Combination of IL-24 and Cisplatin Inhibits Cervical Cancer Growth in a Xenograft Nude Mice Model

Li Li*, Zhao-Xia Wang, Zan-Hong Wang

Abstract

IL-24/mda-7 delivery augments the sensitivity of several tumor types to cisplatin but the underlying mechanism(s) are unclear. Here, we used a cervical cancer xenograft model in nude mice to further elucidate the interaction between IL-24 and cisplatin. Nude mice were inoculated subcutaneously in the left axilla with Hela cells and randomly grouped into 5 treatment schedules: PBS (I); pDC316 vector (II); pDC316-hIL-24 (III); cisplatin (IV); and pDC316-hIL-24 combined with cisplatin (V). Groups III, IV and V showed significant reduction at mean tumor weight by 43%, 50% and 72%, respectively, after 4 weeks in comparison to the PBS and vector control groups. Mitotic counts in groups III, IV and V were also significantly reduced and expression of tumor suppressor gene nm23-H1 protein was significantly higher in groups III and V than in the cisplatin (IV), PBS (I), and vector (II) cases. The cisplatin group exhibited significantly greater weight loss than the other four groups. The mean weight loss of the combined group, while significantly more than in the controls and the IL-24 group, was significantly less than that of the cisplatin group. The IL-24 group and the combined therapy group exhibited enhancing effects on the tumor suppressor gene nm23H1 expression.

Keywords: IL-24 - recombinant vector - cervical carcinoma - gene therapy - cisplatin - nm23H1

Introduction

Cervical cancer (CC) was worldwide estimated at 530,000 cases of incidence and approximately 275,000 cases of mortality in 2008 (Arbyn et al., 2011) despite efficient screening methods and standard treatment including surgery, radiation, and chemotherapy such as cisplatin or 5-fluorouracil (5-FU) (Borowsky et al., 2005). Although chemotherapy initially showed 26-45% improvement in survival of CC patients, a retrospective study suggests that the benefits depend on the initial stage of CC (Borowsky et al., 2005). Side effect profile of cisplatin includes myelosuppression, renal toxicity, hearing loss, and tinnitus in 25-30% of patients, and marked nausea and vomiting in most patients whereas those of 5-FU also include nausea, vomiting, leukopenia, mental loss, seizures, excessive lacrimation, cardiovascular abnormalities, and hair loss. These serious side effects associated with cisplatin and 5-FU and the development of resistance indicate that additional strategies for treatment of cervical cancer are warranted.

Interleukin 24 (IL-24), initially discovered as melanoma differentiation associated gene-7 (mda-7), mediates significant anti-tumor activity and is now classified as a member of the IL-10 family. IL-24 has been effectively delivered to tumors with gene therapy by using replication-incompetent adenoviral vectors in cultured cells, several animal models, and a phase I clinical trial by multiple groups (Emdad et al., 2009). It induces apoptosis or toxic autophagy in many tumor types including breast cancer, glial blastoma, lung cancer, ovarian cancer, and liver cancer, but not in normal cells (Gopalkrishnan et al., 2004; Su et al., 2005; Gupta et al., 2006; Dash et al., 2010; Yacoub et al., 2010). In addition, IL-24 also stimulates an antitumor immune response, suppresses angiogenesis, and sensitizes cancer cells to radiation, chemotherapy, and antibody-mediated cytotoxicity (Emdad et al., 2009). It was reported that IL-24 may promote the survival of chronic lymphocytic leukemia B cells and wortmannin, a phosphatidylinositol 3 kinase inhibitor, can enhance IL-24-induced apoptosis and autophagy in these cells (Yang et al., 2010). Splice variants of IL-24 and their tissue specificity may account for some of the variability of responses (Whitaker et al., 2011).

IL-24 inhibits the migration and invasion of human cervical cancer cell lines in vitro (Shi et al., 2007). It can also inhibit growth and induce apoptosis of the cervical carcinoma Hela cells in vitro (Wu et al., 2009). However, its potential in augmenting treatment options for cervical cancer in vivo requires further studies. Since IL-24 can augment sensitivity of tumors to various chemotherapeutic agents and augment apoptosis or toxic autophagy in many tumor types including breast cancer, glioblastoma, lung cancer, ovarian cancer, and liver cancer, but not in normal cells (Gopalkrishnan et al., 2004; Su et al., 2005; Gupta et al., 2006; Dash et al., 2010; Yacoub et al., 2010). In addition, IL-24 also stimulates an antitumor immune response, suppresses angiogenesis, and sensitizes cancer cells to radiation, chemotherapy, and antibody-mediated cytotoxicity (Emdad et al., 2009). It was reported that IL-24 may promote the survival of chronic lymphocytic leukemia B cells and wortmannin, a phosphatidylinositol 3 kinase inhibitor, can enhance IL-24-induced apoptosis and autophagy in these cells (Yang et al., 2010). Splice variants of IL-24 and their tissue specificity may account for some of the variability of responses (Whitaker et al., 2011).

IL-24 inhibits the migration and invasion of human cervical cancer cell lines in vitro (Shi et al., 2007). It can also inhibit growth and induce apoptosis of the cervical carcinoma Hela cells in vitro (Wu et al., 2009). However, its potential in augmenting treatment options for cervical cancer in vivo requires further studies. Since IL-24 can augment sensitivity of tumors to various chemotherapeutic agents and augment apoptosis or toxic autophagy in many tumor types including breast cancer, glioblastoma, lung cancer, ovarian cancer, and liver cancer, but not in normal cells (Gopalkrishnan et al., 2004; Su et al., 2005; Gupta et al., 2006; Dash et al., 2010; Yacoub et al., 2010). In addition, IL-24 also stimulates an antitumor immune response, suppresses angiogenesis, and sensitizes cancer cells to radiation, chemotherapy, and antibody-mediated cytotoxicity (Emdad et al., 2009). It was reported that IL-24 may promote the survival of chronic lymphocytic leukemia B cells and wortmannin, a phosphatidylinositol 3 kinase inhibitor, can enhance IL-24-induced apoptosis and autophagy in these cells (Yang et al., 2010). Splice variants of IL-24 and their tissue specificity may account for some of the variability of responses (Whitaker et al., 2011).
and nuclear division to each modality and control in a xenograft animal model of human cervical carcinoma. Because low nm23-H1 expression has correlated with cisplatin resistance in human breast, ovarian, and esophageal squamous carcinoma (Iizuka et al., 1999), we chose to assess the effect of the treatments on expression of nm23-H1 (nonmetastasis 23, H1 isoform), a marker associated with metastatic aggressive melanomas and breast carcinomas (Freije et al., 1998). Furthermore, positive expression of nm23 was negatively correlated with higher clinical stages, pathological grade, and lymph node metastasis in cervical cancer patients (Luo et al., 2004).

Materials and Methods

Vectors and reagents

The shuttle vector containing human IL-24 target gene fragment, pDC316 (pDC316-hIL-24) and empty vector pDC316 were purchased from Vector Gene Technology (Beijing, China). Transfection reagent, Lipofectamine 2000 was purchased from Invitrogen. Cisplatin was purchased from QiLu Pharmaceutical (Jinan, Shandong province, China). Rabbit anti-nm23-H1 polyclonal antibodies were purchased from Boster Bio-engineering (Wuhan, China). Endotoxin-free plasmid extraction and purification kits were purchased from Solarbio (Beijing, China).

Cell culture

Human cervical carcinoma cell line, Hela cells, was purchased from Cell center in Peking Union Medical College. Hela cells were cultured in DMEM high glucose medium containing 10% FBS in 37°C incubator at 5% CO₂.

Use and care of animal

Specific pathogen-free (SPF) female nude BALB/c mice (3 weeks old, 13~15 g) were purchased from slrc laboratory animal center (Shanghai, China). Mice were maintained in pathogen-free conditions and used for study in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. All surgical procedures and care administered to the animals were approved by the institutional ethics committee.

Tumor xenograft mouse model

Hela cells at logarithmic phase were harvested with EDTA. HeLa cells (100 μL; 2x10⁶ cells) were injected subcutaneously into the left axilla in 4-week-old nude BALB/c mice. Fourteen days later, nude mice developed subcutaneous xenograft tumors (>5x5 mm). The tumor-bearing nude mice were randomized into the following 5 treatment groups (n=6) as summarized in Figure 1: (I) PBS buffer control group, intratumoral injection: 100 μL of PBS buffer was injected at day 3, 6, 9, 12, and 15. (II) Empty vector control group, intratumoral injection: 100 μL of empty vector pDC316 (100 mg/L) and 25 μL of Lipofectamine 2000 for transfection were mixed in advance and injected at day 3, 6, 9, 12, and 15. (III) IL-24 treatment group, intratumoral injection: each tumor was injected at multiple sites with a mixture of 125 μL of pDC316-hIL-24 (10 mg/L) and Lipofectamine 2000 (4:1, v/v) for transfection at day 3, 6, 9, 12, and 15. (IV) Cisplatin group, peritoneal injection: 0.5 mL of cisplatin at 5 mg/kg were injected at day 0, 1 and 2. (V) Combinational treatment group, intratumoral injection for IL-24 and peritoneal injection for cisplatin: cisplatin (0.5 mL, 2.5 mg/kg) was administered 3 times as aforementioned. After 24 hrs, each tumor was injected with IL-24 as indicated in group 1. Tumor size (length and width, L and W, respectively) was measured with a caliper every 3 days. Size of tumor was calculated as V = LxW²/2. Two weeks after completion of treatments, mice were sacrificed via cervical dislocation and weighed. Final tumor dimensions and weights were measured. Tumor suppression rate (%) equaled [average tumor weight of control group - average tumor weight of treatment group/average tumor weight of control group] x 100%.

hIL-24 expression in tumor by RT-PCR

Amplification of human IL-24 included the first and Sall restriction enzyme sites in the upstream and downstream primers, respectively. Primer sequences were as follows: upstream: 5'-GCCAAGCTTATGAACTTTTCGAGG-3', downstream: 5'-GCCAAGCTTATGAATTTTCACTAGA-GCTTTGTAATT-3'. Amplification conditions were denaturation at 94°C for 2 min, and 32 cycles of 94°C denaturation for 20 seconds, 58°C annealing for 20 seconds, 72°C extension for 20 seconds, followed by 72°C extension for another 8 min. PCR products were separated by gel electrophoresis and the size was identified by standard markers. Generation and identification of pDC316-hIL-24; the PCR amplified and ligated product was sequenced by Zhongshan Biotech (Beijing).

Pathological observation of tumor tissue

Tumor sizes, color, and necrotic section of tumor were recorded. Tumor tissue was sectioned following formalin fixation and wax embedding. Hematoxylin and Eosin (HE) staining, mitotic figure count, tumor cell density, and nuclear atypia were observed under optical microscope with 400X magnification and semi-quantified by experienced pathologists in a double blind manner. (1) Mitotic count: ten distinct areas with the highest density on each slide were counted and averaged (Zhao and Xu, 1996). (2) Cellular atypia was classified into high and low group, depending on nuclear size, morphology, nuclear-cytoplasm ratio and nuclear staining level. Ten non-necrotic areas at high resolution were assessed for...
Table 1. Mean Tumor Volumes of the Five Groups During Treatment

<table>
<thead>
<tr>
<th>Day</th>
<th>Control</th>
<th>Vector</th>
<th>IL-24</th>
<th>Cisplatin</th>
<th>Combined</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>72.6±6.24</td>
<td>72.5±7.9</td>
<td>71.2±5.7</td>
<td>69.7±5.2</td>
<td>69.5±3.1</td>
<td>0.819</td>
</tr>
<tr>
<td>3</td>
<td>123.2±11.7</td>
<td>123.1±8.2</td>
<td>119.9±7.2</td>
<td>111.6±8.5</td>
<td>118.0±6.4</td>
<td>0.153</td>
</tr>
<tr>
<td>6</td>
<td>212.0±19.2</td>
<td>204.0±18.2</td>
<td>199.3±10.5</td>
<td>181.1±13.5</td>
<td>168.2±10.9</td>
<td><0.001*</td>
</tr>
<tr>
<td>9</td>
<td>363.0±43.3</td>
<td>365.0±46.5</td>
<td>337.3±29.0</td>
<td>281.7±30.3</td>
<td>208.3±49.2</td>
<td><0.001*</td>
</tr>
<tr>
<td>12</td>
<td>594.3±62.8</td>
<td>592.8±56.1</td>
<td>437.3±60.9</td>
<td>389.8±49.4</td>
<td>238.2±42.4</td>
<td><0.001*</td>
</tr>
<tr>
<td>15</td>
<td>845.5±110.0</td>
<td>835.3±105.7</td>
<td>486.4±70.1</td>
<td>449.6±52.4</td>
<td>246.2±42.4</td>
<td><0.001*</td>
</tr>
</tbody>
</table>

Data were expressed as Mean±SD. The differences among five groups were conducted by one way ANOVA. †P-value<0.05, indicated a significant difference among five groups; †‡P-value<0.05, compared with control group; †§P-value<0.05, compared with Vector group; †P-value<0.05, compared with IL-24 group; †P-value<0.05, compared with group

Table 2. Mean Weight of Mice, Mean Tumor Weights and Mean Tumor Inhibition Rates in the Five Groups on Day 29

<table>
<thead>
<tr>
<th>Day</th>
<th>Control</th>
<th>Vector</th>
<th>IL-24</th>
<th>Cisplatin</th>
<th>Combined</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23.5±1.2</td>
<td>23.1±0.8</td>
<td>22.3±0.8</td>
<td>15.9±0.9</td>
<td>19.4±1.3</td>
<td><0.001*</td>
</tr>
<tr>
<td>3</td>
<td>4.7±1.0</td>
<td>4.6±1.1</td>
<td>2.7±0.7</td>
<td>2.6±0.5</td>
<td>1.3±0.6</td>
<td><0.001*</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>3.7±0.2</td>
<td>42.8±0.2</td>
<td>50.3±0.1</td>
<td>71.7±0.1</td>
<td><0.001*</td>
</tr>
</tbody>
</table>

Data were expressed as Mean±SD. The differences among five groups were conducted by one way ANOVA. N=6/group; †P-value<0.05, indicated a significant difference among five groups; †P-value<0.05, compared with control group; †P-value<0.05, compared with Vector group; †P-value<0.05, compared with IL-24 group; †P-value<0.05, compared with group

Results

Tumor growth

As shown in Table 1, mean tumor volumes of all groups increased in a time-dependent manner. Mean tumor volumes of the PBS and vector control groups were similar throughout the experiment. Mean tumor volumes of the IL-24, cisplatin, and combined treated groups were significantly smaller on the 12th and 15th day compared to that of the PBS and vector controls (p<0.001, respectively). No statistical difference was observed between the IL-24 and cisplatin groups. The combined group had significantly smaller mean tumor volume on days 9, 12, and 15 than the controls and the single modality groups did.

On day 29, mean tumor weights of the IL-24, cisplatin, and the combined groups were significantly lower than that of the PBS control and vector groups (p<0.05, respectively). Mean tumor volumes and weights in the IL-24 and cisplatin groups showed no significant difference. As compared to the vector group, mean tumor growth in the IL-24 (42.8%), cisplatin (50.3%) and combined IL-24 and cisplatin groups (71.7%). Table 2 remained significantly inhibited 2 weeks after treatment compared to the PBS and vector control groups.

Weight loss and condition of nude mice

Before treatment, the mean body weights of nude mice in each group were not statistically different (F=0.174, P=0.05). By day 6, the cisplatin-treated nude mice were observed to become gradually less active, their food intake decreased, and they had weight loss significantly more than PBS control group. Nude mice in the other four groups showed good spirits and normal intake of food and water. At the end of treatment (~15 days), the mean body...
weight differences among the groups were statistically significant (F=58.741, P<0.001) (data not shown). Mean body weight was reduced significantly in the cisplatin group, while mean body weights of the control and IL-24 groups showed no significant difference. The combined group exhibited a lesser degree of the body weight loss compared to the cisplatin group (Table 1). At the end of the experiment (~29 days), the mean body weights in the PBS control, empty vector, and IL-24 treatment groups were not statistically different (Table 2).

On day 29, there were significant differences between the mean tumor weights of most of the groups (F=19.832, P<0.001). As expected, the mean tumor weights of the PBS and vector controls were similar. The average tumor weights of the three treatment groups were significantly smaller than that of the two control groups (P<0.05). The mean tumor weight of the combinational treatment group (group V) was the lightest, followed by cisplatin group (IV) and IL-24 group (III). Similarly, suppression of tumor growth in treatment groups III, IV, and V were 42.8%, 50.3%, and 71.7%, respectively (Table 2). The combination treatment group (group V) showed the greatest anti-tumor effect (P<0.05).

Tumor morphology
Tumors in the vector and PBS control groups were larger, red with obvious blood supply on the surface and showed obvious infiltration to the surrounding tissue and skin (Figure 2A-I, 2A-II). Tumors of the IL-24-treated group were light red with few observable blood vessels and had local necrosis in the tumor section (Figure 2A-II). Tumors of the cisplatin group were red with multiple, obvious blood vessels on the surface and evidence of necrosis (Figure 2A-IV and 3A-IV). Tumors in the combined treatment group had a solid texture, few visible blood vessels, grayish color, and an edge distinct from surrounding tissue which provided an easy separation (Figure 2A-V).

Cell morphology
H&E staining of the tumor tissue sections in the empty vector and PBS control groups showed a dense configuration of the cancer cells (Figure 3B-I, 3B-II). In the IL-24, cisplatin and combinational treatment groups, the cancer cell density was decreased to different extents, though didn’t show statistical significance. As shown in Figure 3B, cancer cells in the tumors of the PBS and empty vector control groups showed significant nuclear atypia. The cancer cells of the IL-24, cisplatin and combined treatment groups showed nuclear atypia, although less than the controls.

Table 3. Nuclear Division and the Expression of Nm23H1 in the Five Groups

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Vector</th>
<th>IL-24</th>
<th>Cisplatin</th>
<th>Combined</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear division (HP)</td>
<td>10.3±1.2</td>
<td>10.0±1.4</td>
<td>4.7±1.0</td>
<td>6.0±0.9†</td>
<td>3.2±1.2‖</td>
<td><0.001*</td>
</tr>
<tr>
<td>nm23H1 expression</td>
<td>175.0±4.5</td>
<td>175.9±4.5</td>
<td>148.0±8.3</td>
<td>171.9±9.8</td>
<td>143.6±9.2</td>
<td><0.001*</td>
</tr>
</tbody>
</table>

Data were expressed as Mean±SD. The differences among five groups were conducted by one way ANOVA. There’re 6 mice in each group; *P-value<0.05, indicated a significant difference among five groups; †P-value<0.05, compared with control group; ‡P-value<0.05, compared with Vector group; †P-value<0.05, compared with IL-24 group; ‡P-value<0.05, compared with group

Discussion
In recent years, chemotherapy for cervical cancer has become a part of standard care. Chemotherapeutic resistance of cervical cancer reduces the efficacy of the current standard of care. Increasing the sensitivity of cervical cancer to chemotherapeutic agents and identifying
viable adjunct therapies for cervical cancer may improve the outcomes of treated patients.

Currently, cisplatin is a common therapeutic agent for cervical cancer, and it mainly forms cisplatin-DNA adducts that interrupt DNA replication. Recently, a trial showed that once weekly administration of cisplatin was equally efficacious with fewer side effects than thrice weekly administration (Lee et al., 2011). IL-24 has significant direct and indirect anti-tumor activity against numerous cancers and has shown efficacy in clinical trials against metastatic melanomas (Emdad et al., 2009). IL-24 toxicity on normal cells has not been reported (Su et al., 2005). Here, we investigated the potential of IL-24 to augment cisplatin-induced cytotoxicity of human cervical cell line in a xenograft tumor model in nude mice.

Combined treatment of cisplatin and IL-24 for cervical cancer xenograft in nude mice.

In this study, treatment with cisplatin, IL-24, and the combined cisplatin-IL-24 group significantly inhibited tumor growth compared to the PBS and the vector control groups. Cisplatin treatment exhibited comparable anti-tumor efficacy as IL-24 single treatment. The mean tumor volume of the combined cisplatin-IL-24 treatment group was significantly smaller than single modality groups (IL-24 or cisplatin). The combined therapy had reduced tumor growth by greater than 70%, suggesting that efficacy of the combined treatment was superior to single modality treatment. Historically, anti-tumor efficacy of cisplatin is dose dependent. Although the dosage of cisplatin in the combined treatment group was half the cisplatin dose in the cisplatin single modality group, the efficacy was significantly greater. While monitoring of the effects of additional doses and combinations are needed to elucidate the type of drug interaction between IL-24 and cisplatin in cervical cancer, IL-24 has previously increased the sensitivity of breast tumors to chemotherapy including cisplatin (Emdad et al., 2009). Furthermore, cisplatin but not IL-24 treatment had significantly reduced the mean weight gain of the mice. The combination therapy group had a greater weight gain than the cisplatin single modality group but not the IL-24 group. Whether the reduced toxicity arose from the use of half the dose of cisplatin of the single modality group, the presence of IL-24, or both requires further studies.

Histopathological analysis revealed that the cisplatin, IL-24, and the combined therapy significantly reduced tumor cell density and mitotic figure count, consistent with their effects on tumor growth. Cellular atypia of cancer cells characterizes the morphologic differences between cancer cells and normal tissues, such as bazzard nucleus shape, darkened chromatin, increased nuclear-cytoplasm ratio and inconsistent nucleus sizes. These properties indicated tumorigenesis at different stages during differentiation. Because we found no statistical differences between the groups, we suggest that cisplatin and IL-12 treatment do not affect tumor cell differentiation.

nm23-H1 suppresses metastases at least in part by down-regulating expression of EDG2 (endothelial differentiation, lysophosphatidic acid G-protein-coupled receptor) (Horak et al., 2007). Mutation or low expression of nm23H1 has been highly associated with tumor metastasis in gastric cancer, lung cancer, breast cancer, esophageal cancer and cervical cancer (Freije et al., 1998), but positively correlated with liver metastasis of gastric cancer and colorectal cancer (Freije et al., 1998). Recently, Wang et al showed that cervical cancer patients with positive nm23-H1 but negative lipocalin-2 expression had the highest probability of recurrence and the lowest overall survival (Wang et al., 2011). Here, we observed that the IL-24 treated group and the combination group had significantly higher expression of nm23-H1 than the control, empty vector and cisplatingroups. These results suggested that IL-24 increased the expression of nm23-H1. Moreover, observation of tumor tissues indicated that the infiltration to the surrounding tissue and skin of the xenograft tumor was significantly reduced in co-treatment and IL-24 treatment groups. These data are consistent with IL-24 promoting expression of the metastasis suppressing gene nm23H1, which might be one of the anti-tumor mechanisms for IL-24. Furthermore, since cisplatin resistance is associated with lower nm23-H1 expression (Iizuka et al., 1999), the observation that IL-24 augments nm23-H1 expression may provide a mechanism for enhanced sensitivity to cisplatin. In conclusion, IL-24 reduced tumor growth, and provided a significant anti-tumor activity with cisplatin. IL-24 may have also reduced the effects of cisplatin on weight gain in the combination. However, further mechanistic studies are needed to elucidate signal transduction pathway(s) employed by IL-24 to reduce tumor growth and improve sensitivity to cisplatin and other chemotherapeutic drugs.

References

