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Introduction

	 Coal-tar workers, workings at coal-tar melting stations 
and road construction sites routinely expose themselves 
to a large number of physical or chemical genotoxic 
agents such as polycyclic aromatic hydrocarbons (PAHs) 
and heterocyclic compounds by inhalation and dermal 
absorption at their work place (King et al., 1984). PAHs 
are human mutagens and carcinogens, commonly found 
adhering to airborne particulate matter and a complex 
mixture of more than 100 compounds (Boström et al., 
2002). Benzo (a) pyrene [B (a) P] is perhaps the most 
well studied PAHs and was recently classified as a human 
carcinogen (IARC, 2009). Many epidemiological studies 
have shown an increased risk of lung, stomach, non-
melanoma skin cancers, and leukemia in occupational 
workers with high exposure of PAHs from coal-tar 
products (Hansen, 1992; Wong et al., 1992; Partanen and 
Boffetta, 1994). 
	 Monitoring of biological effects as a measure of the 
internally effective dose is more relevant for assessment of 
the ultimate health risks such as cancer. Many biomarkers 
such as chromosomal aberrations, micronuclei, sister 
chromatid exchanges and comet assay have been 
developed to estimate exposure and to assess in an early 
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Abstract

	 Aim: It is well known that polycyclic aromatic hydrocarbons (PAHs) such as benzo (a) pyrene have carcinogenic 
properties and may cause many types of cancers in human populations. Genetic susceptibility might be due to 
variation in genes encoding for carcinogen metabolizing enzymes, such as cytochrome P-450 (CYP450). Our study 
aimed to investigate the effect of genetic polymorphisms of CYP1A1 (m1 and m2) on genetic damage in 115 coal-
tar workers exposed to PAHs at their work place. Methods: Genetic polymorphisms of CYP1A1 were determined 
by the PCR-RFLP method. Comet and buccal micronucleus assays were used to evaluate genetic damage 
among 115 coal tar workers and 105 control subjects. Results: Both CYP1A1 m1 and CYP1A1 m2 heterozygous 
and homozygous (wt/mt+mt/mt) variants individually as well as synergistically showed significant association 
(P<0.05) with genetic damage as measured by tail moment (TM) and buccal micronuclei (BMN) frequencies in 
control and exposed subjects. Conclusion: In our study we found significant association of CYP1A1 m1 and m2 
heterozygous (wt/mt)+homozygous (mt/mt) variants with genetic damage suggesting that these polymorphisms 
may modulate the effects of PAH exposure in occupational settings. 
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phase the risk of adverse health effects (Wogan, 1992; Van 
Delft et al., 1998). Micronuclei (MN) index in human cells 
has become one of the standard cytogenetic endpoints and 
biomarkers used in genetic toxicology in vivo or ex vivo 
(Holland et al., 1999). It originates from chromosome 
fragments or whole chromosomes that lag behind at 
anaphase during nuclear division (Fenech et al., 2002). 
In humans, MN can be easily assessed in erythrocytes, 
lymphocytes, and exfoliated epithelial cells (e.g. oral, 
urothelial, nasal) to obtain a measure of genome damage 
induced in vivo. Primary DNA damage is considered 
to be an important initial event in carcinogenesis. The 
comet assay (single-cell gel electrophoresis) has become 
the preferred test for the qualitative and quantitative 
assessment of DNA damage in single cells and capable 
of detecting DNA single- and double-strand breaks, 
alkali-labile sites and incomplete excision repair sites, 
and genomic structural discontinuities (Singh et al., 1988; 
Collins, 2004). 
	 Attention has been recently focused on genetic 
polymorphisms that seem appear to modulate human 
exposure to genotoxic insult (Norppa, 2004). Cytochrome 
P-450 (CYP450) and glutathione S-transferases (GST) 
genes are two important classes, encoding carcinogen 
metabolizing enzymes, involved in the metabolism of 
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carcinogens like PAHs (Wormhoudt et al., 1999). The 
members of subfamily 1 of the CYP gene super family 
play a major role in the catalysis of such metabolic 
activation (Nebert, 1991). Among these, CYP1A1 is a 
key enzyme which catalyzes oxidative reactions and 
activates xenobiotics like B (a) P to carcinogenic reactive 
metabolites, thereby involving in the pathogenesis of 
various malignancies (Gajecka et al., 2005). It encodes an 
aromatic hydrocarbon hydroxylase enzyme that catalyzes 
the oxidation of PAHs to their phenolic metabolite or 
diol epoxides (Bartsch et al., 2000). CYP1A1 contains 
four functional polymorphisms. CYP1A1 m1 and m2 
are the most studied polymorphism as they either effect 
the activation or induction of enzyme. CYP1A1 m1 
(MspI) is TgC transition located downstream of exon 
7 (Cascorbi et al., 1996). It does not exert any effect on 
CYP1A1 induction but increases the microsomal enzyme 
activity. CYP1A1 m2 (Ile-Val), AgG transition leads to 
an amino-acid substitution of Val for Ile in exon 7 and 
is significantly associated with CYP1A1 inducibility 
(Crofts et al., 1994). CYP1A1 polymorphisms have 
been shown to be associated with moderate to high risk 
of lung cancer in Asians (Hayashi et al., 1991) and in 
Caucasian and Hawaiian population (Kawajiri et al., 1990;  
Marchand et al., 1998) making it a strong candidate gene 
in  susceptibility to smoking-related cancers of larynx, 
mouth, esophagus, urinary bladder and kidney (Doll, 
1998). A strong positive association of CYP1A1 m1 and 
CYP1A1 m2 polymorphisms with lung cancer risk has 
been found in human population (Houlston, 2000; Song 
et al., 2001; Sobti et al., 2004). Therefore, it is reasonable 
to hypothesize that genetic polymorphisms of CYP1A1 
may play a role in individual susceptibility to genetic 
damage and developing various types of cancers. The 
CYP1A1 gene polymorphisms were examined extensively 
to evaluate the possible role they play in DNA damage and 
cancer promotion in PAHs exposed populations (Chen et 
al., 2006; Moretti et al., 2007). Coal-tar workers, working 
at coal-tar melting and road construction sites, are poorly 
characterized regarding the CYP1A1 gene polymorphisms 
as a modulator of genetic damage. Therefore, the present 
study was planned. Moreover, there are both positive 
and negative findings regarding the effect of genetic 
polymorphism of CYP1A1 on genetic damage in PAHs 
exposed population, which further warranted this study.
 
Materials and Methods

Subject and sampling
	 The studied population included 115 coal-tar workers 
who worked at the coal- tar melting stations and at road 
constructions sites and spend daily >8 h in working 
environment. Control subjects (105) were healthy 
volunteers who were not engaged in coal-tar melting and 
road construction works and have socio-economic status 
matched to exposed workers. All the subjects enrolled 
in our study were of Asian origin, living in rural and sub 
urban area of Haryana state in India. They were informed 
about the study before obtaining consent. An approval 
for the study was taken from the institutional human 
ethics committee of Kurukshetra University, Kurukshetra 

(Haryana). A standard questionnaire was used to assess 
standard demographic characteristics such as age, sex, 
exposure duration and consumption habits (smoking, 
alcohol use and tobacco chewing) and medical history. 
The person who smokes tobacco through cigarette or bedi 
in  routine life was considered as smoker while the people 
who never smoke tobacco through cigarette or bedi in 
routine life is considered as non smoker. The person who 
takes alcohol in routine life was considered as alcohol user 
while the person who never takes alcohol in routine life 
was considered as non alcohol user. Subjects undergoing 
medical treatment, X-ray exposure, radiography or 
vaccination up to 3 months before sampling have not 
been included. As far as possible, control subjects were 
being matched with respect to age, sex and consumption 
habits. These individuals were not occupationally exposed 
to PAHs.  

Sample collection
	 Blood (about 0.5 mL) samples were collected from 
exposed workers and control subjects in disposable 
pre-sterilized and K2EDTA coated vaccutainer tubes 
(Medikit, India) with the help of a trained technician. 
Buccal samples were collected on pre-cleaned slides with 
wooden spatula. Urine samples were collected in 50 mL 
autoclaved centrifuge tubes. All samples were brought 
to laboratory in a well insulated ice box. Urine samples 
were stored at -20°C until analysis of 1-hydroxy pyrene 
(1-OHP).

Urinary 1-hydroxy pyrene analysis for internal PAH 
exposure
	 To assess the PAHs exposure in exposed population, 
the level of 1-OHP in random urine samples of 
exposed workers and control subjects was analyzed by 
standard method (Jongeneelen et al., 1987) using gas 
chromatography (Perkin Elmer Auto system XL) with 
flame ionizing detector from Indian Institute of Toxicology 
Research (IITR), Lucknow (U.P), India.

DNA damage analysis by single cell gel electrophoresis 
(comet assay)
	 Alkaline comet assay was performed according to the 
method of Singh et al. (1988) and Tice et al. (2000) with 
minor modifications. Slides were prepared in duplicate per 
sample. Dust free, plain slides was covered with a layer of 
150 µL of 1% normal melting agarose (NMA) and allowed 
to dry for 10 min in hot air oven. This layer served as an 
anchor for additional layers to prevent slippage. The blood 
sample (5-10 µL) was mixed with 90 µL of warm 0.5% 
low melting agarose (LMA) and this mixture was layered 
as second additional layer and gelled at 4°C for 15 min. A 
third additional layer of 150 µL of 0.5% LMA was added 
on top and gelled again at 4 °C for 15 min. The slides were 
treated for 2 hours at 4 °C in freshly prepared, chilled lysis 
buffer solution (25 mM NaCl, 100 mM sodium EDTA, 
10 mM tris. 1% triton X -100, 10 % DMSO added before 
use and pH adjusted to 10). They were removed from the 
lysis solution, incubated in alkaline electrophoresis buffer 
(10N NaCl, 200 mM EDTA, pH adjusted to 13) for 20 min 
followed by electrophoresis (25 V and 300 mA) for 30 



Asian Pacific Journal of Cancer Prevention, Vol 13, 2012 3411

			   DOI:http://dx.doi.org/10.7314/APJCP.2012.13.7.3409 
CYP1A1 Gene Polymorphisms: Modulators of Genetic Damage in Coal-Tar Workers

containing the m2 sites  was amplified using the PCR 
conditions which included initial denaturation step at 
94°C for 5 min, followed by 35 cycles of denaturation 
at 94°C for 30s, annealing at 63°C for 30s, extension at 
72°C for 30s and final elongation step at 72°C for 10 min. 
The restriction enzyme MspI (Fermentas) was used to 
distinguish the m1polymorphism; gain of  MspI restriction 
site occurs in the polymorphic allele. The wild-type allele 
has a single band representing the entire 340 bp fragment 
and the variant allele results in two fragments of 200 
and 140 bp. The restriction enzyme BsrDI (Fermentas) 
was used to detect m2 polymorphism. Loss of BsrDI site 
occurs in polymorphic allele which gives a single band 
of 204 bp whereas the wild-type alleles generate 149 and 
55bp bands (for the m2 site). The restricted product was 
analyzed by electrophoresis in 3% agarose gel containing 
ethidium bromide (Figure 1A-1B).

Statistical analysis
	 The student t test was used for comparison of age 
between studied groups. χ2 test was applied for difference 
in sex, consumption habits and exposure history 
among studied population. The influence of CYP1A1 
polymorphism on studied biomarkers among multiple 
sub-groups was done by post hoc analysis using ANOVA 
and Mann Whitney-U test. The interaction of different 
confounding factors such as age, gender, consumption 
habits, exposure and CYP1A1 m1 and m2 genotypes 
with TM value and BMN frequency was studied using 
linear regression model. All of the statistical analysis was 
performed with SPSS.16. The level of significance was 
set at 0.05.

Results 

General demographic characteristics of population
	 As shown in Table. 1, no significant (P > 0.05) 
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min, in the same buffer. The slides were then neutralized 
with tris buffer (0.4 M tris, pH adjusted to 7.5), rinsed with 
distilled water and stained with 100 µL ethidium bromide 
(20 µg mL-1) for 5 min. under dim or dark condition.

Comet Scoring
	 A total of 50 cells from each of the duplicate slides 
were examined randomly under fluorescence microscope. 
The extent of DNA damage was measured quantitatively 
as tail moment (TM) using comet assay IV software. 
The TM is defined by the percentage of DNA in the tail 
multiplied by the length between the center of the head 
and tail (Olive et al., 1990). 
	
Buccal micronuclei (BMN) in exfoliated epithelial cells
	 Buccal cells originate from a multilayered epithelium 
that lines the oral cavity. Prior to buccal cell collection, the 
coal-tar workers and control subjects were advised to rinse 
their mouth thoroughly with water to remove unwanted 
debris. Sterile wooden spatula was used to obtain cell 
samples from buccal mucosa. The buccal smears on 
glass slides were transported to laboratory in insulated 
ice box and processed within 3-4 h of sample collection. 
The samples were air dried and hydrolyzed for 8 min. in 
1N HCl at 60ºC. After a rinse in tap water, slides were 
stained in Aceto-orecine (Hi-Media, India) for 10 minutes 
at room temperature. Then samples were given a brief 
washing in ethanol and distilled water. Counter staining 
was done with fast green solution (Hi-Media, India) for 
12 minutes followed by final rinse in ethanol and distilled 
water. Slides were air dried and screened in a double 
blind manner to analyze the presence of micronuclei. At 
least 1000 cells were scored for presence of micronuclei 
in exfoliated buccal cells at 1000 X magnification under 
bright field microscope. The scoring of micronuclei was 
done according to criterion of Tolbert et al. 1991.

CYP1A1 m1 and CYP1A1 m2 genotyping
	 Genomic DNA was isolated from 200 µL of whole 
blood by Spin column kit (Bangalore genei, India). 
CYP1A1 genotypes at the m1 and m2 sites were 
analyzed by PCR-based restriction fragment length 
polymorphism (RFLP) method (Song et al., 2001) with 
minor modifications. The primers for the m1 and m2 site 
(M1F 5’-AAGAGGTG TAGC GCTGCACT-3’, M1R 
5’-TAGGAGTC TCTCATGCCT-3’ and M2F 5’-TTC 
CAC CCG TTG CAG CAG GAT AGC C-3’, M2R 5’-
CTG TCT CCC TCT GGT TAC AGG AAG-3’) generate 
340 and 204 bp fragments respectively. These fragments 
were amplified separately but under the same conditions 
as follows: a 25 μl reaction mixture consisted of ~100 ng 
template DNA, 10 μM each primer, 0.2 mM each dNTP, 
1.5 mM MgCl2, 1.0 U Taq DNA polymerase with 1X 
reaction buffer (Bangalore Genei, Bangalore, India) and 
5% dimethyl sulfoxide. Amplification was performed in a 
eppendorf gradient thermocycler .To amplify the fragment 
containing the m1site, the PCR profile consisted of an 
initial denaturation step at 94°C for 5 min, followed by 
30 cycles of denaturation at 94°C for 1 min, annealing 
at 61°C for 1 min, elongation at 72°C for 1 min and a 
final elongation step at 72°C for 10 min. The fragment 

Figure 1. Ethidium Bromide Stained 3% Agarose 
Gel . A) CYP1A1 m1 Polymorphism by PCR-RFLP. 
Lane M shows 100bp molecular weight (MW) marker,  lane 2 
and 5 represent homozygous wild-type alleles, lane 1, 4 and 6 
represents heterogous allele, lane 3 and 7 represent homozygous 
mutant-type allele. B) CYP1A1 m2 Polymorphism by PCR-
RFLP. Lane M shows 100bp molecular weight (MW) marker, 
lane 4, 5 and 6 represent heterozygous mutant type allele, lane 
1 represents wild type allele and lane 2 represents homozygous 
mutant type allele.

A)

B)
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Table 1. Demographic Characterization of Control and Exposed Population
Variable	                                                                                                Control                Exposed        OR           95%CI     P value

Total (N)		  105		  115
Age** (Year)		  37.33±10.00		  35.72±9.94			   >0.05
Age groups, N (%):	 ≤ 45	 81	(71.10)	 98	 (85.20)	 0.585	 0.29-1.16	 0.12
	 ≥ 45	 24	(22.90)	 17	 (14.80)
Sex, N (%):	 Male	 67	(63.80)	 80	 (69.60)	 0.771	 0.44-1.45	 0.36
	 Female	 38	(36.20)	 35	 (30.40)
Smoking status, N (%):	 Smoker	 39	(37.10)	 52	 (45.20)	 0.716	 0.41-1.22	 0.22
	 Never smoker	 66	(62.90)	 63	 (54.80)			 
	 Cigarette or bidi pack/week**	 4.03±1.22		  4.13±0.99
Alcoholic status, N (%)	 Alcohol user	 41	(39.00)	 47	 (40.90)	 0.844	 0.49-1.43	 0.53
	 Non alcohol user	 64	(61.00)	 68	 (59.10)
	 Alcohol quantity** (ml/week)	 386.21±83.21		 395.12±72.2
	
Tobacco chewing status, N (%):	 Tobacco chewer	 41	(39.00)	 47	 (40.90)	 0.927	 0.54-1.59	 0.78
	 Never Tobacco chewer	 64	(61.00)	 68	 (59.10)	
	 Tobacco pouch/week** 	 3.98±1.06		  4.50±1.28
PAH exposure (%):	 ≤ 25 Year	 84	(73.00)
	 ≥ 25 Year	 31	(27.00)					     <0.05

*Student t-test was applied for comparing mean value of age among control and exposed group. SD- Standard deviation, χ2 test was 
applied for difference in sex and consumption habits exposure history among studied population. OR- Odd ratio, CI- Confidence 
interval. ** Mean±SD
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Table 2. DNA Damage and BMN Frequency
CYP1A1 genotypes	                                          Control-105                                                                Exposed-115
	                                            N (%)	   Tail Moment (µM )     BMN/1000               N (%)      Tail Moment (µM )   BMN/1000
					                                             BE Cells                                                                    BE Cells
		                                                         (Mean ± SD )       (Mean ± SD )		              ( Mean ± SD )     (Mean ± SD)

Influence of CYP1A1 polymorphisms
CYP1A1 m1	 wt/wt	 57	 (54.30)	 0.32 ± 0.22	 4.59 ±1.93	 50	 (43.50) 	 11.96 ± 0.53	 6.62±1.33

	 wt/mt+mt/mt	 48	 (45.70)	 0.60 ± 0.34*¥	 5.66 ±1.81*¥	 65	 (56.50)	 12.14 ± 0.56*¥	 7.47±1.64*¥

CYP1A1 m2	 wt/wt	 66	 (62.90)	 0.40 ± 0.28	 4.86 ±1.93	 59	 (51.30)	 11.95 ± 0.50	 6.71±1.47
	 wt/mt+mt/mt	 39	 (37.10)	 0.53 ± 0.35*¥	 5.46 ±1.74*¥	 56	 (48.70)	 12.18 ±0.59*¥	 7.51±1.56*¥

Synergistic effect of CYP1A1 m1 and CYP1A1 m2 CYP1A1 m1+m2
	 CYP1A1m1+m2 wt/wt	 42		  0.31 ± 0.20	 4.52 ± 1.80	 47		  11.86 ± 0.48	 6.59±1.34
	 CYP1A1 m1 wt/wt  with CYP1A1 m2  wt/mt+mt/mt	
		  15		  0.36 ± 0.28	 4.80 ± 1.89	 3		  11.92 ± 1.17	 7.00±1.73
	 CYP1A1 m1 wt/mt+mt/mt with CYP1A1 m2 wt/wt
		  24		  0.55 ± 0.33	 5.45 ± 2.06	 11		  12.13 ± 0.37	 7.27±1.95
	 CYP1A1 m1 and m2 wt/mt+mt/mt	
		  24		  0.64 ± 0.36*	 5.87 ± 1.57*	 54		  12.23 ± 0.56*	 7.51±1.56*

*Significant at P<0.05, Multivariate ANOVA test was used for the comparison of Tail moment and BMN frequency in multiple 
subgroups among studied population, ¥Significant at P<0.05+high mean rank (Mann-Whitney U test), SD- Standard deviation.
difference was found in the distributions of age, sex and 
consumption habits between the 115 coal- tar workers and 
the 105 control subjects. Genetic damage was assessed by 
alkaline comet assay in term of TM value in peripheral 
blood lymphocytes and MN frequency in exfoliated buccal 
epithelial cells.

Urinary 1 - Hydroxy pyrene assessment
	 The mean concentration of 1-OHP in random urine 
samples of control and exposed subjects were found to be 
0.029±0.010 μg mL-1 and 0.304±0.23 μg mL-1 respectively 
. The level of 1-OHP in urine of exposed subjects was 
found significantly higher than that of control subjects 
(P<0.05).

Influence of CYP1A1 polymorphism on genetic damage
	 In the present study, the effect of CYP1A1 

polymorphisms on genetic damage was studied in control 
and exposed subjects. Significant association (P<0.05) 
of the CYP1A1 m1 and CYP1A1 m2 heterozygous and 
homozygous (wt/mt+mt/mt) variants with TM value and 
BMN frequency as compare to wild type (wt/wt) genotype 
was found in both control and exposed subjects (Table 2). 

Synergistic effect of CYP1A1 m1 and m2 polymorphism
	 As shown in Table 2, both CYP1A1 m1 and m2 
heterozygous and homozygous (wt/mt+mt/mt) variants 
synergistically showed significant association (P<0.05) 
with genetic damage (TM value and BMN frequency) 
among the studied population.

Interaction of confounding factors, exposure and CYP1A1 
genotypes with genetic damage
	 By linear regression analysis, we studied the interaction 
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of CYP1A1 genotypes, confounding factors and exposure 
with TM value and BMN frequency. We observed that 
CYP1A1 m1 and CYP1A1 m2 genotypes and exposure 
showed significant effect (P<0.05) on TM value and 
BMN frequency while other factors such as age, sex and 
consumption habits did not show any significant (P>0.05) 
association with BMN frequency and TM value among 
studied population (Table 3, data of control population 
are not shown).
 
Discussion

Many biomarkers have been developed to estimate 
exposure and to assess in an early phase the risk of adverse 
health effects (Wogan, 1992; Van Delft et al., 1998).  These 
can be measured in exhaled air, blood, urine and in tissue 
samples. The actual target organ or cell is usually not 
available for measurements and biomarkers of exposure 
are thus often surrogate measures of doses or effects 
at the target. The ideal biomarker has been described 
as chemical-specific, detectable at low (trace) levels, 
available using non-invasive techniques, inexpensive 
to analyse and quantitatively related to prior exposures 
(Henderson et al., 1989). Thus, for biomonitoring 
purposes, biological materials should be easily accessible 
in sufficient amounts under routine conditions and without 
unacceptable discomfort and health risk for the individual. 
For these reasons blood and urine are most commonly used 
and cells in blood may provide surrogate endpoints for 
effects in internal organs (Angerer et al., 2007). Buccal 
cells are the first barrier of the inhalation or ingestion route 
and are capable of metabolizing proximate carcinogens 

to reactive products (Auturp et al., 1985). Approximately 
90% human cancers originated from epithelial cells 
(Rosin et al., 1992).Therefore, it could be argued that oral 
epithelial cells represent a preferred target site for early 
genotoxic event induced by carcinogenic agents entering 
the body via inhalation and ingestion. 

To predict PAHs exposure in exposed subjects, we 
analyzed 1-OHP level in random urine samples of exposed 
and control subjects. The level of urinary 1-OHP was found 
significantly higher among PAHs exposed coal-tar workers 
than in matched controls. This finding is consistent with 
the results of other studies aimed to determine the effects 
of occupational exposure to PAHs on urinary 1-OHP 
concentrations (Ovrebo et al., 1994; Dell’Omo et al, 1998; 
Nan et al., 2001; Siwinska et al., 2004). In our previous 
study, we assessed the mean concentration of benzo (a) 
pyrene in ambient air (biomarker of external exposure) at 
working site of coal-tar/road construction workers. It was 
found to be 10.71±3.45 ng m-3 which is quite high when 
compared to the concentration of B (a) P in ambient air 
(Kumar et al., 2011). 

The contradictory reports are available regarding the 
association of confounding factors such as age, sex and 
consumption habits (smoking, alcohol intake and tobacco 
chewing) with genetic damage as primary DNA damage 
and BMN frequency. Some biomonitoring studies found 
positive association of age (Ozkul et al.,1997; Moretti 
et al., 2000), sex (Betti et al., 1994; Bajpayee et al., 
2002; Fenech et al., 2003), smoking (Burgaz et al., 1999; 
Hoffmann et al., 2005), alcohol intake (Ramirez et al., 
2002) and tobacco chewing (Nair et al., 1991; Trivedi 
et al., 1993) while some studies observed no association 
of age (Zhu et al., 1999; Konapaka et al., 2003), sex 
(Anderson et al., 1993; Zhu et al, 1999; Konapaka et al., 
2003), smoking (Moller et al., 2006), alcohol intake (Celik 
et al., 2007; Martinez-Valenzuela et al., 2009) with genetic 
damage. In our study, we did not observe any significant 
association of age, sex and consumption habits (smoking 
and alcohol use) with genetic damage.

CYP1A1 polymorphism is often considered to be 
associated with enhanced inducibility, leading to higher 
enzymatic activity that activates pre carcinogens like 
PAHs which cause DNA damage. CYP1A1 alleles (m1 and 
m2) are known as “higher risk alleles” and frequencies 
of these alleles are reported to be eight to eighteen times 
higher in Asians than in Caucasian population (Bartsch 
et al., 2000). A number of studies reported increased 
risk of lung cancer in individuals with smoking habit 
and at least a single mutant allele of CYP1A1 in Asian 
population (Song et al., 2001; Sobti et al., 2004). In our 
findings CYP1A1 m1 and CYP1A1 m2 heterozygous 
and homozygous (wt/mt+mt/mt) variants individually as 
well as synergistically were significantly associated with 
genetic damage as compared to CYP1A1 m1 (wt/wt) and 
CYP1A1 m2 (wt/wt) wild type alleles in PAHs exposed 
coal-tar workers and control subjects. To the best of our 
knowledge we did not find any study showing association 
of CYP1A1 gene polymorphism with MN in exfoliated 
buccal epithelial cells in PAHs exposed population. As 
in our results CYP1A1 variant genotype has been found 
to be associated with higher levels of DNA damage  in 

Table 3. Linear Regression Model for Interaction of 
Sex, Age, Consumption Habits, Exposure and CYP1A1 
Polymorphisms 

Exposed

Model          Un-      Standardized    R2      t      95%CI       P 
           standardized  Coefficient                                      Value
	    Coefficient (B)      (β)

DNA damage: TM(Constant)
	 Age	 0.96	 0.12	 0.04	 1.28	 -0.05-0.24	 0.2
	 Sex	 0.2	 -0.171	 0.02	 -1.84	 0.42-0.01	 0.06
	 Smoking	 -0.16	 -0.296	 0.08	 -3.29	 -0.26-(-0.06)	0.07
	 Alcoholic	 -0.26	 -0.466	 0.21	 -5.59	 -0.35-(-0.16)	0.06
	 Tobacco chewing	
		  0.08	 0.124	 1.32	 -2.21	 -0.04 to 0.21	0.19
	 Exposure	 -0.25	 -0.453	 0.2	 -5.4	 -0.35-(-0.16)	0.03
	 CYP1A1 m1	0.18	 0.199	 0.03	 2.15	 0.01-0.34	 0.03
	 CYP1A1 m2	0.24	 0.079	 0.07	 3.05	 0.08-0.39	 0
BMN frequency: BMN(Constant)
	 Age	 -0.324	 -0.136	 0.322	-1.15	 -0.87-0.23 	 0.251
	 Sex	 0.33	 0.091	 0.357	1.07	 -0.28-0.94	 0.286
	 Smoking	 0.082	 0.049	 0.256	0.57	 -0.19-0.36	 0.565
	 Alcoholic	 -0.286	 -0.172	 0.345	-1.78	 -0.60-031	 0.077
	 Tobacco chewing	
		  -0.229	 -0.136	 0.377	 -1.3	 -0.57-0.11	 0.195
	 Exposure	 1.444	 0.701	 0.484	5.88	 0.95-1.93	 0
	 CYP1A1 m1
		  0.412	 0.183	 0.055	2.25	 0.05-0.77	 0.026
	 CYP1A1 m2	
		  0.405	 0.155	 0.035	2.31	 0.05-0.75	 0.022

* ‘Models using stepwise method and adjusting by tail moment. CI: 
confidence interval, R2: correlation coefficient, Models excluding control 
individuals. Significant at P<0.05.
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different occupational workers such as coke-oven workers 
(Brescia et al., 1999; Rojas et al., 2000), pot-room workers 
(Carstensen et al., 1999), traffic policemen (Carere et 
al., 2002). In our previous study we observed significant 
association between GSTM1 and GSTT1 null genotypes 
and BMN frequencies among coal-tar population (Kumar 
et al., 2011). However, contrary to our results, some 
studies reported that CYP1A1 m1 and m2 variants did not 
show any effect on DNA damage among coke-oven and 
graphide electrode workers (Marczynski et al., 2002; Chen 
et al., 2006; Moretti et al, 2007). Mahimkar et al. (2010) 
found no association of CYP1A1 gene polymorphism with 
MN in exfoliated buccal cells in leukoplakia patients.

In conclusion, in our study we found significant 
association of CYP1A1 m1 and m2 heterozygous (wt/
mt)+homozygous (mt/mt) variants with genetic damage 
as assessed by TM value and BMN frequency in studied 
population suggesting that this polymorphism may 
modulate the effects of PAHs exposure in occupational 
settings. However, the underlying mechanisms of 
this observed effect modification, and their related 
consequences, remain to be further investigated before 
this finding can be applied to monitoring individuals 
susceptible to the PAHs-induced carcinogenesis. More 
studies are needed for confirming the role of CYP1A1 m1 
and CYP1A1 m2 as biomarker of susceptibility and for 
the better understanding of gene-environmental exposure 
interactions
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