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Caveolin-1 and Pancreatic Cancer

Caveolin-1
	 Caveolae were originally identified as omega-shaped 
invaginations of the plasma membrane inepithelial cells 
(Smart et al., 1999), which were discovered by Palade in 
the 1950s (Casley-Smith et al., 1975). Currently, caveolae 
are considered integral transmembrane microdomains and 
critical components for the interactions between integrin 
receptors and cytoskeleton-associated signaling molecules 
(Cordes et al., 2007). Further, they are associated with 
various membranous structures, including the endoplasmic 
reticulum, Golgi, and plasma membranes (Parat et 
al., 2004). Caveolae are specialized structures mainly 
composed of cholesterols and sphingolipids. They are 
abundant in endothelia, muscle cells, adipocytes, and lung 
epithelial cells (Okamoto et al., 1998), and are implicated 
in several endocytic and trafficking mechanisms. The coat 
proteins required for caveolae formation are the three 
caveolins: caveolin-1, -2, and -3 (Fujimoto et al., 2000). 
Caveolin-1 and -2 are ubiquitously expressed in the human 
body, whereas caveolin-3 is found only in muscle tissue 
(Anderson et al., 1998). Caveolin-1 is the major structural 
protein in caveolae (Smart et al., 1994) and acts as a 
scaffold to organize multiple molecular complexes that 
regulate a variety of cellular events (Kato et al., 2004) such 
as cellular transformation, tumorigenesis, cell metastasis, 
and angiogenesis. 
	 However, the fact that it appears to act as both a tumor 
suppressor and oncogene, depending on the context, is 
especially intriguing. In ovarian (Prinetti et al., 2010), 

1Department of Pancreas and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 2Department of Oncology, Shanghai 
Medical College, Fudan University, 3Pancreatic Cancer Institute, Fudan University, Shanghai, China  &Equal contributors  *For 
correspondence: yuxianjun88@hotmail.com 

Abstract

	 Caveolin-1 is a scaffold protein on the cell membrane. As the main component of caveolae, caveolin-1 is involved 
in many biological processes that include substance uptake and transmembrane signaling. Many of these processes 
and thus caveolin-1 contribute to cell transformation, tumorigenesis, and metastasis. Of particular interest 
are the dual rolesof tumor suppressor and oncogene that caveolin-1 appear to play in different malignancies, 
including pancreatic cancer. Therefore, analyzing caveolin-1 regulators and understanding their mechanisms of 
actionis key to identifying novel diagnostic and therapeutic tools for pancreatic cancer. This review details the 
mechanisms of action of caveolin-1 regulators and the potential significance for pancreatic cancer treatment. 
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colon (Nimri et al., 2012), and breast cancer cells (Rao 
et al., 2012; Simpkins et al., 2012), caveolin-1 is down-
regulated and negatively correlated with the malignant 
potential of tumor cells. It is up-regulated and promotes 
cell proliferation and invasion in bladder (Thomas et al., 
2011), esophageal (Kato et al., 2002), and prostate cancer 
cells (Li et al., 2001). High expression of caveolin-1 has 
favorable prognoses in bile duct cancer and breast cancer 
(Murakami et al., 2003; Rao et al., 2012), but is correlated 
with poor prognoses in prostate, esophageal, renal, and 
non-small cell lung carcinoma (Li et al., 2001; Kato et 
al., 2002; Steffens et al., 2011). In pancreatic cancer, 
caveolin-1 is reduced compared to normal pancreaticor 
precancerous tumor tissue.

Pancreatic cancer
	 Pancreatic cancer is one of the deadliest cancers (Shi et 
al., 2012) and has been called the king of cancer because 
of its poor cure rate and prognosis (Siegel et al., 2012). 
Compared with other cancers, it has higher resistance to 
conventional treatments including surgery, radiation, and/
or chemotherapy (Diamantidis et al., 2008). Despite the 
fact that diagnostic techniques are rapidly developing, the 
early diagnosis of pancreatic cancer remains poor (Luo et 
al., 2008). Data indicates that the five-year survival rate 
ranges between 0.4 and 2 percent in the United States 
(Krechler et al., 2011). Furthermore, 75 percent of the 
patients who are diagnosed at an advanced stage die within 
1 year. Currently, surgical resection is the only treatment 
that results in long-term survival for pancreatic cancer 
patients.
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Table 1. Caveolin-1 Regulators
Regulatory Factor	 Method	 Outcome	 References

Forkhead box (FOXO)	 PI3K/AKT/FOXO pathway	 Promotion	 (Boreddy et al., 2011;
	 	 	 Roy et al., 2010)
Lipopolysaccharide (LPS)	 Inhibit NF-κB activation by preventing the formation 	 Suppression	 (Tiruppathi et al., 2008;
	 of IKK-γ/IKK complex and TLR4/MyD88 signaling 	 	 Ikebe et al., 2009)
High-density lipoprotein (HDL)	 Activate MAP kinase pathway through ERK1/2	 Suppression	 (Frank et al., 2001)
Stimulatory protein 1 (Sp1)	 Affect promoter activity	 Promotion	 (Dasari et al., 2006)
Estrogen receptorα (ERα)	 Methylate caveolin-1 gene promoter	 Suppression	 (Zschocke et al., 2003)
p53	 Bind caveolin-1 promoter sequence with E2F/DP-1	 Promotion	 (Lee et al., 2012)
Cholesterol	 Sterol regulatory element binding protein (SREBP) and Sp1	 Suppression	 (Llaverias et al., 2004)
Carbon monoxide (CO)	 Activate guanylatecyclase and p38 MAPK	 Suppression	 (Kim et al., 2005)
Vascular endothelial growth factor (VEGF)	 VEGF/MEK signal transduction pathway and protein kinase	 Suppression	 (Liu et al., 1999)
	 C/MEK/c-myc gene/androgen receptor pathway
Epithelial membrane protein 2 (EMP2)	 Promote formation of membrane lipid rafts containingGPI-APS	 Promotion	 (Wadehra et al., 2004)
Endothelial NO synthase (eNOS)	 Inhibit the catalytic activity of eNOS	 Promotion	 (Venema et al., 1997)
Reactive oxygen species (ROS)	 Catalase and N-acetylcysteine; prevent formation of	 Suppression	 (Rungtabnapa et al., 2011)
	 caveolin-1-ubiquitin complex
Src kinase	 Phosphorylate caveolin-1	 Suppression	 (Shields et al., 2011)
Na+/K+-ATPase	 Separate regulation of Na+/K+-ATPase in the transport process	 Promotion	 (Cai et al., 2008)
Breast cancer susceptibility gene 1 (BRCA1)	 Anti-caveolin-1 gene in caveolin-1 gene promoter	 Promotion	 (Wang et al., 2008)
Flotillin-1	 Prevent lysosomal degradation	 Promotion	 (Vassilieva et al., 2009)

Structure and Expression of Caveolin-1

	 Caveolin-1, a 21-24kDa integral membrane protein, 
is a principal component of caveolae membranes in vivo 
(Liu et al., 2013). Caveolae are involved in constitutive 
endocytic trafficking. Liquid-ordered domains are formed 
within the Golgi apparatus and thus the biogenesis of both 
caveolae and caveolae-related liquid-ordered domains 
initiate in the Golgi and are transported to the cell surface 
by vesicular organelles. Caveolin-1 is formed during 
endocytosis and recycled back to the cell membrane 
(Smart et al., 1999). Immunofluorescent staining of 
cells transfected with caveolin-1 indicated that, like the 
NH2 terminus, the COOH-terminal region is located on 
the cytoplasmic side of the plasma membrane. Using 
the anti-peptide antibodies and epitope tags targeting 
the N- and C-terminal, Glenney et al. found that the 
N-terminal and C-terminal are both located on the 
cytoplasmic side of the plasma membrane. The NH2 
terminus has a tyrosine that is phosphorylated by V-Src 
(Glenney et al., 1989) and the C-terminus has a cysteine 
palmitoylationsite (Dietzen et al., 1995). Studies have 
revealed that COOH-terminal palmitoylationis crucial 
for caveolin-1 to attach to the plasma membrane (Sowa 
et al., 2003). Both phosphorylation and palmitoylation 
occurintracellularly (Sargiacomo et al., 1993). Caveolin-1 
interacts with a variety of signaling molecules, including 
endothelial nitric oxide synthase (eNOS), heterotrimeric 
G proteins, adhesion molecules, nonreceptor tyrosine 
kinases, Src-family tyrosine kinases, and p42/44 mitogen-
activated protein kinase (MAPK). Residues 82-101 in the 
N-terminal region are called the caveolin-1 scaffolding 
domain (CSD) and serve tobind other molecules to the 
cell membrane (Arbuzova et al., 2000). Couet et al. found 
that the CSD was the area where caveolin-1 interacted 
with signaling molecules indicating that the CSD is the 
most important functional area ofcaveolin-1 (Couet et al., 
1997). Some factors have been identifiedthatinteract with 
the CSD and regulate caveolin-1 activity.

Caveolin-1 Regulation in the Human Body

	 In the pre-transcriptional and transcriptional stages, 

caveolin-1 is regulated mainly through cell signaling 
pathways. During the post-transcriptional stage, expression 
is mainly regulated through ubiquitination and lysosomal 
degradation. Caveolin-1 is degraded in the late endosome 
and lysosome. Generally speaking, the velocity of 
degradation is very slow. However, if caveolin-1 assembly 
is altered, the rate of decomposition is accelerated. The 
most likely explanation for this phenomenon is cholesterol 
consumption, which would inhibit the assembly of 
complete cytoskeletal proteins and cause caveolin-1 to 
be more easily decomposed (Hayer et al., 2010).
	 During both transcription and translation, caveolin-1 
expression is influenced by a variety of factors (mainly 
multiple signal transduction pathways) which results in 
changes to cellular physiological processes. The following 
sections detail how caveolin-1 expression is regulated. 

Significance of pre-transcriptional caveolin-1 regulation 
in pancreatic cancer
	 Pre-transcriptional regulation of caveolin-1 is mainly 
controlled by transcription factors and transcription-
related factors.
	 Forkhead box (FOXO): FOXO transcription factors are 
of vital importance in cellular proliferation, metabolism, 
and apoptosis downstream of PTEN, phosphoinositide 
3-kinase (PI3K), and AKT (Eijkelenboom et al., 2013). In 
thestationary phase of cell growth, FOXO induces stable 
expression of insulin receptors and regulates caveolin-1 
through thePI3K/AKT/FOXO pathway (Boreddy et 
al., 2011). Vanden et al. found that active FOXO binds 
directly to the caveolin-1promoter regionand activates 
transcription (Van et al., 2005). In pancreatic cancer, 
Roy SK et al. found that inhibition of the PI3K/AKT 
and MAPK/extracellular regulated protein kinase (ERK) 
pathways activates FOXO transcription and caveolin-1 
expression, leading to cell cycle arrest and apoptosis (Roy 
et al., 2010).
	 Lipopolysaccharide (LPS): LPS actswith NEMO [an 
essential modifier-binding domain of nuclear factor-kappa 
B (NF-κB)] to inhibit the formation of the IKK-γ and 
IKK complexes, thuspreventing the activation ofNF-
κB (a family of transcription factors) and caveolin-1 
expressionin vivo (Tiruppathi et al., 2008), NF-κB is a key 
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factor connecting inflammation with cancer progression. 
The idea that a tumor itself can act as a stimulator of 
chronic inflammation is becoming more widely accepted 
by oncologists (Zhu et al., 2008). Maier et al. found that 
NF-κB promotes epithelial-mesenchymal transition, 
migration, and invasion in pancreatic carcinoma cells 
(Maier et al., 2010). Ikebe et al. found that LPS promotes 
NF-κB activation and increases invasive ability through 
the TLR4/MyD88 signaling pathway (Ikebe et al., 2009).
	 High density lipoprotein (HDL): When NIH/3T3 
cells areexposedto HDL, caveolin-1 promoter activity 
isinhibited. This phenomenon suggests that HDL hasa 
direct negative impact on caveolin-1 transcription. Further 
research revealed that HDL can downregulate caveolin-1 
expression without affecting caveolin-2 expression by 
activating the MAP kinase pathway through ERK1/2 
activation (Frank et al., 2001). We also know that a high-
fat diet is a risk factor for pancreatic cancer and a high-fat 
diet increases caveolin-1 (Yang et al., 2007).
	 Stimulatory protein 1 (Sp1): Sp1 is one of the two 
transcription factors that bind thecaveolin-1 gene andaffect 
promoter activity (Chen et al., 2011). Sp1 is a central 
transcription factor that regulates a number of pathways 
critical to tumorigenesis, including tumor cell-cycle 
progression, apoptosis, angiogenesis, metastasis, and 
evasion of the immune system (Huang et al., 2012). Dasari 
et al. showed that oxidative stress enhances Sp1-stimulated 
caveolin-1 expression. In addition, other studies have 
shown that p38 MAPK is an oxidative stress-induced 
upstream regulatory factor of Sp1. Inhibition of p38 
MAPK prevents oxidative stress from inducing Sp1-
mediated caveolin-1 gene expression and premature cell 
aging (Dasari et al., 2006). Sp1 activation is also essential 
for the differential overexpression of vascular endothelial 
growth factor (VEGF), which is involved in pancreatic 
cancer angiogenesis and progression (Shi et al., 2001).
	 Estrogen receptorα (ERα): Estrogens are major 
promoters of cell proliferation in both normal and 
neoplastic epithelium. Two major ERs are ERα and 
Erβ (Kimbro et al., 2008). ERα acts as an estrogen 
transcription factor that stimulates estrogen target genes 
and regulates cell progression and growth, especially in 
breast epithelium (Singh et al., 2005). In neuroepithelioma 
cells, ectopic ERα inhibits caveolin-1 transcription and the 
caveolin-1 promoter is methylated (Zschocke et al., 2003). 
However, because caveolin-1 mutations occur in the early 
stages of mammary transformation, this observation 
suggested that caveolin-1 might be an upstream activator 
of Erα (Sotgia et al., 2006). There may be negative 
feedback regulation of caveolin-1 as the proliferation of 
pancreatic cancer cells is highly sensitive to estrogen in 
vitro (Konduri et al., 2007).

Significance of caveolin-1 transcription regulators in 
pancreatic cancer
	 p53: p53 is the strongest tumor suppressor gene and 
it regulates apoptosis, cell cycle arrest, and senescence 
(Lee et al., 2011). p53 binds directly to the caveolin-1 
promoter with the E2F/DP-1 and Sp1 transcription 
factors, thusincreasing caveolin-1 expression (Lee et al., 
2012). In human pancreatic ductal adenocarcinoma, low 

p53 transcript levelsareassociated with poor prognosis 
(Grochola et al., 2011). Much evidence indicates that p53 
provokes a classic proapoptotic response by delaying G1-
to-S progression (Gupta et al., 2010).
	 Cholesterol: Cholesterol is also a powerful regulator 
of gene expression. It carries out this activity by jointly 
binding the sterol regulatory element binding protein 
(SREBP) with Sp1. KLF11 [a Krüppel-like factor; 
also referred to as transforming growth factor-beta 
early inducible gene 2 (TIEG2)] inhibits Sp1/SREBP 
cholesterol-dependent gene expression (Llaverias et al., 
2004). High cholesterol intake increases in the incidence 
of pancreatic cancer (Takeyama et al., 2005).
	 Carbon monoxide (CO): CO (a product of 
hemeoxygenase activity) is an endogenous gaseous 
transmitter that exerts anti-proliferative effects (Schwer 
et al., 2013). CO affects caveolin-1 gene expression by 
activating guanylatecyclase and p38 MAPK. p38 MAPK 
down-regulates ERKs that inhibit caveolin-1 gene 
transcription (Kim et al., 2005). In pancreatic cancer, 
CO protects cells from apoptosis. Protection is mediated 
through the generation of cyclic GMP (cGMP) and 
the activation of cGMP-dependent protein kinases and 
guanylatecyclase (Gunther et al., 2002).
	 Vascular endothelial growth factor (VEGF): VEGF is a 
key mediator of angiogenesis and promotes proliferation, 
survival, migration of endothelial cells, and blood vessel 
formation and neovascularization (Ferrara et al., 2002). 
On the one hand, Liu J et al. found that activation of 
the VEGF/MEK signal transduction pathway decreased 
caveolin-1 while leaving caveolin-2 unchanged inhuman 
umbilical vein endothelial cells (Liu et al., 1999). In 
prostate cancer cells, the protein kinase C/MEK/c-myc 
gene/androgen receptor pathway increases caveolin-1 
(Wu et al., 2002). On the other hand, caveolin-1 also 
stimulates expression of VEGFvia AKT activation (Li 
et al., 2009). VEGF is a well-characterized mediator of 
tumor angiogenesis andfunctions primarily bybinding 
and activating the VEGF receptor 2. Angiogenesis is 
a characteristic of many malignant tumors, including 
pancreatic cancer (Dineen et al., 2008).
	 Epithelial membrane protein 2 (EMP2): EMP2, a 
tetraspan protein, facilitates plasma membrane delivery 
of certain integrins. EMP2 also contributes to the 
formation and trafficking of lipid rafts bearing glycosyl-
phosphatidyl inositol anchored proteins (GPI-Aps), thus 
reducing caveolin-1 expression (Wadehra et al., 2004). 
Down-regulation of caveolin-1 by EMP2 does not affect 
caveolin-1 translational efficiency, phosphorylation, 
or degradation. Protein half-life analysis showed that 
caveolin-1 decomposition was more rapid when mediated 
by EMP2 (Forbes et al., 2007).
	 eNOS:The eNOS protein binds caveolin-1 through its 
CSD (Razani et al., 2002). Caveolin-1 also functions as 
an eNOS inhibitor with a calcium/calmodulin cofactor 
(Ju et al., 2002). Enhanced renal caveolin-1 expression 
is linked to poor eNOS expression (Valles et al., 2007). 
Increased caveolin-1 is associated with inhibition of the 
catalytic activity of eNOS (Venema et al., 1997). There 
may be a feedback regulator to caveolin-1. In the model of 
pancreatic cancer liver metastasis, eNOS overexpression 
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attenuates both the number and size of tumors. In vitro, NO 
promotes tumor cell anoikis and limits invasive capacity 
(Decker et al., 2008).
	 Reactive oxygen species (ROS): ROS areproduced 
by cellular aerobic metabolism (Gough et al., 2011). 
Cells treated with oxidation have increased tyrosine 
kinase activity and decreased phosphatase activity 
(Vepa et al., 1997). Rungtabnapa found that catalase 
and N-acetylcysteine promote the ubiquitination and 
degradation of caveolin-1. In addition, exogenous 
hydrogen peroxide prevents the formation of the caveolin-
1-ubiquitin complex and inhibits caveolin-1 reduction 
(Rungtabnapa et al., 2011). Endogenous hydrogen 
peroxide also prevents the transport of newly synthesized 
caveolin-1 to the cell membrane. Palmitoylation of 
caveolin-1 is significantly inhibited in endothelial cells 
exposed to hydrogen peroxide (Parat et al., 2002). Park 
JH et al. found that hydrogen peroxide and methyl-beta-
cyclodextrin down-regulate caveolin-1. In pancreatic 
cancer, NADPH oxidase 4-mediated generation of ROS 
is proposed to have anti-apoptotic activity and thus confer 
a growth advantage to cancer cells. ROS transmit cell 
survival signals through the AKT/ASK1 pathway and their 
depletion leads to apoptosis (Mochizuki et al., 2006).
	 Src kinase: Src family kinases regulate cell 
proliferation, adhesion, and motility. They are frequently 
activated in human cancers and contribute to malignancy 
and metastasis (Di et al., 2011). Src kinase increases as 
a function of tumor progression and plays a role in the 
transition to malignancy. Further, itis associated with 
phosphorylation of the caveolin-1 gene Y14. More than 
60% of pancreatic cancer patients show increased c-Src 
activity, which is associated with poor prognosis (Shields 
et al., 2011). Src/Stat3 signaling plays a crucial role in 
tumor cell survival, proliferation, angiogenesis, and 
immune suppression (Nam et al., 2012).
	 Others: There are additional cellular signaling 
pathways, like transforming growth factor/PI3K, histone 
deacetylase, and cAMP that are associated with caveolin-
down-regulation that are not mentioned here (Zschocke et 
al., 2005). In contrast, oxidized LDL increases caveolin-1 
expression (Wu et al., 2009).

Post-transcriptional regulation
	 Post-transcriptional regulation of caveolin-1 mainly 
occurs through the decomposition process that is carried 
out through thelysosomal and ubiquitination degradation 
pathways.
	 Na+/K+-ATPase: High metabolism is a characteristic 
of malignancies and Na+/K+-ATPase provides energy 
for cellular metabolism. Na+/K+-ATPase is an important 
enzyme in the protein transport process. Cai T et al. found 
that caveolin-1 was significantly reduced on the cell 
surface when the Na+/K+-ATPase gene was knocked out. 
This is due to unilateral regulation of the transport process 
by Na+/K+-ATPase rather than an interaction between 
Na+/K+-ATPase and caveolin-1 (Cai et al., 2009).
	 Breast cancer susceptibility gene 1 (BRCA1): BRCA1 
is involved in multiple processes, such as cell growth, 
apoptosis, DNA damage repair, and transcriptional 
activation. In immunofluorescence studies, Wang Y 

et al. showed that BRCA1 might inhibit the invasive 
and metastatic abilities of cancer cells by inducing the 
redistribution of caveolin-1. In addition, the BRCA1 gene 
inhibits redistribution of caveolin-1 in the cell membrane 
and cytoplasm (Wang et al., 2008). BRCA1 mutations 
have been shown to drastically decrease survival rate 
in breast and ovarian cancer patients who carry them. A 
number of studies have shown that the third most common 
cancer associated with these mutations is pancreatic cancer 
(Lynch et al., 2005).
	  Flotillin-1: Flotillins are localized to lipid rafts 
independent of caveolin-1 and are the principal 
proteins associate with lipid rafts. These microdomains 
function in roles such as membrane trafficking, cell 
morphogenesis,and cell signaling (Evans et al., 2003). 
Flotillin-1 regulates caveolin-1 levels by preventing its 
degradation in lysosomes (Vassilieva et al., 2009).

Relationship between Caveolin-1 and 
Pancreatic Cancer

	 Pancreatic cancer progression is attributed to 
genetic and epigenetic alterations and a chaotic tumor 
microenvironment (Huang et al., 2012). Recent studies 
suggest that caveolin-1 plays important roles in promoting 
cancer cell development, migration, invasion, and 
metastasis (Thomas et al., 2011). Further research also 
suggests that caveolin-1 can impact cancer biology both 
positively and negatively. In tumor tissue, both tumor 
cells and blood vessels express caveolin-1. However, 
in peritumoral tissue caveolin-1 is mainly expressed in 
blood vessels and only occasionally expressed in ductal 
or parenchymal cells. Overexpression of caveolin-1 is 
associated with tumor size, grade, stage, and increased 
serum levels of CA19-9 (Tanase et al., 2009).
	 Caveolin-1 has recently been identified as a tumor 
metastasis modifier gene that affects cancer cell motility 
(Koleske et al., 1995; Yang et al., 1999). In contrast, loss of 
caveolin-1 leads to RhoC-mediated migration and invasion 
in metastatic pancreatic cancer cells (Thomas et al., 2011). 
Data also indicates that caveolin-1, with its dual function 
in cancers, is associated with tumor progression and 
inhibits proliferation and invasion (Mathew et al., 2011). 
Tumor cells have significantly higher caveolin-1 levels, 
especially in the tumor stroma. Caveolin-1 knockdown 
significantly induces cell apoptosis and enhances the 
radio sensitivity of cancer cells (Hehlgans et al., 2009). 
The caveolin-1 gene inhibits invasion of pancreatic 
carcinoma cellslikely through the Erk/MMP signal 
pathway, however, the mechanism remains unclear. This 
suggests that endogenous expression or re-expression of 
caveolin-1 could act to reduce the potential invasivenessof 
cancer cells (Han et al., 2010). Together, these findings 
strongly imply that caveolin-1 plays a critical role in 
pancreatic cancer development and progression and is 
a valuable biomarker for the disease. The majority of 
normal and adjacent normal pancreatic tissue cells are 
negative for caveolin-1, whereas pancreatic cancer tissue 
cells and stromal cells are strongly positive for caveolin-1. 
Caveolin-1 expression is positively correlated with tumor 
differentiation, disease stage, and tumor metastasis. 
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Caveolin-1 is also an oncogene that could promote 
invasion. In summary, a variety of data indicates that 
caveolin-1 might be a good candidate for a prognostic 
tumor marker and a potential target for therapeutic 
intervention (Bailey et al., 2008).

Five year view
	 Caveolin-1 is involved in a variety of cellular signal 
pathways and transmembrane transport. It is generally 
accepted that signaling proteins are proposed to use 
conserved caveolin-binding motifs (CBMs) to associate 
with caveolae via CSD. However, Collins BM et al. 
found CBM/CSD-dependent interactions are unlikely 
to mediate caveolar signaling (Collins et al., 2012). 
Its precise role as a tumor suppressor or oncogene in 
different human malignancies remains elusive. Caveolin-1 
regulates a variety of cellular events that include cellular 
transformation, tumorigenesis, cell metastasis, and 
angiogenesis. It is interesting to note that caveolin-1 is 
reduced in pancreatic cancer compared to normal tissue 
in precancerous tumors, such as pancreatic intraductal 
papillary-mucinous neoplasms (Terris et al., 2002). 
Caveolin-1 contributes to cellular resistance against 
genotoxic agents and thus its knockdown sensitizes human 
pancreatic tumor cells to ionizing radiation (Cordes et 
al., 2007). Based on this observation, caveolin-1 appears 
to be a tumor suppressor in pancreatic cancer. However, 
it is highly expressed in invasive tumors compared to 
noninvasive tumors (Terris et al., 2012). Huang C et al. 
found the FoxM1-caveolin signaling promotes pancreatic 
cancer invasion and metastasis (Huang et al., 2012). This 
review detailed the mechanisms that regulate caveolin-1 
expression in vivo and their significance in pancreatic 
cancer. Other mechanisms are being actively explored. 
At present, a variety of factors, such as HDL, SREBP1, 
and epidermal growth factor receptor, that regulate the 
expression of caveolin-1 have been identified, but the 
precise regulatory mechanisms remain unclear. In-depth 
research in this field will improve our understanding 
of pancreatic cancer and potentially highlight novel 
diagnostic methods and anti-cancer strategies.
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