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Introduction: Pyridoxal 5´-phosphate (PLP) 
in Metabolism

	 Vitamin B6, one of the B vitamins, is a water soluble, 
chemically quite distinct compound. It comprises a set 
of three different pyridine derivatives called pyridoxine 
(PN), pyridoxal (PL), and pyridoxamine (PM) (Ink, 1982; 
Hellmann, 2010). They differ in a variable group present at 
their 4- position with PN carrying a hydroxymethyl group, 
and PL and PM having an aldehyde and an aminomethyl 
group, respectively. Furthermore, all three B6 vitamers 
are phosphorylated by a kinase, which is a requirement 
for their role as cofactors in enzymatic reactions (Wu, 
2011). While pyridoxamine-5’-phosphate (PMP) has 
been reported to function as a co-factor, it is pyridoxal 
5’- phosphate (PLP) that is the biologically most active 
form (Lui et al., 1985; Gregory, 1997; Mann et al., 2011). 
	 PLP plays a primary role acting as a cofactor for a 
large number of essential enzymes. These PLP-dependent 
enzymes catalyze more than 140 distinct enzymatic 
reactions including transaminations, aldol cleavages, 
α-decarboxylations, racemizations, β- and γ- eliminations, 
and replacement reactions. For example, transaminases 
mediate the conversion of α-ketoacids to amino acids 
and amino acid racemases produce D-amino acids from 
L-amino acids. Most of these reactions are related to 
amino acid biosynthesis and degradation. Another site 
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Abstract

	 Vitamin B6 functions as a coenzyme in >140 enzymatic reactions involved in the metabolism of amino acids, 
carbohydrates, neurotransmitters, and lipids. It comprises a group of three related 3-hydroxy-2-methyl-pyrimidine 
derivatives: pyridoxine (PN), pyridoxal (PL), pyridoxamine (PM) and their phosphorylated derivatives [pyridoxal 
5’-phosphate (PLP) and pyridoxamine 5’-phosphate (PMP)], In the folate metabolism pathway, PLP is a cofactor 
for the mitochondrial and cytoplasmic isozymes of serine hydroxymethyltransferase (SHMT2 and SHMT1), 
the P-protein of the glycine cleavage system, cystathionine β-synthase (CBS) and γ-cystathionase, and betaine 
hydroxymethyltransferase (BHMT), all of which contribute to homocysteine metabolism either through folate-
mediated one-carbon metabolism or the transsulfuration pathway. Folate cofactors carry and chemically activate 
single carbons for the synthesis of purines, thymidylate and methionine. So the evidence indicates that vitamin 
B6 plays an important role in maintenance of the genome, epigenetic stability and homocysteine metabolism. 
This article focuses on studies of strand breaks, micronuclei, or chromosomal aberrations regarding protective 
effects of vitamin B6, and probes whether it is folate-mediated one-carbon metabolism or the transsulfuration 
pathway for vitamin B6 which plays critical roles in prevention of cancer and cardiovascular disease. 
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of action for the PLP-dependent enzymes is fatty acid 
metabolism. The enzyme δ-6- desaturase catalyzes 
the synthesis of vital polyunsaturated fatty acids by 
the desaturation of linolic acid and γ-linolenic acid, 
respectively (Burns et al., 2005; Tanaka et al., 2005). 
Besides these roles, PLP also represents an important 
cofactor for the degradation of storage carbohydrates, 
such as glycogen. The PLP-dependent glycogen 
phosphorylase mediates the glycogen breakdown by 
the release of glucose from glycogen (Wagner, 2006). 
Furthermore, two PLP-dependent enzymes are involved 
in hemoglobin formation and chlorophyll biosynthesis. 
In these reactions the rate-limiting step is the primary 
biosynthesis of δ-aminolevulinic acid. In mammals and 
birds δ-aminolevulinic acid is synthesized by the action of 
δ-aminolevulinic acid synthase and in plants and algae by 
the action of glutamate-1-semialdehyde 2, 1- aminomutase 
(Raschle et al., 2008). 
	 Additionally, in plants the biosynthesis of the 
phytohormone ethylene is controlled by the synthesis 
of the precursor 1-aminocyclopropane-1-carboxylic 
acid from S-adenosylmethionine by PLP dependent 
1-aminocyclopropane-1-carboxylate synthases (Lima et 
al., 2006; Kappes et al., 2011). This underlines the wide 
variety of chemical reactions that PLP-dependent enzymes 
promote in the organisms and shows again the importance 
of vitamin B6. The following section will give an overview 
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of the metabolic reactions in which PLP-dependent 
enzymes are significantly involved. Apart from its function 
as a cofactor for PLP-dependent enzymes, vitamin B6 is 
also thought to act directly as a protective agent against 
reactive oxygen species, such as singlet oxygen which 
will be discussed in a following section (Bitsch, 1993; 
Kannan et al., 2004; di Salvo et al., 2012).
 
PLP- a Cofactor for the Mitochondrial 
and Cytoplasmic Isozymes of Serine 
Hydroxymethyltransferase (SHMT2 and 
SHMT1)

	 Folate-mediated one-carbon metabolism is 
compartmentalized in the mitochondria and cytoplasm 
of eukaryotic cells (Figure 1). In the cytoplasm, this 
metabolic network is required for the biosynthesis 
of purines, thymidylate, and the remethylation of 
homocysteine to form methionine. Serine is a major source 
of one-carbon units for this network through its reversible 
and tetrahydrofolate-dependent conversion to glycine 
and methylene tetrahydrofolate (methyleneTHF) is a 
metabolic cofactor that carries and activates single carbons 
for the synthesis of nucleotides and methionine  catalyzed 
by serine hydroxymethyltransferase (SHMT), which is a 
PLP- dependent enzyme(Fox, 2008; Anderson et al., 2012). 
There are cytoplasmic and mitochondrial SHMT isozymes. 
SHMT1 encodes the cytoplasmic isozyme (SHMT1) and 
SHMT2 encodes the mitochondrial isozyme (SHMT2) 
(Garrow, 1993; Girgis, 1998; Stover, 1997; Hebbring 
et al., 2012). Mitochondrial one-carbon metabolism 
generates one-carbons from serine through the activity 
of SHMT2, and the one-carbon is oxidized and exported 
to the cytoplasm as formate, supporting cytoplasmic one-
carbon metabolism (Herbig et al., 2002; Gutierrez et al., 
2008). The SHMT1 enzyme generates methyleneTHF 
for thymidylate and methionine biosynthesis, but isotope 
tracer studies indicate that SHMT1 preferentially partitions 
methyleneTHF to thymidylate biosynthesis (MacFarlane 
et al., 2008; Anderson et al., 2009). The de novo 
thymidylate biosynthesis pathway requires three enzymes: 

thymidylate synthase (TYMS), dihydrofolate reductase 
(DHFR), and SHMT1. MethyleneTHF generated by 
SHMT is the one-carbon donor for the TYMS catalyzed 
conversion of dUMP to dTMP generating dihydrofolate 
(DHF). DHFR catalyzes the NADPH-dependent reduction 
of DHF to regenerate THF for subsequent cycles of de 
novo thymidylate synthesis. Recently, the enzymes that 
constitute the thymidylate synthesis cycle were shown 
to undergo post-translational modification by the small 
ubiquitin-like modifier (SUMO) and nuclear translocation 
during S and G2/M phases (Anderson et al., 2007; Woeller 
et al., 2007). Although the synthesis of thymidylate in the 
nucleus has never been demonstrated, others have found 
folate cofactors present in liver nuclei (An et al., 2008), 
and multienzyme complexes containing ribonucleotide 
reductase and thymidylate synthase have been isolated 
from nuclear extracts (Noguchi et al., 1983; Ye et al., 
2010). In Donald D. et al. study, intact nuclei are shown 
to catalyze the formation of dTMP from dUMP, which 
accounts for the results of stable isotope studies that 
indicate SHMT preferentially partitions methyleneTHF 
to thymidylate biosynthesis. Furthermore, both SHMT1 
and SHMT2 are shown to contribute to nuclear de novo 
thymidylate biosynthesis (Donald, 2009).

The Second PLP-dependent Enzyme - CBS

	 Cystathionine -synthase (CBS) catalyzes the 
condensation of serine and homocysteine to form 
cystathionine and abnormality in CBS activity is 
manifested in two major clinical conditions, viz. 
hyperhomocysteinemia and homocystinuria (Yamasaki 
et al., 2012). Deficiency in the CBS activity is the most 
common cause of classical homocystinuria (HCU), 
an inherited human genetic disorder of sulfur amino 
acid metabolism biochemically characterized by 
very high levels of the toxic intermediate amino acid 
L-homocysteine (Hcy) (Pey et al., 2012). CBS catalyzes 
the β-replacement of the hydroxyl group of L-serine 
by the thiolate group of Hcy using PLP as cofactor, 
which is considered to be an independent risk factor for 

Figure 1. Methionine and Folate Metabolism -  Locations of Vitamin B6, SHMT1, SHMT2, CBS, BHMT
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arteriosclerosis (Meier et al., 2001). In addition to that, 
since homocysteine is vasculotoxic as well as neurotoxic, 
hyperhomocysteinemia predisposes to cardiovascular 
disorder (CVD) and cognitive dysfunction (Zhao et al., 
2012; Liu et al., 2012). On the other hand, gross deficiency 
in CBS activity is associated with homocystinuria, 
an inborn recessive metabolic disorder (Yadav et al., 
2012). The major pathologic abnormalities associated 
with homocystinuria include thromboembolism, ectopia 
lentis, osteoporosis, mental retardation (MR) and other 
neurological and psychiatric abnormalities (Liu et al., 
2012; Boini et al., 2012). The neurological malfunctioning 
can be ascribed to the oxidation of excess homocysteine to 
homocysteic acid, which interacts with the N-methyl-D-
aspartate receptor, causing excessive calcium influx and 
free radical production, thereby leading to neurotoxicity 
(Yadav et al., 2012). In addition, increased plasma 
homocysteine concentration has been postulated as a risk 
factor for cancer and even as a novel tumour marker (Yun 
et al., 2012). This increased risk can be attributed to the 
high prevalence of classical factors in these patients, such 
as hypertension, diabetes, and dyslipidemia, but most 
certainly (also) to factors resulting from the malignant 
disease and the applied selected therapy. For example, 
back in 1865 Trousseau described hypercoagulability and 
increasing risk of spontaneous coagulation in patients with 
cancer. Nowadays, it is established that breast, pancreas, 
and gastrointestinal cancers are associated with a higher 
incidence of thrombosis (Nadja et al., 2012). With more 
advanced stages of cancer there is lower overall survival 
rate (Renga, 2011), but, also a greater risk of venous 
thromboembolism, what can additionally influences on 
the survival of patients (Maclean et al., 2012).
 
The Third PLP-dependent Enzyme - BHMT

Betaine-homocysteine methyltransferase (BHMT) 
catalyzes a key reaction at theconvergence of the folate 
and the methionine cycles. BHMT is a PLP-dependent 
cytosolic enzyme that is highly expressed in the human 
liver, kidney and lens of the eye (Weisberg et al., 2003; Teng 
et al., 2012). It catalyzes one of two major homocysteine 
remethylation reactions, the transfer of a methyl group 
from betaine (N, N, N- trimethylglycine) to homocysteine, 
resulting in the formation of dimethylglycine and 
methionine. Betaine is the substrate for betaine- 
homocysteine methyltransferase (BHMT), acting as a 
methyl donor for methylating homocysteine (Fridman 
et al., 2012). Betaine also can be obtained from food or 
from choline metabolism (Clifford et al., 2012; Pawlik 
et al., 2011). Methionine is one of the essential dietary 
amino acids for humans and is the precursor for SAM 
(Kořínek et al., 2012; Gibson et al., 2011). The tight 
interrelationship among these dietary methyl sources 
makes it important to assess them together when studying 
diet and its association with disease outcome. The other 
homocysteine remethylation reaction is catalyzed by 
methyltetrahydrofolate homocysteine methyltransferase 
(MTR) (Pellanda et al., 2012; Mostowska et al., 2011). 
BHMT is thought to account for up to half of the 
homocysteine remethylation capacity.

Vitamin B6 Deficiency, Genome Instability 
and Cancer 

Reduced dietary intake or low tissue/plasma levels of 
several vitamins B6 have been associated with higher risk 
for developing cancer (Sujol et al., 2011; Galluzzi et al., 
2012; Lurie et al., 2012). Some studies on diet and cancer 
have disclosed a significant inverse correlation between 
serum PLP (and vitamin B6 intake) and different types 
of cancer (Hartman et al., 2001; Larsson et al., 2010; Wu 
et al., 2011; Galluzzi et al., 2012; Hellmann et al., 2010). 
There are several potential mechanisms by which vitamin 
B6 may influence carcinogenesis. First, B6-deficiency 
causes a decrease in the enzyme activity of SHMT 
and BHMT. This results in a lack of methylene groups 
for 5, 10-methylene-THF production. Consequently, 
methylation of deoxyuridylate to deoxythymidylate may 
be impaired resulting in misincorporation of uracil instead 
of thymidine into DNA (Bourquin et al., 2011; Kappes 
et al., 2011). As a consequence, a greater potential of 
chromosome strand breaks (Kamat et al., 2000; Romo et 
al., 2011) and/or an impaired DNA excision repair may 
exist (Ames, 2001; Bowling, 2011). Evidence of this has 
been reported (Ames, 1999). In addition, disruption of 
the above mentioned reactions may lead to imbalances 
in the methyl groups required for methylation processes, 
resulting in DNA hypomethylation. Altered DNA 
methylation has been observed in different types of tumors 
(Hansen et al., 1997; Cindy et al., 2005; Mann et al., 2011). 
The vitamin B6 connection to the immune system could be 
a mechanism by which low vitamin B6 status or intake also 
contributes to development of cancer. The two different 
PLP-dependent enzymes (CBS, cystathionine g-lyase 
(CTH)) which are implicated in the transsulfuration 
pathway also generate cysteine, an important component 
of glutathione. Glutathione S-transferases and glutathione 
peroxidases are detoxifying agents of several carcinogenic 
compounds (Pey et al., 2012). PLP is also involved 
in steroid hormone action; consequently, PLP can be 
implicated in some types of steroid related cancer. 

It is tempting to speculate that vitamin B6 inadequacy 
may be a factor in the aetiology of hormone-dependent 
cancer of the breast, uterus and prostate, and in 
hypertension; conditions where enhanced responsiveness 
of the target tissue to normal or even lower than normal 
levels of hormones may be important (Romo et al., 2011). 
Furthermore, one study found a steroid independent 
inhibition of in vitro breast cancer cell growth induced 
by PL and this was present in oestrogen-dependent and 
oestrogen-independent mammary carcinoma cell lines 
(Xu et al., 2008). Yu-Ching’s findings suggest that higher 
intake of vitamin B6 is associated with a reduction in 
breast cancer risk, particularly ER-negative tumors (Yu et 
al., 2011). Many studies have shown a relation to special 
types of cancer. For example, in a large nested case-control 
study (included in the ATBC Cancer Prevention Study 
cohort) a statistically significant inverse dose-response 
relationship was found between plasma PLP levels and 
pancreatic cancer risk: the risk of subjects in the highest 
PLP tertile was half the risk of the subjects in the lowest 
tertile (OR = 0.48). Several case-control studies have 
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found that high vitamin B6 intake was associated with a 
decreased risk of gastric adenocarcinomas (Michaud et 
al., 2002; Ahn et al., 2008; Similä et al., 2009) and oral 
or pharyngeal cancer (Negri et al., 2000). 

 
Fruits, Vegetables and Vitamin B6 

Fungi, plants, archae, and most eubacteria are able 
to synthesize vitamin B6, while most animal organisms, 
including humans, lack this ability and rely on the external 
supply of vitamin B6. Foods of animal origin contain 
mainly pyridoxamine (PM) and pyridoxal (PL), resulting in 
a bioavailability of approximately 75%, which approaches 
100% in some foods. Vitamin B6 in foods of plant origin 
consists mainly of pyridoxine (PN) and the phosphorylated 
form – derivatives that have reduced bioavailability. 
Furthermore, a large proportion of the vitamin B6 
content in foods of plant origin is glucosylated, which 
reduces the bioavailability further (Watanabe et al., 2004; 
Konings et al., 2006). For example, the bioavailability of 
pyridoxine glycosides (pyridoxine-50- b-D-glycosides) 
is approximately 50–58% that of free pyridoxine applied 
orally (Olsen et al., 2009). Furthermore, pyridoxine 
glycosides show an antagonistic effect on the metabolism 
of pyridoxine (Kalman et al., 2009). Therefore it can be 
assumed that persons with a dietary regimen that consists 
mainly (vegetarian diet) or exclusively (vegan diet) of 
plant foods are at risk of inadequate blood vitamin B6 
concentrations. Some studies indicate that vegetarians 
have comparable vitamin B6 status to omnivorous study 
populations (García et al., 2007).

Conclusion

Genome instability is strongly implicated in cancer, 
but a cause and- effect relationship remains to be 
proven. Although genome instability is very responsive 
to lowering with folic acid in most populations, other 
metabolicallyrelated B-vitamins, particularly vitamin 
B12 but also vitamin B6, have a role in preventing the 
elevation of tHcy and genome instability. Overall the 
nowaday studies indicate that vitamin B6 can be beneficial 
as a nutritional supplement, but can also be used as a 
pharmacological agent for cancer treatment.
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