RESEARCH ARTICLE

Association Between XPD Asp312Asn Polymorphism and Esophageal Cancer Susceptibility: A Meta-analysis

Xiao-Li Duan^{1&}, Heng Gong^{2&}, Xian-Tao Zeng^{3*}, Xiao-Bing Ni³, Yan Yan³, Wen Chen⁴, Guo-Lei Liu²

Abstract

<u>Objective</u>: To investigate the association between xeroderma pigmentosum group D (XPD) Asp312Asn polymorphism and esophageal cancer (EC) susceptibility by meta-analysis. <u>Methods</u>: We searched PubMed up to April 9th, 2012, to identify relevant papers, and 8 published case-control studies including 2165 EC patients and 3141 healthy controls were yielded. Odds ratios (ORs) with relevant 95% confidence intervals (CIs) were applied to assess the association between XPD Asp312Asn polymorphism and EC susceptibility with the Comprehensive Meta-Analysis software, version 2.2. <u>Results</u>: Overall, the meta-analysis results suggested the XPD Asp312Asn polymorphism to be significantly associated with EC susceptibility [(Asn/Asn+Asp/Asn) vs. Asp/Asp: OR=1.20, 95% CI=1.05-1.36, p=0.01; and Asp/Asn vs. Asp/Asp: OR= 1.15, 95% CI =1.01-1.31, p=0.04]. In the subgroup analysis by ethnicity and cancer type, significantly associations were found for Caucasian populations [(Asn/Asn+Asp/Asn) vs. Asp/Asp: OR=1.26, 95% CI =1.08-1.47, p<0.001; Asp/Asn vs. Asp/Asp: OR=1.19, 95% CI =1.02-1.40, p=0.03] and esophageal squamous cell carcinoma [(Asn/Asn+Asp/Asn) vs. Asp/Asp: OR=1.19, 95% CI=1.01-1.41, p=0.04]. There was no heterogeneity and no publication bias existed. <u>Conclusions</u>: This meta-analysis shows that the XPD Asp312Asn polymorphism may be a risk factor for developing EC, especially for Caucasian populations and esophageal squamous cell carcinoma.

Keywords: XPD - excision repair - polymorphism - esophageal cancer - susceptibility - meta-analysis

Asian Pacific J Cancer Prev, 13, 3299-3303

Introduction

Esophageal cancer (EC) is one of the most common malignant diseases in an area that stretches from the Caucasian mountains to northern China, it is ranked as the eighth most common malignancy and the sixth most common cancer mortality worldwide (Umar et al., 2008). According to histopathology, EC can be major classified into esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EADC), higher incidence rate of EAC occurs in Western countries, while ESCC appears more oftenly in oriental countries (Brown et al., 2008; Szumilo, 2009; Zheng et al., 2010). Up to now, the cause and pathogenesis for EC are still unknown, several lifestyle risk factors including exposed to tobacco, alcohol, obesity, and dietary factors have been identified (Vaughan et al., 1995; Mayne et al., 2001). Molecular researches provide genetic alteration is a novel risk factor of EC, that make individual more sensitive to carcinogen exposure (Lea et al., 2007). The genetic alteration s include aberrant cell cycle control, DNA repair, cellular enzymes, growth factor receptors, and nuclear receptors (Xu, 2009). Decreased efficiency of DNA repair is

considered as a crucial role in carcinogenesis, as such defects accelerate genetic instability and the rate of genetic change (Hoeijmakers, 2001; Wood et al., 2001). The xeroderma pigmentosum group D (XPD) enzyme plays an important role in the repair of bulky DNA adducts, such as pyrimidine dimmers, photoproducts and cross-links (Hoeijmakers, 2001).

The XPD gene now also named excision repair cross-complementing group 2 (ERCC2) gene, that maps to chromosome 19q13.3 and is composed of 23 exons. The XPD enzyme is 761 amino acids in length, has fuction of nucleotide excision repair pathway. Mutations in the XPD gene can result in three different disorders: xeroderma pigmentosum, trichothiodystrophy, and Cockayne syndrome (Cleaver et al., 1999). Several singlenucleotide polymorphisms (SNPs) have been identified in the XPD gene, Asp312Asn (rs1799793) and Lys751Gln (rs13181) are commonly found and result in amino acid changes (Shen et al., 1998). Currently, there are many molecular epidemiological studies have explored the association between XPD Asp312Asn and and Lys751Gln polymorphism and EC susceptibility. Two meta-analyses focused on XPD Lys751Gln polymorphism and EC risk

¹Department of Digestion Medcine, ²Department of Otolaryngology, ³Department of Stomatology, ⁴Department of Medical Imaging, Taihe Hospital, Hubei University of Medcine, Shiyan, Hubei Province, China [&]Equal contributors *For correspondence: zengxiantao1128@163.com

Xiao-Li Duan et al

suggested that it may be associated with increased risk of EADC (Yuan et al., 2011), or may be a potential biomarker of EC susceptibility in Chinese populations (Ding et al., 2012). However, XPD Asp312Asn polymorphism and EC susceptibility of the relevant studies are still controversial rather than conclusive. Therefore, we performed this meta-analysis of eight published eligible studies, follow the proposed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) (Moher et al., 2009) guidelines, to derive a more precise estimation of the XPD Asp312Asn polymorphism and EC susceptibility

Materials and Methods

Literatures search

Initially we identified relevant studies which tested the association between XPD Asp312Asn polymorphism and EC susceptibility by searching the PubMed (up to April 9th, 2012), using the following search terms: ("ERCC2" or "XPD" or "xeroderma pigmentosum group D" or "excision repair cross-complementing group 2" or "DNA repair gene") and ("esophageal" or "esophagus"). No restrictions were imposed, and the bibliographies of the included studies were checked for other relevant publications.

Study selection

Two authors independently evaluated the eligibility of all studies retrieved from the database according to the following criteria: (1) case-control study design; (2) investigated the association between XPD Asp312Asn polymorphism and EC susceptibility; (3) diagnosis of ESCC and EAC were either histologically, pathologically or cytologically confirmed; (4) the odds ratios (OR) and the corresponding 95% confidence intervals (CIs), or the number of events that can calculate them reported. Disagreements were resolved by discussion.

Data extraction

Two authors independently extracted data from all eligible publications as follow: first author's last name, year of publication, site of origin, characteristics of cancer cases, source of controls, matching criteria, number of cases and controls, number of different genotypes in cases and controls, Hardy-Weinberg equilibrium (HWE), and minor allele frequency in controls. When study included subjects of more than one cancer types, genotype data was extracted separately for subgroup analysis. Any disagreements were resolved by consensus.

Statistical analysis

We computed a pooled OR and 95% CI for the risk allele by using the Comprehensive Meta-Analysis software, version 2.2 (Biostat, Englewood, New Jersey) (Borenstein et al., 2005) to generate forest plots, so as to determine whether there was a statistical association between cases and controls and to assess heterogeneity of the included studies. HWE was tested by chi-square test at a significant level of p < 0.05. Heterogeneity was evaluated by using the Cochran's Q statistic (Higgins et al., 2002) and the I² statistic, I² statistic yields results ranged

from 0 to 100% (I²=0-25%, no heterogeneity; I²=25-50%, moderate heterogeneity; I²=50-75%, large heterogeneity; and I²=75-100%, extreme heterogeneity) (Higgins et al., 2003). If heterogeneity existed, the random effects model was used, otherwise, the fixed effects model was used. In addition, we investigated the influence of a single study to the overall risk estimate by removal each study in turn, and to test the robustness of the main results, subgroup analysis was also conducted if significant heterogeneity is identified. If possible, potential publication bias was assessed by visual inspection of the funnel plots and the Egger weighted regression method (P < 0.05 was considered representative of statistical significance) (Egger et al., 1997).

Results

Study identification

Of the 45 records found initially, 8 case-control studies were included for this meta-analysis (Xing et al., 2002; Xing et al., 2003; Yu et al., 2004; Ye et al., 2006; Liu et al., 2007; Tse et al., 2008; Pan et al., 2009; Huang et al., 2012). A detailed flowchart of the selection process was showed in Figure 1.

Study characteristics

Table 1 presents major characteristics of the 8 studies. All the stidues' informations were available. The subjects form 135 to 433 in case group while 152 to 524 in control group, comprising 2165 cases and 3141 controls. Four studies were conducted in China (Xing et al., 2002; Xing et al., 2003; Yu et al., 2004; Huang et al., 2012), three in the USA (Liu et al., 2007; Tse et al., 2008; Pan et al., 2009), and one in Sweden (Ye et al., 2006). In terms of source of control, all had a well matched, two was form hosptial-based (HB) (Yu et al., 2004; Huang et al., 2012), and 6 were population-based (PB) (Xing et al., 2002; Xing et al., 2003; Ye et al., 2006; Liu et al., 2007; Tse et al., 2008; Pan et al., 2009). The cancer type of 4 were ESCC (Xing et al., 2002; Xing et al., 2003; Yu et al., 2004; Huang et al., 2012), two were EADC (Liu et al., 2007; Tse et al., 2008), and 2 were both (Ye et al., 2006; Pan et al., 2009). The genotyping methods including PCR-RFLP (5 studies) (Xing et al., 2003; Yu et al., 2004; Ye et al., 2006; Liu et

Figure 1. Flow Diagram of the Study Selection Process

Table 1. Characteristics of Case-control Studies on XPD Asp312Asn Polymorphism and Esophageal Cancer Susceptibility Included in the Meta-analysis

Reference	Country	Ethnicity	Control	Sample size Cancer				Geno	otype dis	stribution	100nOtyping	p for		
			source	Case	Control	type		Case			ontrol	method	6.3 WE	10.1
							Asp/Asp	Asp/As	n Asn/As	n Asp/As	p Asp/As	sn Asn/Asn		
Xing 2002	China	Asia	PB	433	524	ESCC	381	49	3	461	62	1 PCR	0.47	
Xing 2003	China	Asia	PB	325	383	ESCC	286	38	1	338	45	0 PCR-RFL	P_0.22	46.8
Yu 2004	China	Asia	HB	135	152	ESCC	121	14	0	136	16	0 PCR-RFL	.P °0.4 9	
Ye 2006	Sweden	Caucasian	PB	96	472	EADC	31	51	14	176	237	57 50<u>P</u>0 R-RFL	P 0.09	
				81		ESCC	30	41	10					
Liu 2007	USA	Caucasian	PB	183	336	EADC	75	92	16	144	160	32 PCR-RFL	P 0.19	
Tse 2008	USA	Caucasian	PB	312	454	EADC	117	150	43	199	206	49 Taqman	0.69	
Pan 2009	USA	Caucasian	PB	44	462	EADC	16	20	1	201	185	48 25TQ qman	0.58	
				343		ESCC	137	163	43	201	185	48	31 3	38.0
Huang 201	2 China	Asia	HB	213	358	ESCC	171	42	0	298	60	0 PCR-RFL	P 0.08	

Table 2. Summary ORs and 95% CI of XPD Asp312Asn Polymorphism and Esophageal Cancer Susceptibility

Group and N	No. c	of Asn/Asn vs. Asp/Asp			Asp/Asn vs. Asp/Asp					Asn+A	sp/Asn) vs. Asp/	Asp	Asn/Asn vs. (Asp/Asp+Asp				
subgroups	trails	Heter	ogeneit	y Meta-anal	ysis	Hete	terogeneity Meta-analysis Heterogeneity Meta-analysis Heterogeneity Meta- I ² p OR (95%CI) P' I ² p OR (95%CI) P' P' I ² p OR (95%CI) P' I ² p OR (95%CI) P' P' I ² p OR (95%CI) P' I ² p OR (9	ity Meta-anky	/sis								
		I^2	р	OR (95%CI)	p'	I ²	р	OR (95%CI)	P'	I^2	р	OR (95%CI)	Р'	I^2	р	OR (95%C	Р'
Total	10	0	0.66	1.27(0.99-1.64)	0.06	0	0.97	1.15(1.01-1.31)	0.04	0	0.70	1.20(1.05-1.36)	0.01	0	0.60	1.17(0.93-1.49	0.18
Ethnicity																甘	
Asia	4	0	0.99	3.60(0.57-22.92)	0.17	0	0.83	1.06(0.84-1.34)	0.63	0	0.91	1.06(0.84-1.34)	0.61	0	0.99	3.61(0.57-23.00	0.17
Caucasian	6	0	0.58	1.25(0.97-1.21)	0.09	0	0.93	1.19(1.02-1.40)	0.03	0	0.49	1.26(1.08-1.47)	< 0.00	1 0	0.54	1.15(0.91-1.46	0.24
Control sour	ce															Š	
HB	2	NA				0	0.58	1.19(0.81-1.73)	0.38	0	0.63	1.16(0.79-1.69)	0.45	NA		ŭ	
PB	8	0	0.66	1.27(0.99-1.64)	0.06	0	0.92	1.14(0.99-1.32)	0.06	0	0.52	1.20(1.05-1.38)	0.01	0	0.60	1.17(0.93-1.490	0.18
Cancer type																<u> </u>	
ESCC	0	0	0.68	1.29(0.87-1.91)	0.20	0	0.80	1.12(0.94-1.33)	0.21	0	0.54	1.19(1.01-1.41)	0.04	0	0.67	1.23(0.85-1.77	0.27
EADC	4	14.29	0.32	1.26(0.90-1.75)	0.18	0	0.95	1.19(0.97-1.46)	0.09	0	0.50	1.21(0.99-1.47)	0.06	22.80	0.27	1.14(0.84-1.55	0.41
Genotyping	method	l														Ž	
PCR	1	0	1.00	3.63(0.38-35.04)	0.27	0	1.00	0.98(0.66-1.45)	0.91	0	1.00	1.00(0.68-1.48)	0.99	0	1.00	3.65(0.38-35.20)	0.26
PCR-RFLP	6	0	0.77	1.13(0.76-1.70)	0.55	0	0.97	1.09(0.90-1.32)	0.38	0	0.81	1.14(0.95-1.38)	0.17	0	0.80	1.07(0.74-1.56)	0.72
Tagman	3	24.83	0.26	1.34(0.97-1.86)	0.08	0	0.96	1.27(1.04-1.57)	0.02	8.4	0.34	1.32(1.08-1.60)	0.01	38.37	0.20	1.22(0.90-1.66)	0.19

	Caner type	Genetic model	Statistics for each study						
			Odds ratio	Lower	Upper limit	Z-Value	p-Value		
ing 2002	ESCC	Asn/Asn+Asp/Asn vs. Asp/Asp	1.00	0.68	1.48	-0.01	0.99		
King 2003	ESCC	Asn/Asn+Asp/Asn vs. Asp/Asp	1.02	0.65	1.62	0.10	0.92		
u 2004	ESCC	Asn/Asn+Asp/Asn vs. Asp/Asp	0.98	0.46	2.10	-0.04	0.97		
e 2006	EADC	Asn/Asn+Asp/Asn vs. Asp/Asp	1.55	0.96	2.51	1.77	0.08		
2006	ESCC	Asn/Asn+Asp/Asn vs. Asp/Asp	1.03	0.63	1.68	0.12	0.91		
u 2007	EADC	Asn/Asn+Asp/Asn vs. Asp/Asp	1.08	0.75	1.56	0.41	0.68		
e 2008	EADC	Asn/Asn+Asp/Asn vs. Asp/Asp	1.27	0.94	1.70	1.57	0.12		
an 2009	EADC	Asn/Asn+Asp/Asn vs. Asp/Asp	0.90	0.48	1.67	-0.34	0.73		
an 2009	ESCC	Asn/Asn+Asp/Asn vs. Asp/Asp	1.48	1.11	1.96	2.71	0.01		
uang 2012	ESCC	Asn/Asn+Asp/Asn vs. Asp/Asp	1.22	0.79	1.89	0.89	0.37		
			1.20	1.05	1.36	2.77	0.01		

Figure 2. ORs of Esophageal Cancer Susceptibility Associated with XPD Asp312Asn Polymorphism for the (Asn/Asn + Asp/Asn) vs. Asp/Asp Model. ESCC, Esophageal Squamous Cell Carcinoma; EADC, Esophageal Adenocarcinoma

al., 2007; Huang et al., 2012), TaqMan (2 studies) (Tse et al., 2008; Pan et al., 2009), and PCR (one study) (Xing et al., 2002). The genotype distributions in the controls of all 8 studies were in accordance with HWE.

Meta-analyses

Table 2 showed the main results and the heterogeneity test of meta-analyses in the total population. Overall, there was no substantial heterogeneity existed that all the genetic models used the fixed-effect models. We found a significant association of XPD Asp312Asn polymorphism with EC susceptibility for the dominant comparison [(Asn/Asn+Asp/Asn) vs.Asp/Asp: OR=1.20,95%CI=1.05-1.36, p=0.01, Figure 2] and borderline significantly increased risk was found in heterozygote comparison (Asp/Asn vs. Asp/Asp: OR= 1.15, 95%CI =1.01-1.31, p=0.04).

				o monoux	yrenoveu	-	Code ratio (95% Cr) with study removed
		Point	Lower limit	Upper limit	Z-Value	p-Value	
ESOC	Asn/Asn+Asp/Asn vs. Asp/Asp	1.22	1.07	1.40	2.93	0.00	I
ESOC	Asn/Asn+Asp/Asn vs. Asp/Asp	1.21	1.06	1.39	2.85	0.00	-0-
ESOC	Asn/Asn+Asp/Asn vs. Asp/Asp	1.21	1.06	1.37	2.81	0.00	
EADC	Asn/Asn+Asp/Asn vs. Asp/Asp	1.18	1.03	1.34	2.38	0.02	
ESOC	Asn/Asn+Asp/Asn vs. Asp/Asp	1.21	1.06	1.38	2.83	0.00	
EADC	Asn/Asn+Asp/Asn vs. Asp/Asp	1.22	1.06	1.39	2.80	0.01	-0-
EADC	Asn/Asn+Asp/Asn vs. Asp/Asp	1.18	1.03	1.36	2.31	0.02	
EADC	Asn/Asn+Asp/Asn vs. Asp/Asp	1.21	1.06	1.38	2.90	0.00	-0-
ESOC	Asn/Asn+Asp/Asn vs. Asp/Asp	1.13	0.98	1.31	1.73	0.08	+0-
ESOC	Asn/Asn+Asp/Asn vs. Asp/Asp	1.20	1.05	1.37	2.62	0.01	
		1.20	1.05	1.36	2.77	0.01	
	ISOC ISOC SADC SADC SADC SADC EADC EADC ESOC ESOC	SSC Anhan-Aqu/han Aqu/Aqu Anhan-Aqu/han Aqu/Aqu SSC Anhan-Aqu/han Aqu/Aqu Anhan-Aqu/han Aqu/han Aqu/han-Aqu/han Aqu/han Aqu/han-Aqu/han Aqu/han Anhan-Aqu/han Aqu/han Aqu/han Anhan-Aqu/han Aqu/han Aqu/han Anhan-Aqu/han Aqu/han Aqu/han Anhan-Aqu/han Aqu/han Aqu/han Aqu/han Aqu/han Anhan-Aqu/han Aqu/han Aqu/han Anhan-Aqu/han Aqu/han Aqu/han Anhan-Aqu/han Aqu/han Aqu/han Anhan-Aqu/han Aqu/han Aqu	SSCC Ashrkan-keylikan kapilkap 122 SSC Ashrkan-keylikan kapilkap 121 SSC Ashrkan-keylikan kapilkap 131 SSC Ashrkan-keylikan kapilkap 132 SSC Ashrkan-keylikan kapilkap 132	SSCC Aan/Aan-Aap/Aan vs. Aap/Aap 1.2 1.07 SSCC Aan/Aan-Aap/Aan vs. Aap/Aap 1.21 1.06 SSCC Aan/Aan-Map/Aan vs. Aap/Aap 1.21 1.08 SSCC Aan/Aan-Map/Aan vs. Aap/Aap 1.20 1.05 1.20	SSCC Asn/kan-Kap/kan a, Asp/Aga 122 107 1.40 SSCC An/kan-Kap/kan a, Asp/Aga 121 108 1.50 SSCC An/kan-Kap/kan a, Asp/Aga 121 108 1.37 SSCC An/kan-Kap/kan a, Asp/Aga 18 1.03 1.37 SSCC An/kan-Kap/kan a, Asp/Aga 1.21 10.61 1.37 SSCC An/kan-Kap/kan a, Asp/Aga 1.21 10.61 1.37 SSCC An/kan-Kap/kan a, Asp/Aga 1.21 10.61 1.37 SCC An/kan-Kap/kan a, Asp/Aga 1.22 1.06 1.38 SCC An/kan-Kap/kan a, Asp/Aga 1.21 1.06 1.38 SCC An/kan-Kap/kan a, Asp/Aga 1.21 1.06 1.38 SCC An/kan-Kap/kan a, Asp/Aga 1.31 1.03 1.38 SCC An/kan-Kap/kan a, Asp/Aga 1.32 1.05 1.37 SCC An/kan-Kap/kan a, Asp/Aga 1.30 1.31 1.32 SCC An/kan-Kap/kan a, Asp/Aga 1.32 <	SSCC Aan/Nasn-AlagAhan kagAhan 122 1.07 1.40 2.53 SSCA Aan/Nasn-AlagAhan kagAhan 121 1.08 1.37 2.81 SSCC Aan/Nasn-AlagAhan kagAhan 121 1.08 1.37 2.81 SSCC Aan/Nasn-NagAhan kagAhan 121 1.08 1.37 2.81 SSCC Aan/Nasn-NagAhan kagAhan 121 1.08 1.38 2.83 SSCC Aan/Nasn-NagAhan kagAhan 121 1.08 1.38 2.83 SSCC Aan/Nasn-NagAhan kagAhan 121 1.08 1.33 2.31 SSCC Aan/Nasn-NagAhan kagAhan 121 1.08 1.33 2.50 SSCC Aan/Nasn-NagAhan kagAhan 121 1.08 1.31 1.73 2.52 SSCC Aan/Nasn-NagAhan kagAhan 121 1.08 1.31 1.73 2.52 SSCC Aan/Nasn-NagAhan kagAhan 121 1.08 1.03 1.73 2.52 SSCC Aan/Nasn-NagAhan kagAhan 121 1.05 1.36 2.77	SSCC AarnNexn-AspArten va AspArke 122 107 140 233 0.00 SSCC AarnNexn-AspArten va AspArke 122 107 1.40 2.53 0.00 SSCC AarnNexn-AspArten va AspArke 121 106 1.37 2.81 0.00 SSCC AarnNexn-AspArten va AspArke 1.18 1.00 1.37 2.81 0.00 SSCC AarnNexn-AspArten va AspArke 1.18 1.00 1.37 2.81 0.00 SSCC AarnNexn-AspArten va AspArke 1.21 1.00 1.38 2.83 0.00 SSCC AarnNexn-AspArten va AspArke 1.21 1.00 1.38 2.81 0.01 SSCC AarnNexn-AspArten va AspArke 1.21 1.00 1.38 2.30 0.01 SSCC AarnNexn-AspArten va AspArke 1.21 1.00 1.38 2.30 0.02 SSCC AarnNexn-AspArten va AspArke 1.31 1.03 1.35 2.37 0.00 SSCC AarnNexn-AspArken va AspArke

Figure 3. Sensitivity Analysis Through Omitting one Study Each Time to Reflect the Influence of the Individual Dataset to the Pooled ORs in (Asn/Asn + Asp/Asn) vs. Asp/Asp Model Model. ESCC, Esophageal Squamous Cell Carcinoma; EADC, Esophageal Adenocarcinoma

However, such associations were not found in other comparisons [Asn/Asn vs. Asp/Asp: OR=1.27, 95%CI =0.99-1.64, p= 0.06; Asn/Asn vs. (Asp/Asp+Asp/Asn): OR=1.17, 95%CI=0.93-1.49, p=0.18].

Subgroup and sensitivity analyses

In the stratified analysis by ethnicity, we only found a weak association of XPD Asp312Asn polymorphism with EC suspectibility in Caucasian populations [(Asn/ Asn+Asp/Asn) vs. Asp/Asp: OR=1.26, 95%CI =1.08-1.47, p<0.001; Asp/Asn vs. Asp/Asp: OR=1.19, 95%CI =1.02-1.40, p=0.03], but not in Asian populations. The similar association was also found in genetyping method of Taqman [(Asn/Asn+Asp/Asn) vs. Asp/Asp: OR=1.32, 95%CI =1.08-1.60, p=0.01; Asp/Asn vs. Asp/Asp: OR =1.27, 95%CI =1.04-1.57, p=0.02]. When stratified

Asian Pacific Journal of Cancer Prevention, Vol 13, 2012 3301

Figure 4. Funnel Plot Analysis to Detect Publication Bias for or the (Asn/Asn + Asp/Asn) vs. Asp/Asp Genotype. Each point represents a separate study for the indicated association

by control source and cancer type, we only detected a significant association for the dominant comparison of population-based [(Asn/Asn+Asp/Asn) vs. Asp/Asp: OR=1.20, 95%CI= 1.05-1.38, p=0.01] and ESCC [(Asn/Asn+Asp/Asn) vs. Asp/Asp: OR=1.19, 95%CI= 1.01-1.41, p=0.04]. The pooled ORs along with their 95%CIs are presented in detail in Table 2.

Sensitivity analysis was carried out by omitting each study included in the meta-analysis each turn and the results in any genetic model were not materially altered (Figure 3 showed the result for the dominant model), that indicated the results were statistically robust.

Publication bias

Funnel plot and the Egger's test were performed to assess possible publication bias. The funnel plot for the the dominant genetic model (Asn/Asn+Asp/Asn) vs. Asp/Asp showed that no publication bias was detected (Figure 4), this was also confirmed by the results of Egger's test [for Asn/Asn vs. Asp/Asp: p=0.83; for Asp/Asn vs. Asp/Asp: p=0.26; for (Asn/Asn+Asp/Asn) vs. Asp/Asp: p=0.09; and for Asn/Asn vs. (Asp/Asp+Asp/Asn): p=0.83]

Discussion

Currently, genetic susceptibility to cancer has absorbed growing attention to the study of gene polymorphisms involved in carcinogenesis. The XPD gene has been mapped to chromosome 19q13.3 and it is composed of 23 exons, and the XPD protein is involved in transcriptioncoupled nucleotide excision repair and is an integral member of the basal transcription factor BTF2/TFIIH complex. The Asp to Asn change at position 312 of XPD changes the electronic configuration of amino acid and alters the interaction between XPD protein and its helicase activator (Coin et al., 1998). To date, a lot of epidemiological studies have been performed to explore the role of XPD Asp312Asn polymorphism on EC susceptibility, but the results remain controversial. In order to obtain a more precise estimation of association, we pooled the results of the 8 eligible case-control studies in this meta-analysis, including 2165 cases and 3141 controls.

The results showed that for the XPD Asp312Asn polymorphism, individuals carrying the variant homozygote Asn/Asn had an increased risk to EC **3302** Asian Pacific Journal of Cancer Prevention, Vol 13, 2012

susceptibility in total populations. In the subgroup analysis based on ethnicities, a significant associations were found under the dominant model, suggesting that XPD Asp312Asn polymorphism play similar roles in Caucasian populations, that indicated ethnic difference in genetic background and the environment they lived in may play a possible role of EC suspectibility. When stratified by cancer type, a borderline associations was also found under the dominant model for ESCC, but not for EADC, worthy of note, this was reversed compared to XPD Lys751Gln polymorphism (Yuan et al., 2011).

There are some limitations in our meta-analysis should be addressed. Firstly, some studies on this association were adjusted by some conventional risk factors such as tobacco, alcohol, and lifestyle, however, our results were based on unadjusted estimates, and lack of original data from the eligible studies limited the evaluation of the effects of the gene-gene and geneenvironment interactions in EC development. Secondly, this meta-analysis based on a rather limited number of studies, and the sample size was still relatively small, thus we did not obtain enough evidence to detect the real association between XPD Asp/Asn polymorphism and EC susceptibility. Finally, it is well known that each gene has only a moderate effect on EC development, so the XPD gene may influence susceptibility of EC with other genes, but we did not have enough data to conduct this interactions analysis. In spite of these limitations, no heterogeneity and publication bias were detected, and a large number of subjects still significantly guarantee the statistical power of this meta-analysis.

In conclusion, our meta-analysis suggested that XPD Asp312Asn polymorphism may contribute to EC susceptibility, especially to ESCC susceptibility. In addition, well designed large-scale case-control studies are suggested in order to further enrich the present findings.

Acknowledgements

Funding This work was partly supported by grants from the Foundation of Hubei University of Medcine (2011 CZX01), without commercial or for-profit organs. No additional external funding received for this study.

References

- Borenstein M, Hedges L, Rothstein H (2005) Comprehensive Meta-analysis. Version 2 ed. *Biostat, Englewood, New Jersey.*
- Brown LM, Devesa SS, Chow WH (2008). Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age. *J Natl Cancer Inst*, **100**, 1184-7.
- Cleaver JE, Thompson LH, Richardson AS, et al (1999). A summary of mutations in the UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. *Hum Mutat*, **14**, 9-22.
- Coin F, Marinoni JC, Rodolfo C, et al (1998). Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. *Nat Genet*, **20**, 184-8.
- Ding DP, Ma WL, He XF, et al (2012). XPD Lys751Gln polymorphism and esophageal cancer susceptibility: a meta-

DOI:http://dx.doi.org/10.7314/APJCP.2012.13.7.3299 XPD Asp312Asn Polymorphism and Esophageal Cancer Susceptibility: A Meta-analysis

analysis of case-control studies. Mol Biol Rep, 39, 2533-40.

- Egger M, Davey Smith G, Schneider M, et al (1997). Bias in meta-analysis detected by a simple, graphical test. *BMJ*, **315**, 629-34.
- Higgins JP, Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. *Stat Med*, **21**, 1539-58.
- Higgins JP, Thompson SG, Deeks JJ, et al (2003). Measuring inconsistency in meta-analyses. *BMJ*, **327**, 557-60.
- Hoeijmakers JH (2001). Genome maintenance mechanisms for preventing cancer. *Nature*, **411**, 366-74.
- Huang CG, Liu T, Lv GD, et al (2012). Analysis of XPD genetic polymorphisms of esophageal squamous cell carcinoma in a population of Yili Prefecture, in Xinjiang, China. *Mol Biol Rep*, **39**, 709-14.
- Lea IA, Jackson MA, Li X, et al (2007). Genetic pathways and mutation profiles of human cancers: site- and exposurespecific patterns. *Carcinogenesis*, **28**, 1851-8.
- Liu G, Zhou W, Yeap BY, et al (2007). XRCC1 and XPD polymorphisms and esophageal adenocarcinoma risk. *Carcinogenesis*, **28**, 1254-8.
- Mayne ST, Risch HA, Dubrow R, et al (2001). Nutrient intake and risk of subtypes of esophageal and gastric cancer. *Cancer Epidemiol Biomarkers Prev*, **10**, 1055-62.
- Moher D, Liberati A, Tetzlaff J, et al (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ*, **339**, b2535.
- Pan J, Lin J, Izzo JG, et al (2009). Genetic susceptibility to esophageal cancer: the role of the nucleotide excision repair pathway. *Carcinogenesis*, **30**, 785-92.
- Shen MR, Jones IM, Mohrenweiser H (1998). Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. *Cancer Res*, 58, 604-8.
- Szumilo J (2009). Epidemiology and risk factors of the esophageal squamous cell carcinoma. *Pol Merkur Lekarski*, **26**, 82-5.
- Tse D, Zhai R, Zhou W, et al (2008). Polymorphisms of the NER pathway genes, ERCC1 and XPD are associated with esophageal adenocarcinoma risk. *Cancer Causes Control*, 19, 1077-83.
- Umar SB, Fleischer DE (2008). Esophageal cancer: epidemiology, pathogenesis and prevention. *Nat Clin Pract Gastroenterol Hepatol*, 5, 517-26.
- Vaughan TL, Davis S, Kristal A, et al (1995). Obesity, alcohol, and tobacco as risk factors for cancers of the esophagus and gastric cardia: adenocarcinoma versus squamous cell carcinoma. *Cancer Epidemiol Biomarkers Prev*, 4, 85-92.
- Wood RD, Mitchell M, Sgouros J, et al (2001). Human DNA repair genes. *Science*, **291**, 1284-9.
- Xing D, Qi J, Miao X, et al (2002). Polymorphisms of DNA repair genes XRCC1 and XPD and their associations with risk of esophageal squamous cell carcinoma in a Chinese population. *Int J Cancer*, **100**, 600-5.
- Xing DY, Qi J, Tan W, et al (2003). Association of genetic polymorphisms in the DNA repair gene XPD with risk of lung and esophageal cancer in a Chinese population in Beijing. *Zhonghua Yi Xue Yi Chuan Xue Za Zhi*, **20**, 35-8.
- Xu XC (2009). Risk factors and gene expression in esophageal cancer. *Methods Mol Biol*, **471**, 335-60.
- Ye W, Kumar R, Bacova G, et al (2006). The XPD 751Gln allele is associated with an increased risk for esophageal adenocarcinoma: a population-based case-control study in Sweden. *Carcinogenesis*, **27**, 1835-41.
- Yu HP, Wang XL, Sun X, et al (2004). Polymorphisms in the DNA repair gene XPD and susceptibility to esophageal squamous cell carcinoma. *Cancer Genet Cytogenet*, **154**, 10-5.

- Yuan L, Cui D, Zhao EJ, et al (2011). XPD Lys751Gln polymorphism and esophageal cancer risk: a metaanalysis involving 2288 cases and 4096 controls. *World J Gastroenterol*, 17, 2343-8.
- Zheng S, Vuitton L, Sheyhidin I, et al (2010). Northwestern China: a place to learn more on oesophageal cancer. Part one: behavioural and environmental risk factors. *Eur J Gastroenterol Hepatol*, 22, 917-25.