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Introduction

	 In the view of modern genetics, the genesis and 
development of complex multifactorial human diseases 
are the result of specific environmental factors, genetic 
factors (mainly genetic susceptibilities), and the 
interactions between these two types of factors, which 
usually develops through multiple stages. Complex 
diseases including colorectal cancer are affected by 
multiple gene loci and environmental factors (Arafa 
et al., 2011; Zhao et al., 2012). An important topic for 
current genetic epidemiology and bioinformatics is the 
effective processing and analysis of the interactions 
between critical SNP (single-nucleotide polymorphism) 
sites involved in common complex multifactorial human 
diseases(Tomlinson et al., 2007; Reeves et al., 2008; 
Darbary et al., 2009; Xiong et al., 2009; Gao et al., 
2010). SNPs refer to DNA sequence polymorphisms 
resulting from single nucleotide mutations. They are the 
third generation genetic markers in humans and play 
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Abstract

	 Background: Analysis of gene-gene and gene-environment interactions for complex multifactorial human 
disease faces challenges regarding statistical methodology. One major difficulty is partly due to the limitations of 
parametric-statistical methods for detection of gene effects that are dependent solely or partially on interactions 
with other genes or environmental exposures. Based on our previous case-control study in Chongqing of China, 
we have found increased risk of colorectal cancer exists in individuals carrying a novel homozygous TT at locus 
rs1329149 and known homozygous AA at locus rs671. Methods: In this study, we proposed statistical method-
crossover analysis in combination with logistic regression model, to further analyze our data and focus on assessing 
gene-environmental interactions for colorectal cancer. Results: The results of the crossover analysis showed that 
there are possible multiplicative interactions between loci rs671 and rs1329149 with alcohol consumption. Multi-
factorial logistic regression analysis also validated that loci rs671 and rs1329149 both exhibited a multiplicative 
interaction with alcohol consumption. Moreover, we also found additive interactions between any pair of two 
factors (among the four risk factors: gene loci rs671, rs1329149, age and alcohol consumption) through the 
crossover analysis, which was not evident on logistic regression. Conclusions: In conclusion, the method based 
on crossover analysis-logistic regression is successful in assessing additive and multiplicative gene-environment 
interactions, and in revealing synergistic effects of gene loci rs671 and rs1329149 with alcohol consumption in 
the pathogenesis and development of colorectal cancer. 
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an important role in identifying disease-related genes, 
elucidating phenotypic differences among individuals, 
and interpreting disease susceptibilities in different 
populations and individuals. Previous studies have shown 
that the genesis and development of complicated diseases 
are not completely caused by genetic factors; rather, they 
are results of the interactions between genetic variations 
and environmental factors (Chatterjee et al., 2006; Wong 
et al., 2010). It is likely that there is only weak relevance, 
but not a major genetic effect between every individual 
gene and disease. This weak effect is more susceptible 
to the effect of environment. If the interactions between 
genes and the environment (including gene-gene, and 
gene- environment interactions) are neglected, it may not 
be possible to truthfully and precisely describe the effect 
of genetic mutations. Therefore, to prevent disease and 
establish public health policies, it is important to properly 
analyze and assess the interactions between genes and 
environment.
	 One of the greatest challenges facing human 
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geneticists is the identification and characterization of 
susceptibility genes for common complex multifactorial 
human diseases. This challenge is partly due to the 
limitations of parametric-statistical methods for detection 
of gene effects that are dependent solely or partially on 
interactions with other genes and with environmental 
exposures. How to analyze the interactions between genes 
and genes (environment) for a complex multifactorial 
human disease is more and more important. There are 
two mainly different interaction models between genes 
locus and environmental factors in biology: the additive 
interaction model and multiplicative interaction model 
(Ruth, 1996). In considering the joint effects of risk factors 
in disease causation, however, epidemiologists have 
debated intensely about what interaction is, where it comes 
from, and how to detect it (Rothman, 1986). Therefore, 
how to select the appropriate methods analysis of each 
interaction model is very important. In recent years, 
statistical methods have achieved rapid advances in the 
study of the interactions among genes and the interactions 
between genes and environmental factors. These methods 
mainly include logistic regression, stratified analysis, 
generalized relative risk model (Moolgavkar et al., 1987), 
multifactor dimensionality reduction (Hahn et al., 2003), 
and methods based on composite lineage disequilibrium 
(Wu et al., 2008). Each method has its own advantages 
and disadvantages. However, the traditional regression 
model may bring out the greater errors and increase the 
typeⅠor typeⅡerror during the analysis of interactions, so 
that the test power decrease.
	 Based on our previous data (Yang et al., 2009), the risk 
factors of colorectal cancer were analyzed by using chi-
square test; the characteristics of related genes locus and 
environmental factors associated with the development 
of colorectal cancer were found. This study further 
analyzed and explored the interactions between genes 
and environment using crossover analysis combined with 
logistic regression method. By using a case-control study 
method, colorectal cancer patients in Chongqing, China, 
were selected for a sampling study to explore the risk 
factors related to the genesis of colorectal cancer and the 
effect of gene-environment interactions on this disease.

Materials and Methods

Data Source
	 The data used in this study are from the case-control 
study of colorectal cancer in Chongqing, China, by the 
Department of Health Toxicology at the Third Military 
Medical University (Yang et al., 2009). Among the 
432 colorectal cancer patients who were pathologically 
diagnosed, 237 were males and 195 were females, with 
an average age of 52 years (44, 60). By using the hospital 
control method, patients with matching age, gender, and 
birthplace were selected from the orthopedics department 
of the same hospitals and screened to eliminate the 
possibility of carrying colorectal cancer or colorectal 
cancer-related diseases. A total of 788 of such people were 
selected as the healthy control group. Among them, there 
were 438 males and 350 females, with an average age of 
55 years (46, 65). All controls and provided their written 

informed consent, Semiquantitative Food Frequency 
Questionnaire, and blood samples as the CRC patients 
group. This study protocol was approved by the Third 
Military Medical University Ethics Committee, and 
informed consent was obtained from all participants. This 
study was in compliance with the Helsinki Declaration.
	 The survey contents included general information 
(gender and age), polymorphism distribution of genes 
related to ethanol metabolism (the distribution of 
homozygotes and heterozygotes of gene loci including 
rs2075633, rs17033, rs1229984, rs4767939, rs4767944, 
rs671, rs16941669, rs886205, rs7296651, rs1329149, 
rs2249695, rs8192772, rs8192775, and rs915908), and 
lifestyle habits (smoking and alcohol consumption). To 
avoid any bias, a standard questionnaire was generated 
in which each survey item had a specific definition. The 
examination was carried out as a face-to-face query, and 
some survey items, such as the amount of alcohol and 
cigarettes consumed, were quantitatively estimated. Using 
age 60 as the demarcation point, the surveyed patients 
were divided into two groups: the elderly group and the 
young and middle-aged group. Alcohol consumption was 
divided into two categories: healthy drinking (including 
people who did not drink and people who drank no more 
than 15 g per day) and non-healthy drinking (including 
people who drank more than 15 g per day). Based on 
smoking habits, the subjects were divided into non-
smokers and smokers (including those who had quit 
smoking).

Statistics methods
	 From biological view in the literature (Yang et al., 
2009), the risk factors of colorectal cancer were analyzed 
by using chi-square test, the characteristics of related 
gene locus and environmental factors associated with the 
development of colorectal cancer were found. However, 
the interactions between these factors are not fully 
analyzed. Based on the literature, in this article we will 
further explore the interactions between genes related to 
colorectal cancer and environmental factors and its impact 
on development of this disease, and analyze the existence 
of interactions among the genes and environmental factors 
by combining a variety of statistical methods. There are 
two mainly different interaction models between genes 
locus and environmental factors in biology: the additive 
interaction model and multiplicative interaction model. 
Under this statistical model, the presence or absence 
of interaction depends upon the scale of measurement 
(additive or multiplicative). Therefore, how to select the 
appropriate methods analysis of each interaction model is 
very important. In general, the logistic regression method 
can obtain the multiplicative interaction, but not analyze 
the additive interaction. However, the crossover analysis 
can analyze the additive interaction and multiplicative 
interaction. What’s more, the existence of multiplicative 
interaction of gene and environmental factors were 
analyzed by using the Akaike information content (AIC) of 
logistic regression and combined with crossover analysis 
methods.
	 Logistic regression model: The logistic regression 
is a common method used to analyze the multiplicative 
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interaction among categorical variables (Hosmer et al., 
1990). The logistic regression can use not only alleles as 
the genetic variable under the assumption of multiplicative 
genetic model but also genotypes as the genetic variable 
under the assumption of certain genetic models (such as 
the dominant model and recessive model) (Kooperberg et 
al., 2001; Ruczinski et al., 2003; Kooperberg et al., 2005).
	 For the example of using genotypes as a genetic 
variable, the modeling procedure is described as follows. 
Assuming that D stands for disease, E for environmental 
factor, G for the genotype of the disease-related locus, 
and this locus has two alleles, the susceptibility gene 
M and the normal gene m, then the exposure rate of the 
environmental factor in the human population is expressed 
as P (E), and the frequency of the susceptibility gene is 
expressed as PM. Assuming this locus meets the H-W 
equilibrium, the frequencies of the genotypes MM, Mm 
and mm in the human population are PM

2, 2PM (1-PM) and 
(1-PM)2, respectively. Assuming the environmental factors 
and genetic factors independently exist in the human 
population, the logistic regression model can be set up as

 						             
(1)

		

	 Baseline prevalence of the disease in human population 

is . 
	 The odds 

 
ratios for genes, environmental factors, and 

gene-environment interactions are ORg = exp (βg), ORe = 
exp (βe) and ORge = exp (βge), respectively. ORg ( ORe) is 
the odds ratio of genetic factors (environmental factors) 
when the individual is not exposed to the environmental 
factors (susceptible genotype). When ORge = 1, there is 
no interaction between environmental factors and genetic 
factors. When ORge ≠ 1, the interaction of environmental 
factors and genetic factors exists. When ORge > 1 (ORge 
< 1), the environmental factors can promote (inhibit) 
the expression of susceptibility genes. In other words, 
genetic factors can increase (decrease) the susceptibility 
of the human body to environmental factors. The partial 
regression coefficient in the model can be used to explain 
the meaning of OR under different combinations.
	 In the logistic regression model for gene-gene 
interactions, the environment variable in equation (1) is 
replaced with one of the genotype variables. Otherwise, 
the principle is the same. 
	 Crossover analysis: The crossover analysis (Hosmer 
et al., 1992; Hallqvist et al., 1996; Garcia et al., 2008) 
is one of the most common methods to analyze the 
interaction between genes and environment in genetic 
epidemiological research. Information from case-control 
studies among populations, case-control studies with 
subjects’ parents, case-control studies with subjects’ 
siblings, and cohort studies can all be analyzed by 
crossover analysis for interactions between genes and 
environment. 
	 Table 1 shows the basic research units in a 2×4 
crossover analysis of the interaction between genes 
and environmental factors, indicating the four possible 
combinations formed by the two binary variables, genes 
(G) and environmental factors (E). The risk ratio of being 

exposed to both factors to being unexposed to either 
factor (odds ratio, OR) is labeled as ORge (abbreviated 
as A). The risk ratio of being exposed only to genes or 
environmental factors are respectively labeled as ORg and 
ORe (abbreviated as B and C, respectively). Patients who 
were not exposed to either factor, as well as the control 
group, are used as the common reference group (OR=1). 
	 Here, the combined effect of genes and environment 
includes not only the individual effect of genes and 
environment but also the superposition of the individual 
effect from these two types of factors (additive effect) and 
the multiplicative effect from genes and environment. By 
using different models, we can determine whether there 
are interactions between the two types of factors and the 
degree of these interactions.
	 In crossover analysis, because the existence of 
interaction is closely associated with the chosen model, 
the major parameters for interaction calculation based 
on the additive model proposed by Rothman include the 
following (Rothman, 2002).
	 Attributable proportion of interaction (API) is the 
most broadly used parameter to determine the existence of 
interactions between genes and environment. It indicates 
the proportion of total effects that can be attributed to 
the interaction of the two factors. It is calculated by the 
following formula:

                                			           (2)

	 API can reflect the percent of the total effect due to 
the interaction between genes (G) and environmental 
factors (E). If API ≠ 0, then an additive interaction exists 
between genes (G) and environmental factors (E), and the 
larger |API| is, the stronger the interaction between genes 
(G) and environmental factors (E). On the other hand, if 
API = 0, there is no interaction between genes (G) and 
environmental factors (E). 
	 Because API is an estimation of point values, 
hypothesis testing is needed to determine whether 
the interaction is statistically significant. The detailed 
procedure is as follows. 
	 Assuming that the null hypothesis is true (H0 : API = 
0), the statistical value for the interaction between genes 
and environment,
   		  T=S2/U	                                                     (3)
	 The T approximately follows the chi-square distribution 
(df=1), where
      	 s = (a3/b3 + a0/b0) - (a1/b1 + a2/b2)               (4)
 
                                     			            (5)

Ui = Var (ai/bi) = (ai/bi)
2 (ai + bi)/aibi (i = 0, 1, 2, 3)  (6)

	 If the statistics T=S2/U > χ1,0.05
2, then P < 0.05 , and the 

interaction between genes (G) and environmental factors 
(E) is considered to be statistically significant.
	 If the statistics T=S2/U < χ1,0.05

2, then P > 0.05, and the 
interaction between genes (G) and environmental factors 
(E) is not considered statistically significant.
	 Parameters of the multiplicative model ( ) 
reflect the ratio of the multiplicative interaction between 
genes and environment. When the ratio equals one, the 
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Table 1. 2×4 Crossover Analysis Table of the Interaction Between Genes and Environmental Factors
Genes (G)	         Environment (E)         Case     Control       		  OR	                       Meaning

Unexposed (-)	 Unexposed (-)	 a0	 b0		  1	 Common control
Exposed (+)	 Unexposed (-)	 a1	 b1	 ORg = B = a1b0/a0b1	 Effect of G alone
Unexposed (-)	 Exposed (+)	 a2	 b2	 ORe = C = a2b0/a0b2	 Effect of E alone
Exposed (+)	 Exposed (+)	 a3	 b3	 ORge = A = a3b0/a0b3	 Combined effect of G and E

Table 3. Crossover Analysis of the Interactions Between the Risk Factors for Colorectal Cancer
            Interaction term                         Case         Control           OR(95% CI)	               T                P             API          M

rs671	 age							     
	 -	 -	 251	 538	 1	 0.069 	 0.792 	 0.123 	 0.988 
	 +	 -	 20	 24	 1.786(0.969,3.294)				  
	 -	 +	 142	 212	 1.436(1.107,1.862)				  
	 +	 +	 13	 11	 2.533(1.119,5.733)				  
rs671	 Alcohol consumption							     
	 -	 -	 286	 599	 1	 0.424 	 0.515 	 0.729 	 3.160 
	 +	 -	 29	 34	 1.786(1.067,2.990)				  
	 -	 +	 107	 151	 1.484(1.116,1.973)				  
	 +	 +	 4	 1	 8.378(0.932,75.30)				  
rs671	 rs1329149							     
	 -	 -	 338	 701	 1	 0.001 	 0.981 	 0.018 	 0.727 
	 +	 -	 24	 31	 1.606(0.928,2.779)				  
	 -	 +	 44	 21	 4.148(2.446,7.033)				  
	 +	 +	 7	 3	 4.839(1.244,18.83)				  
rs1329149	 age							     
	 -	 -	 234	 526	 1	 0.858 	 0.354 	 0.427 	 1.367 
	 +	 -	 29	 18	 3.622(1.972,6.652)				  
	 -	 +	 132	 208	 1.427(1.092,1.863)				  
	 +	 +	 22	 7	 7.065(2.976,16.77)				  
rs1329149	 Alcohol consumption							     
	 -	 -	 268	 591	 1	 0.867 	 0.352 	 0.710 	 2.603 
	 +	 -	 38	 23	 3.643(2.128,6.237)				  
	 -	 +	 98	 143	 1.511(1.125,2.029)				  
	 +	 +	 13	 2	 14.334(3.212,63.97)				  
age	 Alcohol consumption							     
	 -	 -	 206	 453	 1	 0.971 	 0.324 	 0.248 	 1.233 
	 +	 -	 115	 183	 1.382(1.039,1.839)				  
	 -	 +	 69	 112	 1.355(0.962,1.908)				  
	 +	 +	 42	 40	 2.309(1.453,3.670)				  

Table 2. Logistic Stepwise Regression Analysis of the Influential Factors for Colorectal Cancer
Influential Factor	                   B	          S.E.	                 Wald	         P	              OR	       95% CI for OR	
						                                                                        Lower	            Upper

Age	 0.371 	 0.133 	 7.774 	 0.005 	 1.449 	 1.116 	 1.881 
rs671	 0.512 	 0.267 	 3.676 	 0.055†	 1.669 	 0.989 	 2.818 
rs1329149	 1.392 	 0.256 	 29.618 	 0.000 	 4.021 	 2.436 	 6.637 
Alcohol drinking	 0.496 	 0.148 	 11.233 	 0.001 	 1.642 	 1.229 	 2.194 
Constant	 -1.833 	 0.268 	 46.783 	 0.000 	 0.160 		
†The entry standard of variables in the logistic stepwise regression model is 0.10

two factors fit the multiplicative model and no interaction 
exists; a ratio greater than one indicates a positive 
interaction (synergistic effect of biological significance), 
whereas a ratio less than one indicates a negative 
interaction (antagonistic effect of biological significance). 

Analysis with addition of interaction terms in multivariate 
logistic regression model
	 The crossover analysis table can only analyze the 
interaction of two binary factors; the effects of the risk 
factors that are not involved in the crossover have not 
been taken into account. Therefore, it is necessary to 
combine crossover analysis with multivariate regression 
analysis (i.e., logistic regression analysis based on the 

multiplicative model) to obtain more reliable information. 
To achieve this combination, statistically significant 
interaction terms are added to the model obtained from 
multivariate logistic regression (Garcia et al., 2008), 
and the Akaike information criterion (AIC) statistics are 
applied to determine of the goodness of the model fitting. 
        		  AIC = -2InL + 2m                       (7)
	 Where -2InL is -2 fold of the natural logarithm of the 
likelihood function, and m is the number of covariates of 
the model in the regression equation.
	 Upon adding the interaction term to the original main 
effects model, the change (decrease) in the corresponding 
AIC compared to that from the original main effects model 
indicates that a multiplicative interaction may exist with 
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this interaction term, and it requires P value is less than 
0.05. That is, the best model is the one which minimizes 
the AIC, and there is no requirement for the models to be 
nested (Liddle, 2007).

Results 

	 First, genotype distribution was tested for the goodness 
of fit for the Hardy-Weinberg equilibrium. Except for gene 
rs915908, whose genotype distribution does not satisfy the 
Hardy-Weinberg law, the genotype distribution of all other 
13 genes matched the Hardy-Weinberg law (P>0.05), and 
the analysis results are consistent with those of previous 
findings.

Results of logistic regression analysis
	 The results of univariate analysis showed that 
gene rs671, rs1329149, age, and alcohol drinking 
correlate with the pathogenesis of colorectal cancer to 
a certain extent. We have introduced the factors that are 
statistically significant in the above univariate analysis into 
multivariate non-conditional logistic stepwise regression 
analysis. In this analysis, the groups with heterozygote GA 
and homozygote GG at locus rs671 were combined into 
one group (because these two groups had no statistically 
significant difference compared to the control group). The 
groups containing heterozygote TC and homozygote CC 
at locus rs1329149 were also combined into one group. At 
the level of , Forward LR analysis was applied to select 
variables, and the results are shown in Table 2. Gene 
rs671, rs1329149, age, and alcohol consumption correlate 
with the morbidity of colorectal cancer. Based on OR, all 
of these four factors are risk factors for the pathogenesis 
of colorectal cancer, which is consistent with results in 
the literature (Yang et al., 2009). Next, the interactions 
between these factors were analyzed by combining 
crossover analysis and logistic regression methods.
 
Results of crossover analysis
	 Using the crossover analysis, the above four risk 
factors were analyzed to determine whether additive 
interactions and multiplicative interactions were present. 
The results from the crossover analysis are shown in Table 
3.
	 The crossover analysis results shown in Table 3 
indicate that although the additive interactions between 
any two of the four risk factors are not statistically 
significance (P>0.05) by the χ2 test, the API (API>0) exist, 
which could suggest its biological significance. Moreover, 
the parameter of the multiplicative model, M, indicated 
that a multiplicative positive interaction may exist between 
these factors except for loci rs671 and rs1329149, rs671 
and age. The negative multiplicative interaction was 
found between these two loci (M=0.988<1, M=0.727<1). 
At the same time, the positive multiplicative interactions 
between rs671 and alcohol drinking (M=3.160) and 
between rs1329149 and alcohol drinking (M=2.603) may 
be stronger than others factors.

Results of crossover analysis-logistic regression analysis
	 The results of the addition of interaction terms to 

the multivariate logistic regression model are shown in 
Table 4. The corresponding AIC for the product terms of 
rs671*alcohol drinking and rs1329149*alcohol drinking 
decreased compared to that in the main effect model 
(Δ<0), while the corresponding AIC increased after 
introducing other interaction terms. This indicates that 
multiplicative interactions may exist between rs671 and 
alcohol consumption and between rs1329149 and alcohol 
consumption (P<0.05, a statistically significance), which 
is consistent with the results of the multiplicative model 
obtained from the above crossover analysis.
 
Discussion

Exploring the interactions among risk factors (gene-
environment) for complex diseases is central to the 
emerging field of genetic epidemiology, and is also 
an important topic in the etiological study of genetic 
epidemiology because the presence of such interactions 
and different interaction models has different public 
health significance in epidemiology (Mitchell et al., 
2000). Thus, study of gene-environment interactions for 
complex diseases is important for improving accuracy 
and precision in the assessment of both genetic and 
environmental influences. An understanding of gene-
environment interaction also has important implications 
for public health. It aids in predicting disease rates and 
provides a basis for well-informed recommendations for 
disease prevention (Ottman, 1996).

Through a case-control study with a large sample size, 
this study investigated the risk factors of colorectal cancer 
using several statistical methods. The gene loci rs671 and 
rs1329149, age and alcohol consumption were determined 
to be risk factors that have effects on the pathogenesis of 
colorectal cancer. The results showed that the population 
carrying homozygous AA at locus rs671 or homozygous 
TT at locus rs1329149, the population of old age, and the 
population who have unhealthy alcohol drinking habits are 
more susceptible to colorectal cancer. Further crossover 
analysis showed that the additive interactions among 
these four risk factors are not statistically significant as 
demonstrated by hypothesis testing (p>0.05). That is, 
although the additive interactions value (API) of the any 
two factors is relatively large, and the maximum API is 
0.729, but still did not show statistical significance. The 
reason may be due to fewer cases and controls with these 
factors, which result in too wide confidence interval and 
the instability efficiency combined effects of two factors, 
therefore we must further increase the sample size to 
overcome this problem. Logistic regression analysis, 

Table 4. The Impact of the Addition of the 
Multiplicative Interaction Model on the Multivariate 
Interaction term	                     AIC	       ∆	  χ2         P

Main effect model	 1463.931 		  55.381 	0.000 
rs671*age	 1463.931 	 0.000 	55.381 	0.000 
rs671*alcohol drinking	 1463.264 	 -0.667 	56.049 	0.000 
rs671* rs1329149	 1463.931 	 0.000 	55.381 	0.000 
rs1329149*age	 1465.535 	 1.604 	53.778 	0.000 
rs1329149*alcohol drinking	 1462.560 	 -1.371 	56.752 	0.000 
age* alcohol drinking	 1463.959 	 0.028 	55.353 	0.000 
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however, did not show an additive interaction among these 
factors. Although there is no multiplicative interaction 
between gene loci rs1329149 and rs671 (M=0.727<1), 
a possible multiplicative interaction exists among all 
other factors. In addition, the multiplicative interactions 
between rs671 and alcohol drinking (M=3.160) and 
between rs1329149 and alcohol drinking (M=2.603) 
may be stronger than others factors. Multivariate logistic 
regression analysis further confirmed the multiplicative 
interactions between gene locus rs671, rs1329149 and 
alcohol consumption. These results demonstrated that 
gene loci rs671 and rs1329149 synergize with alcohol 
consumption in the pathogenesis and development of 
colorectal cancer.

Although the logistic regression (Hosmer et al., 1990) 
is a common method used to analyze the interaction 
among categorical variables, it can statistically deduce the 
interaction effect in a multiplicative model of independent 
variables, it cannot be used to determine the interaction 
effect in an additive model of independent variables. 
Fortunately, as a basic analysis method in case-control 
study in epidemiology, the crossover analysis has some 
obvious advantages of explicit theoretical significance, 
abundant information, straightforward and simple 
calculation, and stable performance compared to the 
other methods (stratified analysis, chi-square test, logistic 
regression, the logarithmic linear model, and generalized 
relative risk model, etc.). Firstly, the crossover analysis 
table can intuitively and visually presents the vast majority 
information of the basic unit in epidemiology, which 
provides us with a more broad judgment and insight. 
Secondly, by using the crossover analysis to analyze the 
interaction between two given factors, we obtained not 
only the major effects of genes and environmental factors 
but also the interaction effects based on different models 
(additive models and multiplicative models). Namely, by 
virtue of different models, the existence and the degree 
of interactions between two factors can be determined. 
Thirdly, the biggest advantage of the crossover analysis 
is that it not only can analyze multiplicative interaction 
of genes and environmental factors, but also can analyze 
the additive interaction. Finally, the crossover analysis 
is widely applied to analyze genes and environment 
interactions in group case-control study, matched case 
control study, case-parent control study, case-sibling 
control study, cohort study.

However, the statistical test method of crossover 
analysis itself has some limitations and needs to be further 
improved. If the interaction of more than two factors 
is to be analyzed, multiple stratifications are required. 
Under such conditions, the sample size of patients and 
the controls in stratifications may be very small or even 
zero, and the calculation becomes very complicated. 
More importantly, the crossover analysis does not take 
into account of the effect of factors that are not involved 
in the interaction terms on this interaction. Given this 
problem, interaction terms between every two risk factors 
are considered to be added on the basis of the selected 
covariate vector in the multivariate logistic regression 
model, which can balance the effect of other factors on 
the interaction. In addition, when the interaction between 

genes and environmental factors is studied, the analysis of 
this interaction may be distorted if there are confounding 
factors. In this situation, these confounding factors should 
be controlled for before crossover analysis so that the final 
result reflects the real degree of interaction. Therefore, we 
should combine the crossover analysis and multivariate 
logistic regression method for the analysis of practical 
problems in order to obtain more extensive and reasonable 
information.

Higher order interactions between genes and 
environment cannot be completely addressed by either 
logistic regression or crossover analysis. Currently, 
many researchers are proposing other methods, such as 
multifactor dimensionality reduction (Hahn et al., 2003), 
which is a powerful alternative to traditional parametric 
statistics such as logistic regression and may process the 
higher order data better (Wu et al., 2011). The neural 
network method has unique advantages in processing the 
interaction between genes and environment (Günther et al., 
2009). In particular, the genome-wide association study 
of susceptibility genes for complex diseases is currently 
a hot research area, and many new breakthroughs were 
obtained in the area (Elbers et al., 2009; Roukos, 2009). 
In the future, based on this study, we will further explore 
these methods from the aspects of their algorithms and 
theories and apply our study to practical data processing.

In this paper, we obtained a comprehensive set of 
gene and environment (gene) interactions for colorectal 
cancer in Chongqing of China by using the method based 
on crossover analysis-logistic regression. Our work may 
have value for both clinical medicine and preventive 
medicine research. In conclusion, the method based on 
crossover analysis-logistic regression is successful in 
assessing additive and multiplicative interactions of gene-
environment, and in revealing the synergistic effects of 
gene loci rs671 and rs1329149 with alcohol consumption 
in the pathogenesis and development of colorectal cancer.
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