Jun Xu², You-Yang Zheng³, Jun Liu⁴, Yao-Shu Teng¹, Yong Li¹, Jin Zhu¹

Abstract

Objective: To investigate the significance of type IV collagen, metalloproteinase-2 (MMP-2), metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) expression in laryngeal squamous cell carcinomas (LSCCs).

Methods: Expression was quantified in 44 LSCC and 22 adjacent non-cancer normal tissues using a streptavidin-peroxidase conjugated immunohistochemistry and associations between the levels of the four proteins and clinicopathological characteristics in LSCC were analyzed. Results: Significantly different expression of all four proteins was observed in LSCC and adjacent non-cancer normal tissues (P<0.05). Expression of type IV collagen correlated with primary cancer status (P = 0.04), clinical stage (P = 0.04) and histological grade (P = 0.01). Expression of MMP-9 correlated with the location of the tumor (P = 0.04), cervical node metastasis (P = 0.02) and prognosis (P = 0.02). The (MMP-2+MMP-9)/TIMP-1 score was associated with the prognosis of LSCC (P < 0.01).

Conclusions: This study suggests that expression of type IV collagen and its regulators is strongly associated with the development of LSCC. Type IV collagen and MMP-9 may be more valuable than MMP-2 and TIMP-1 for the evaluation of clinical characteristics. Regulation of type IV collagen may contribute to the balance of MMPs and TIMPs in LSCC.

Keywords: Laryngeal SCC - collagen - metalloproteinase - tissue inhibitor of metalloproteinase

Asian Pacific J Cancer Prev, 12, 3245-3249

Introduction

Laryngeal squamous cell carcinoma (LSCC) is one of the most common head and neck malignancies. In China, the LSCC morbidity rate is 1.7-1.8 per 100,000 males and 0.4 per 100,000 females (Yang et al., 2005) and the incidence of LSCC is increasing in many regions of the world. It is generally accepted that LSCC is strongly associated with tobacco smoking (Gandini et al., 2008), alcohol consumption (Islami et al., 2010) and viral infection (Marur et al., 2010). Early stage well-differentiated LSCC has a good prognosis, and the survival rate is significantly lower in patients with regional and distal metastasis; therefore, invasion and metastasis are important factors which greatly impact on prognosis in LSCC.

The procedures of invasion and metastasis in malignancy involve very complicated multi-step, multifactorial and multi-gene processes. Degradation of the extracellular matrix (ECM) is an essential step which is required for the invasion of carcinoma cells. Basement membrane (BM) is the main component of ECM, and is composed of type IV collagen, laminin, entactin, proteoglycans and glycosaminoglycans (Nelson et al., 2000). Of these, type IV collagen is regarded as the predominate factor (Leblond et al., 1989) which prevents migration of carcinoma cells in the ECM (Krecicki et al., 2001).

The expression level of type IV collagen is regulated by matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). Currently, there are at least 24 members of the MMP family, which can be classified into a number of subgroups, including collagenases, gelatinases, stromelysins and membrane-type MMPs (Nabeshima et al., 2002). The gelatinases comprise two subtypes, MMP-2 (gelatinase A) and MMP-9 (gelatinase B). Gelatinases can induce partial or widespread loss of the BM by degradation of type IV collagen, and contribute to invasion and metastasis. Several studies have proven that MMP-2 and MMP-9 play an important role in the development of acute lymphoblastic leukemia (Klein et al., 2004), breast cancer (Figueira et al, 2009), prostate adenocarcinoma (Trudel et al., 2010), renal cancer (Kugler et al., 1988) and head and neck carcinoma (Kondratiev et al., 2008). The TIMP family contains four members which can restrain the...
For type IV collagen, positive staining of the BM from Zymed Laboratories. Dilution; 1 h incubation). All antibodies were purchased (1:50 dilution; 1 h incubation) and anti-human TIMP-1 (1:50 dilution; 1 h incubation); anti-human MMP-9 (1:50 dilution; 1 h incubation); anti-human MMP-2 monoclonal antibodies: anti-human type IV collagen manufacturer’s instructions with the following mouse laboratories, San Francisco, CA, USA) following the 2, MMP-9 and TIMP-1 using the SP kit (Zymed determine the expression of type IV collagen, MMP- invasion and metastasize (Krecicki et al., 2001). As type IV collagen, MMP-2, MMP-9 and TIMP-1 interact to regulate the ECM, we designed this study to investigate the expression and significance of type IV collagen, MMP-2, MMP-9 and TIMP-1 in LSCC.

Materials and Methods

Study subjects
Between June 2003 and May 2004, 44 patients with histologically confirmed, previously untreated LSCC were recruited at Hangzhou First People’s Hospital. In total, 41 patients were male and three were female. The age of the patients ranged from 46 to 84 years old, and the median patient age was 67 years. Twenty two cases of LSCC were located in the supraglottic area, 21 cases in the glottic area and one case in the subglottic area. According to the UICC classification (2002), 7, 9, 9 and 19 tumors were staged T1, T2, T3 and T4, respectively; 26, 10, 6 and 1 tumors were staged N0, N1, N2 and N3, respectively and 7, 6, 10 and 21 tumors had a histological grade of I, II, III and IV, respectively. The number of well, moderately and poorly differentiated tumors was 10, 33 and 1 respectively. The follow-up time was more than 5 years, during which time 12 cases recurred and 32 cases survived without cancer. In addition, 22 adjacent non-cancer normal tissues (20 male and 2 female; age 46 to 73 years, median 58 years) were obtained from contralateral semi-laryngeal normal tissue or mucosal tissue more than 1.5 cm distal to LSCC tumors, and were confirmed by H&E staining. This study was approved by the Institutional Review Board of Hangzhou First People’s Hospital.

Immunohistochemical staining
All specimens were fixed in 10% formalin, paraffin embedded and 5 μm continuous sections were prepared. All 44 LSCCs tissues and 22 adjacent non-cancer normal tissues were reconfirmed by H&E staining before immunohistochemical analysis.

A streptavidin peroxidase-conjugated immunohistochemical technique was performed to determine the expression of type IV collagen, MMP-2, MMP-9 and TIMP-1 using the SP kit (Zymed Laboratories, San Francisco, CA, USA) following the manufacturer’s instructions with the following mouse monoclonal antibodies: anti-human type IV collagen (1:100 dilution; 1 h incubation); anti-human MMP-2 (1:50 dilution; 1 h incubation); anti-human MMP-9 (1:50 dilution; 1 h incubation) and anti-human TIMP-1 (1:50 dilution; 1 h incubation). All antibodies were purchased from Zymed Laboratories.

For type IV collagen, positive staining of the BM
Table 1. Relation Between Expression of Type IV Collagen, its Regulators and Clinicopathological Characteristics of Laryngeal SCCs

<table>
<thead>
<tr>
<th>Tissue</th>
<th>X²</th>
<th>P value</th>
<th>MMP-2 X²</th>
<th>P value</th>
<th>MMP-9 X²</th>
<th>P value</th>
<th>TIMP-1 X²</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSCC</td>
<td></td>
<td></td>
<td>1.27</td>
<td>1.18</td>
<td>1.29</td>
<td>0.86</td>
<td>1.14</td>
<td>4.10</td>
</tr>
<tr>
<td>Normal</td>
<td>6</td>
<td>0.02</td>
<td>3.07</td>
<td>0.04</td>
<td>9.5</td>
<td>0.04</td>
<td>10.16</td>
<td>0.21</td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
<td>2.74</td>
<td>9.7</td>
<td>4.21</td>
<td>11.78</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>Supraglottic</td>
<td>15</td>
<td>0.27</td>
<td>3.05</td>
<td>0.55</td>
<td>0.04</td>
<td>11</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>Glottic</td>
<td>8</td>
<td>0.04</td>
<td>3.02</td>
<td>0.91</td>
<td>0.02</td>
<td>9</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>T category</td>
<td></td>
<td></td>
<td>10.27</td>
<td>0.01</td>
<td>5.10</td>
<td>0.02</td>
<td>16.2</td>
<td>0.43</td>
</tr>
<tr>
<td>T1-2</td>
<td>4</td>
<td>0.04</td>
<td>7.3</td>
<td>0.05</td>
<td>8.21</td>
<td>0.28</td>
<td>5.8</td>
<td>0.64</td>
</tr>
<tr>
<td>T3-4</td>
<td>19</td>
<td>0.04</td>
<td>3.06</td>
<td>0.91</td>
<td>0.01</td>
<td>2</td>
<td>7.6</td>
<td>0.05</td>
</tr>
<tr>
<td>N category</td>
<td></td>
<td></td>
<td>11.01</td>
<td>0.01</td>
<td>4.16</td>
<td>0.28</td>
<td>5</td>
<td>0.64</td>
</tr>
<tr>
<td>N0</td>
<td>11</td>
<td>0.16</td>
<td>8.15</td>
<td>0.39</td>
<td>8.5</td>
<td>0.99</td>
<td>16.5</td>
<td>0.43</td>
</tr>
<tr>
<td>N1-3</td>
<td>12</td>
<td>0.04</td>
<td>5.3</td>
<td>0.39</td>
<td>0.1</td>
<td>2</td>
<td>6.7</td>
<td>0.05</td>
</tr>
<tr>
<td>Clinical Stage</td>
<td></td>
<td></td>
<td>13.44</td>
<td>0.01</td>
<td>6.21</td>
<td>0.30</td>
<td>5.5</td>
<td>0.03</td>
</tr>
<tr>
<td>I-II</td>
<td>4</td>
<td>0.04</td>
<td>5.2</td>
<td>0.01</td>
<td>6.15</td>
<td>0.56</td>
<td>16</td>
<td>0.87</td>
</tr>
<tr>
<td>III-IV</td>
<td>19</td>
<td>0.04</td>
<td>5.13</td>
<td>0.01</td>
<td>5.0</td>
<td>0.39</td>
<td>8.5</td>
<td>0.05</td>
</tr>
<tr>
<td>Histological grade</td>
<td></td>
<td></td>
<td>11.01</td>
<td>0.01</td>
<td>4.16</td>
<td>0.28</td>
<td>5</td>
<td>0.64</td>
</tr>
<tr>
<td>G1</td>
<td>2</td>
<td>0.04</td>
<td>8.15</td>
<td>0.39</td>
<td>8.5</td>
<td>0.99</td>
<td>16.5</td>
<td>0.43</td>
</tr>
<tr>
<td>G2-3</td>
<td>21</td>
<td>0.01</td>
<td>5.2</td>
<td>0.01</td>
<td>6.15</td>
<td>0.56</td>
<td>16</td>
<td>0.87</td>
</tr>
<tr>
<td>Recurrence</td>
<td></td>
<td></td>
<td>7.10</td>
<td>0.13</td>
<td>4.21</td>
<td>0.38</td>
<td>11</td>
<td>0.05</td>
</tr>
<tr>
<td>Yes</td>
<td>10</td>
<td>0.01</td>
<td>8.13</td>
<td>0.39</td>
<td>8.5</td>
<td>0.99</td>
<td>16.5</td>
<td>0.43</td>
</tr>
<tr>
<td>No</td>
<td>13</td>
<td>0.16</td>
<td>8.13</td>
<td>0.39</td>
<td>8.5</td>
<td>0.99</td>
<td>16.5</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Normal adjacent non-cancer tissues were confirmed by H&E staining. X² and P indicated the value of Chi-squared test and represented the comparison of expression levels within different clinicopathological characteristics.

Table 2. Relationship Between Prognosis and (MMP-2+MMP-9)/TIMP-1 Score in 44 Cases of LSCC

<table>
<thead>
<tr>
<th>Recurrence</th>
<th>Number of cases</th>
<th>(MMP-2+MMP-9)/TIMP-1 T Value P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>12</td>
<td>2.29±0.86 2.74 <0.01</td>
</tr>
<tr>
<td>No</td>
<td>32</td>
<td>1.66±0.18</td>
</tr>
</tbody>
</table>

Expression of MMP-2

Positive MMP-2 staining was significantly more frequent in LSCC (34/44, 77.27%) than the adjacent non-cancer normal tissues (9/22, 40.91%; P = 0.04; Fig. D-E). No significant correlation between the expression of MMP-2 and tumor location, T category, N category, clinical stage, pathological grade or the prognosis of LSCC were observed (P>0.05; Table 1).

Expression of MMP-9

MMP-9 staining was significantly higher in LSCC (32/44, 72.73%) than the adjacent non-cancer normal tissues (8/22, 36.36%; P = 0.02; Figure1 F-G). The expression of MMP-9 was related to the location of LSCC, N category and prognosis. MMP-9 staining was significantly higher in supraglottic LSCC (19/22; 72.72%) than glottic LSCC (12/21; 57.14%; P=0.04). MMP-9 staining was significantly lower in N1-2 disease (17/21; 62.96%) than N3-4 disease (15/17; 88.24%; P=0.02). MMP-9 staining was significantly higher in the LSCC tissues of patients who recurred during follow-up (11/12, 91.67%) than the tissues of patients who did not recur (21/32, 65.63%; P = 0.02). No significant correlations between MMP-9 expression and T category, clinical stage or pathological grade were observed in LSCC (P>0.05; Table 1).

Expression of TIMP-1

TIMP-1 expression was significantly higher in LSCC (23/44; 52.27%) than the adjacent non-cancer normal tissues (5/22, 27.27%; P = 0.04; Figure1 H-I). No significant correlations were observed between the expression and localization of TIMP-1 and T category, N category, clinical stage, pathological grade or prognosis on LSCC.

(MMP-2+MMP-9)/TIMP-1 score and prognosis

Significant differences in the (MMP-2+MMP-9)/TIMP-1 score of LSCC patients who recurred during follow up (2.29±0.86) and those who did not recur (1.66±0.18) were observed (t = 2.74, P<0.01).
Discussion

Liotta et al. (1983) described a three-step hypothesis for carcinoma invasion, which includes attachment, degradation and locomotion. BM serves as a barrier to separate epithelial cells from the underlying stroma, and tumor cells can penetrate the BM by secreting proteinases to invade the surrounding tissue and metastasize to distant organs. Degradation of the BM is regarded as an essential step in the metastasis of carcinoma cells, and type IV collagen is the main framework of the BM. In benign laryngeal lesions, type IV collagen is expressed as an intact and continuous structure (Courey et al., 1996; Martins et al., 2010); however, type IV collagen expression is discontinuous and partially or wholly lost in LSCC (Wang et al., 2011). Similar to these previous reports, we also observed a loss of type IV collagen in LSCC, and found that type IV collagen was strongly associated with T category, clinical stage and the degree of differentiation in LSCC. These results indicate that there may be an increased protease activity in LSCC, especially in poorly differentiated tissues. The extent of type IV collagen loss may reflect the potential of tumors to metastasize, as loss of type IV collagen may provide the foundation for invasion and metastasis.

Type IV collagen proteases include the proteolytic zinc-containing enzymes MMP-2 and MMP-9, which are associated with invasion and metastasis. Dong et al. reported that high levels of MMP-2 protein expression positively correlate with tumor size, lymph node metastasis, distant metastasis and clinical stage in colorectal cancer (Dong et al., 2011); however, other studies have reached different conclusions. For example, Krecicki et al. (2001) observed no significant relationship between MMP-2 expression and clinicopathological parameters, including localization, T category, N category and histological grade in laryngeal cancer. In this study, we observed that MMP-2 was expressed at significantly higher levels in LSCC than normal tissues, but did not observe a significant relationship between MMP-2 and any clinicopathological features of LSCC. MMP-9 can degrade type IV collagen and lead to an increased density of blood vessels (Wittekindt et al., 2011), which can increase cancer cell infiltration as tumor cells expressing high levels of MMP-9 are more likely to invade (Peschos et al., 2006). In our study, we found that the expression level of MMP-9 could serve as an index to assess lymph node metastasis, clinical stage and prognosis in LSCC. Additionally, increased expression of MMP-9 was observed in tumors from the supraglottic area compared to the glottic area, indicating that supraglottic LSCC cells may secrete increased levels of MMP-9, possibly due to the different cell types in each laryngeal area, which may explain the increased lymph node metastasis rate of supraglottic LSCC. Taken together, the expression level of MMP-9 appears to be a much more useful marker for evaluation of the characteristics of LSCC than MMP-2.

The expression of MMP2 and MMP-9 is intricately positively and negatively regulated by epidermal growth factors and hepatocyte growth factor (Rosenthal et al., 1998; Overall et al., 2002). Overexpression of MMP-9 is strongly associated with p53 mutations (Franchi et al., 2002), which are a frequent genetic alteration in head and neck squamous cell carcinoma (Maestro et al., 1992). TIMP-1 is also an important regulator of MMP-2 and MMP-9 expression, and TIMP-1 can inhibit the invasion of cancer cells in vitro and vivo (Gomez et al., 1997). Increased TIMP-1 expression is related to reduced nodal metastases and a lower differentiation grade in LSCC (Krecicki et al., 2003). Woessner et al. (1994) reported a significant relationship between TIMP-1 expression and histological grade, but not T category, N category, clinical stage or distal metastasis. Other studies have also found no significant correlation between TIMP-1 expression and clinicopathological characteristics in prostate and laryngeal cancer (Peschos et al., 2006; Trudel et al., 2010), however, Shi et al. (1999) observed that higher levels of TIMP-1 mRNA were observed in advanced thyroid carcinoma. Similarly, in this study, we observed that TIMP-1 protein expression was increased in LSCC compared to normal tissues. The increased expression levels of TIMP-1 in LSCC suggest that stromal or cancer cells may increase expression of TIMP-1, in order to maintain a balance between degradation and remodeling of the BM.

Discovery of an index to properly evaluate the prognosis of cancer patients would be very useful. Local invasion and distant metastasis are strongly associated with a poorer prognosis in LSCC; therefore, it is possible that the expression levels of the BM and its regulators may serve as prognostic factors in LSCC. Currently, no consensus has been reached on the prognostic ability of BM regulators. Aref et al. (2007) and Molica et al. (2003) suggested that high MMP-2 and MMP-9 expression levels were associated with a poorer prognosis, while Travaglini et al. (2008) found no correlation between MMP-9 and prognosis in acute myeloid leukaemias. This study indicates that only MMP-9 can be regarded as a useful prognostic factor in LSCC. The network which regulates the ECM is rather complicated, and the differing results reported in these studies indicate the involvement of several associated factors. The final action of MMPs and TIMPs may depend on the balance of MMPs and TIMPs. Suminoe et al. (2007) suggested that the balance of different BM regulators may be more strongly associated with the infiltration of leukemia cells than any single factor, and similar results were reported in breast (Figueira et al., 2009) and renal cancer (Kugler et al., 1988). In this study, we observed a positive correlation between the (MMP-2+MMP-9)/TIMP-1 score and prognosis in LSCC, indicating that this index may be useful for the evaluation of prognosis in LSCC.

Although significant results were obtained in our study, the results need to be interpreted with caution. Firstly, the number of subjects in this study was relatively small, and further studies with larger sample sizes will be performed to confirm the results. Secondly, as the regulation of the BM is rather complex, further studies are required to focus on the role of the network of MMPs and TIMPs which regulate BM deposition and degradation.

In conclusion, altered expression of the BM and its regulators may be strongly associated with the
development of laryngeal carcinoma. Type IV collagen and MMP-9 may be more valuable than MMP-2 and TIMP-1 for the evaluation of clinical characteristics of LSCC. The balance of MMPs and TIMPs may contribute to the regulation of type IV collagen, and the (MMP-2 + MMP-9)/TIMP-1 score may be helpful useful index to assess prognosis in LSCC.

Acknowledgements

This work was supported by a grant from Hangzhou Health Bureau, Hangzhou, Zhejiang Province, China (2008B0006). The authors have no existing or potential conflicts of interest to declare.

References

