RESEARCH ARTICLE

No Association Between Tea Consumption and Risk of Renal Cell Carcinoma: A Meta-analysis of Epidemiological Studies

Zheng-Hui Hu, Yi-Wei Lin, Xin Xu, Hong Chen, Ye-Qing Mao, Jian Wu, Xiang-Lai Xu, Yi Zhu, Shi-Qi Li, Xiang-Yi Zheng, Li-Ping Xie*

Abstract

Objective: To evaluate the association between tea consumption and the risk of renal cell carcinoma. Methods: We searched PubMed, Web of Science and Scopus between 1970 and November 2012. Two evaluators independently reviewed and selected articles based on predetermined selection criteria. Results: Twelve epidemiological studies (ten case-control studies and two cohort studies) were included in the final analysis. In a meta-analysis of all included studies, when compared with the lowest level of tea consumption, the overall relative risk (RR) of renal cell carcinoma for the highest level of tea consumption was 1.03 (95% confidence interval [CI] 0.89–1.21). In subgroup meta-analyses by study design, there was no significant association between tea consumption and renal cell carcinoma risk in ten case-control studies using adjusted data (RR=1.08, 95% CI 0.84–1.40). Furthermore, there was no significant association in two cohort studies using adjusted data (RR=0.95, 95% CI 0.81–1.12). Conclusion: Our findings do not support the conclusion that tea consumption is related to decreased risk of renal cell carcinoma. Further prospective cohort studies are required.

Keywords: Tea consumption - renal cell carcinoma - meta-analysis - epidemiological studies
Materials and Methods

Literature research

We searched PubMed, Web of Science and Scopus between 1970 and December 2012 using common keywords regarding tea consumption and renal cell carcinoma risk in case-control and cohort studies. For the literature search, we selected ‘tea’ for the exposure assessment (interview or questionnaire).

Results

The present study included twelve epidemiological studies (ten case-control (McLaughlin et al., 1984; Goodman et al., 1986; Talamini et al., 1990; Kreiger et al., 1993; Mellemgaard et al., 1994; De Stefani et al., 1998; Bianchi et al., 2000; Lee et al., 2007; Hu et al., 2009; Montella et al., 2009; Allen et al., 2011; Wang et al., 2012) and two cohort studies (Lee et al., 1993; Mellemgaard et al., 1994; De Stefani et al., 1998; Bianchi et al., 2000; Hu et al., 2009; Montella et al., 2009; Wang et al., 2012).

Data extraction

All searches were conducted independently by two evaluators, each of whom is a co-author of the present study. Disagreements between evaluators about selected studies were resolved by discussion. In instances in which data were insufficient or missing, we attempted to contact the authors of the articles to request the relevant data. Of the articles searched from the databases, those that did not meet selection criteria were excluded.

The following data were extracted from the studies included in the final analysis: study name (first author and year of publication), country and study design, study period (years), number of cases and controls, adjusted odds ratio (OR) or relative risk (RR) with 95% CI, level of tea consumption, adjustment factors and exposure assessment. Considering that renal cell carcinoma is a rare disease, the OR was assumed to be approximately the same as RR, and the RR was used as the study outcome. We used adjusted ORs or RRs with 95% CIs for meta-analysis, whenever possible. We also performed subgroup meta-analyses by the type of study design (case-control or cohort study), the geographical region of the studies (Europe, the USA/Canada or others) and type of exposure assessment (interview or questionnaire).

Statistical analysis

To determine whether to use the fixed- or random-effects model, we measured statistical heterogeneity between and within groups using the Q statistic, $P<0.05$ was considered statistically significant. We used fixed-effects methods if the result of the Q test was not significant. Otherwise, we calculated pooled estimates and confidence intervals assuming a random-effects model. While publication bias was not expected, we assessed this possibility using Begg’s funnel plots and Egger’s bias test. To validate the credibility of outcomes in this meta-analysis, sensitivity analysis was performed by sequential omission of individual studies. Analyses were conducted in Stata version 11.0 (Stata Corporation). All P values are two-tailed.

Table 1. Characteristics of the Included Studies on Tea Consumption and Renal Cell Carcinoma

<table>
<thead>
<tr>
<th>First author (year)</th>
<th>Country</th>
<th>Follow-up period</th>
<th>Ethnicity</th>
<th>No. of cases</th>
<th>No. of controls</th>
<th>Range of tea consumption</th>
<th>Variables of adjustment</th>
<th>Tea assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>McLaughlin et al. (1984)</td>
<td>USA</td>
<td>1970-1980</td>
<td>Caucasian</td>
<td>495</td>
<td>607</td>
<td>3 cups vs none</td>
<td>Age, cigarette smoking, and relative weight</td>
<td>Interview</td>
</tr>
<tr>
<td>Goodman et al. (1986)</td>
<td>USA</td>
<td>1977-1983</td>
<td>Caucasian</td>
<td>267</td>
<td>267</td>
<td>267 cups of tea vs none</td>
<td>Quenched index, scullulated coffee use, pack-years and chewing tobacco use</td>
<td>Interview</td>
</tr>
<tr>
<td>Talamini et al. (1990)</td>
<td>Italy</td>
<td>1986-1989</td>
<td>Caucasian</td>
<td>240</td>
<td>666</td>
<td>1 cup vs none</td>
<td>Age, sex, education, area of residence, and BMI</td>
<td>Interview</td>
</tr>
<tr>
<td>Kreiger (1993)</td>
<td>Canada</td>
<td>1986-1987</td>
<td>Caucasian</td>
<td>516</td>
<td>1556</td>
<td>1 cup vs none</td>
<td>Age, active cigarette smoking status, and confirmed Quenched index</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Stefani et al. (1998)</td>
<td>Italy</td>
<td>1992-2004</td>
<td>Caucasian</td>
<td>767</td>
<td>755</td>
<td>2.5 cups vs none</td>
<td>Sex, age, education, smoking, alcohol consumption, BMI, and physical activity</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Bianchi et al. (2000)</td>
<td>USA</td>
<td>1994-1997</td>
<td>Caucasian</td>
<td>1138</td>
<td>5039</td>
<td>>2.5 cups vs none</td>
<td>Age, sex, smoking, smoking status, pack-years of smoking, family history of kidney cancer, hypertension, BMI, and dietary factors (intake of fruits, vegetables, meat, fish, fat, coffee)</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Montella et al. (2009)</td>
<td>Italy</td>
<td>1997-2009</td>
<td>Caucasian</td>
<td>1187</td>
<td>509</td>
<td>>2.5 cups vs none</td>
<td>Sex, age, smoking status, alcohol consumption, BMI, and physical activity</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Hu et al. (2009)</td>
<td>Canada</td>
<td>2000-2003</td>
<td>Caucasian</td>
<td>250</td>
<td>299</td>
<td>2 cups vs none</td>
<td>Age, hypertension, BMI, smoking, parity and age at first birth, and vegetable consumption, alcohol intake and total energy intake</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Wang et al. (2012)</td>
<td>China</td>
<td>2009-2012</td>
<td>Asian</td>
<td>200</td>
<td>200</td>
<td>>2 cups vs none</td>
<td>Sex, age, smoking status, alcohol consumption, BMI, and physical activity</td>
<td>Questionnaire</td>
</tr>
</tbody>
</table>

Figure 1. Process of Study Selection
No Association Between Tea Consumption and Risk of Renal Cell Carcinoma

Table 2. Summary of Pooled Relative Risk (RRs) for Renal Cell Carcinoma by Study Design, Geographical Region, and Tea Assessment

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Number of studies</th>
<th>Pooled RR (95% CI)</th>
<th>Test for heterogeneity</th>
<th>Egger test</th>
<th>Begg test</th>
</tr>
</thead>
<tbody>
<tr>
<td>All studies</td>
<td>12</td>
<td>1.03(0.89–1.21)</td>
<td>0.000(71.4%)</td>
<td>0.703</td>
<td>0.573</td>
</tr>
<tr>
<td>Study design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case control</td>
<td>10</td>
<td>1.08(0.84–1.40)</td>
<td>0.000(73.8%)</td>
<td>0.713</td>
<td>0.325</td>
</tr>
<tr>
<td>Cohort</td>
<td>2</td>
<td>0.95(0.81–1.12)</td>
<td>0.067(70.2%)</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Geographical region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>4</td>
<td>1.01(0.87–1.18)</td>
<td>0.154(42.9%)</td>
<td>0.909</td>
<td>0.497</td>
</tr>
<tr>
<td>US/Canada</td>
<td>6</td>
<td>1.05(0.92–1.19)</td>
<td>0.036(58.1%)</td>
<td>0.162</td>
<td>0.091</td>
</tr>
<tr>
<td>Uruguay</td>
<td>1</td>
<td>1.6(0.7–3.3)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>China</td>
<td>1</td>
<td>0.34(0.21–0.55)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tea assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interview</td>
<td>4</td>
<td>0.99(0.50–1.98)</td>
<td>0.000(88.5%)</td>
<td>0.968</td>
<td>0.497</td>
</tr>
<tr>
<td>Questionnaire</td>
<td>8</td>
<td>1.02(0.91–1.14)</td>
<td>0.085(44.1%)</td>
<td>0.602</td>
<td>0.322</td>
</tr>
</tbody>
</table>

Discussion

This is the first meta-analysis evaluating the relationship between tea consumption and renal cell carcinoma. There has been considerable interest in the possible impact of tea consumption on renal cell carcinoma risk. In this meta-analysis of epidemiological studies of the association between tea and renal cell carcinoma including ten case-control and two cohorts studies, we found that tea consumption was not associated with reduced risk of renal cell carcinoma.

Many studies conducted on cell-culture systems and animal models as well as human epidemiological studies show that tea could afford protection against a variety of cancer types (Qin et al., 2007; Thakur et al., 2012; Zhong et al., 2012; He et al., 2013; Henning et al., 2013). Several laboratory studies have tried to investigate the link between tea and renal cell carcinoma (Yoshio et al., 1999; Gu et al., 2009). Most of tea research on renal cell carcinoma to date has focused on the effect and mechanism of green tea. It is generally agreed that many of the chemoprevention effects of green tea are mediated by polyphenols. The major catechins in green tea are epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate, epigallocatechin, and epicatechin. EGCG accounts for 50% to 80% of catechin in green tea.

Gu et al. (2009) found that EGCG inhibits growth and induces apoptosis in renal cell carcinoma through TFPI-2 overexpression. The nonsignificant findings regarding the effects of tea consumption on renal cell carcinoma in our meta-analyses contradict the results of previous experimental studies on this topic using in vitro renal cell carcinoma cell lines and in vivo animal models. The difference between the results from experimental studies and our meta-analyses is likely to be due to the lower quantities of human tea consumption compared to the doses used in experimental studies and the fact that

![Figure 2. Forest Plot Showing Risk Estimates from Case-control and Cohort Studies Estimating the Association Between Tea Consumption and Risk for Renal Cell Carcinoma](image)

![Figure 3. Begg’s Funnel Plot of Tea Consumption and Renal Cell Carcinoma, with Pseudo-95% CI](image)
bioavailability is an important factor for consideration.

As a meta-analysis of previously published observational studies, our study has several limitations that need to be taken into account when considering its contributions. First, as a meta-analysis of published studies in English, we are exposed to publication bias, although the present results seem to suggest that there was no evidence of publication bias. Second, our meta-analysis is likely affected by some misclassification of tea consumption. Tea exposure is mostly assessed regarding the number of cups of tea consumed daily or weekly. However, cup size may vary considerably. Third, there are two major types of tea, black tea and green tea, which may have different effects on the prevention of cancer. However, most studies included in our analysis provided general data on tea consumption other than detailed information on specific type of tea, which may result in inaccurate estimates. Fourth, it is known that in Asia, people consume large amounts of tea and this is an ideal population to study their action in health. However, only one study from China was included in this meta-analysis. Fifth, both cohort and case-control studies were included in the analysis, the difference in study design may probably bring bias in the results. Furthermore, because most studies were case-control ones, the meta-analysis could not cover the selection and recall bias from them.

In summary, our meta-analysis indicates that there is no association between tea consumption and renal cell carcinoma. The present findings should be evaluated from further additional prospective cohort studies.

Acknowledgements

This study was supported by grants from National Key Clinical Specialty Construction Project of China, Health sector scientific research special project (Grant No.201002010), Combination of traditional Chinese and Western medicine key disciplines of Zhejiang Province (Grant No. 2012-XK-A23), Key medical disciplines of Zhejiang province and Zhejiang Provincial Natural Science Foundation of China (Grant No. Z2090356; Grant No. LY12H05006).

References

No Association Between Tea Consumption and Risk of Renal Cell Carcinoma

