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Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignancies, with a very poor prognosis.
Despite significant improvements in diagnosis and treatment in recent years, the long-term therapeutic efficacy
is poor, partially due to tumor metastasis, recurrence, and resistance to chemo- or radio-therapy. Recently, it was
found that a major feature of tumors is a combination of unrestrained cell proliferation and impaired apoptosis.
There are now 8 recognized members of the IAP-family: NAIP, c-IAP1, c-IAP2, XIAP, Survivin, Bruce, Livin
and ILP-2. These proteins all contribute to inhibition of apoptosis, and provide new potential avenues of cancer
treatment. As a powerful tool to suppress gene expression in mammalian cells, RNAi species for inhibiting IAP
genes can be directed against cancers. This review will provide a brief introduction to recent developments of

the application IAP-siRNA in tumor studies, with the aim of inspiring future treatment of HCC.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most
common tumors worldwide (Bosch et al., 2004). While
earlier diagnosis and more effective treatments mean
that the prognosis of HCC has significantly improved
in recent years, tumor recurrence and metastasis are still
major obstacles to long-term survival. Although liver
transplantation is considered a curative treatment for HCC,
the overall recurrence rate after the procedure, attributable
to distance metastasis or intrahepatic reappearance, could
be as high as 65% and 43% , respectively (Wong, 2002).

Apoptosis is a form of programmed cell death that
plays a crucial biological function in development and
homeostasis in both vertebrates and invertebrates. It is
also considered to be the major method of eradicating
tumors. Many regulators of apoptosis have been identified,
and one of these, inhibitor of apoptosis protein (IAP),
is documented to have abnormal expression in tumor
cells. The IAP gene, encoded by a viral gene, was first
identified in insect SF-21 cells infected by baculovirus,
could inhibit infected SF-21 cells from undergoing
apoptosis (Crook et al., 1993; Wei et al., 2008). Up to
now, 8 IAP-family members have been identified in human
cells: NAIP (BIRC1),c-IAP1 (BIRC2), c-IAP2 (BIRC3),
XIAP (BIRC4), Survivin (BIRCS), Bruce (BIRC6), Livin
(BIRC7), and ILP-2 (BIRCS8) (Vucic and Fairbrother,
2007). Members of the IAP family are defined by the
presence of a baculovirus IAP repeat (BIR) protein domain

(LaCasse et al., 2008), but some members of this family
(XIAP, c-IAP1, c-IAP2, and Livin) also have a RING
domain that allows these proteins to act as E3 ubiquitin
ligases (Eckelman et al., 2006). Although the main role
of IAP is to act as an endogenous inhibitor of caspases
(the main executioners of apoptosis) by binding to their
BIR domains, the E3 ubiquitin ligase activity gives IAPs
the ability to promote the ubiquitination and subsequent
proteasomal degradation of caspases, TRAF2, and
additional partners (Vucic and Fairbrother, 2007).
Caspases, the primary mediators of apoptosis, are
cytosolic cysteine proteases that, once activated, initiate an
irreversible cascade of events that culminates in rapid cell
death (Cryns and Yuan, 1998; Thornberry and Lazebnik,
1998). Caspase inhibition occurs mainly by binding to
the unique BIR domains of IAP. NAIP, c-IAP1, c-1IAP2,
and XIAP have three BIR domains, while other family
members possess only one BIR domain. In IAPs with
three BIR domains, the third BIR mediates the binding to,
and inhibition of caspase-9, an initiator caspase capable
of processing and thereby activating other caspases
(Srinivasula et al.,2001; Shiozaki et al., 2003). Interaction
of caspase-9 with the third BIR domain of IAPs prevents
its homodimerization, inhibiting its activity (Shiozaki et
al., 2003). The second BIR domain and the preceding
linker region cooperatively mediate the interaction of
IAPs with caspase-3 and -7, the effector caspases that
are activated by initiator caspases. Effector caspases
are the common downstream caspase involved in the

Department of General Surgery, Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China *For

correspondence: changhong@sdu.edu.cn

Asian Pacific Journal of Cancer Prevention, Vol 14, 2013 4943



Gang Li et al

activation of apoptotic pathways, and upon activation they
proteolytically cleave the cellular substrates with which
they interact. The binding of IAPs to caspases prevents the
interaction between caspases and their cellular substrates,
and thus inhibits the proteolytic degradation of the cell
that marks the final execution stage of apoptosis (Chai et
al., 2001; Huang et al., 2001).

One of the most efficient ways to inhibit specific
genes is by RNA interference (RNAi) technology, coined
the “Science Breakthrough of the Year” for 2002 by the
Journal of Science (Couzin, 2002). RNAI refers to a
group of related gene-silencing mechanisms, in which
the terminal effector molecule is a short antisense RNA
(Izquierdo, 2005). It is already a valuable, and widely
used, research tool for helping to understand genetic
abnormalities and the molecular mechanisms of disease
by silencing targeted genes, especially in cancer research
(Chang, 2007). RNAI is a post-transcriptional gene-
silencing tool that works by cleaving specific sequences of
mRNA to which the designed dsRNA is complementary.
These dsRNAs are processed and cut by the enzyme
Dicer, a member of the RNase {3 family of ribonucleases
(Bernstein et al., 2001), into 21-to-23-nucleotide short
interfering RNAs (siRNAs). The siRNAs are bound to an
RNA-induced silencing complex (RISC), through which
the double-stranded siRNA is unwound (Chang, 2007).
Meanwhile RISC, to which the antisense strand remains
incorporated, guides the complex to cleave and degrade
the perfectly complementary target mRNA (Karagiannis
and EI-Osta, 2005; Shankar et al., 2005).

Hepatocellular Carcinoma (HCC) is a major health
problem, being the sixth most common cancer worldwide
(Llovet and Bruix, 2008). The survival rate of patients
is low, due in part to aberrant tumor metastasis,
recurrence, and resistance to chemo- and radiotherapy.
The combination of unrestrained cell proliferation and
impaired apoptosis plays a major role in the progression
of tumorigenesis. Along with the identification of the IAP
family rendering tumor cells resistant to apoptosis in HCC
(Augello et al., 2009; Hung et al., 2012; Liu et al., 2013;
Wei et al.,2013) and the development of siRNA-producing
expression vectors, stable RNAi usage is now considered
a powerful tool for silencing IAP genes in HCC research.
The following section will review the recent development
of novel IAP-siRNA tools (particularly XIAP, Survivin,
and Livin) in tumor studies, and the promising future of
siRNA as a therapy for hepatocellular carcinoma.

Targeted silencing of XIAP by siRNA

Of all IAPs, XIAP (also known as ILP-1, MIHA or
BIRC4 (Vucic and Fairbrother, 2007)) is the most potent
inhibitor of caspases. XIAP can directly interact with
the initiator caspase, caspase-9, through its BIR2 and
BIR3 domains, suppressing its activation and hence the
activation downstream effector caspases, (Mansouri et
al.,2003)caspase-3 and-7 (Shi, 2002). Structure-function
analysis of XIAP showed that it uses the second BIR
domain, together with the immediately preceding linker
region, to bind to and inhibit caspase-3 and -7, and its third
BIR domain to specifically inhibit caspase-9 (Salvesen
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and Duckett, 2002). Since the effector caspases are the
executors of apoptosis, XIAP can potently block these
apoptotic pathways.

Increased XIAP expression has been reported in
variety of human tumors, including HCC (Shiraki et al.,
2003; Notarbartolo et al.,2004; Shi et al., 2008; Fabregat,
2009; Che et al., 2012), esophageal carcinoma (Zhang et
al., 2007), clear cell renal carcinoma (Ramp et al., 2004;
Bilim et al., 2008; Kempkensteffen et al., 2009), ovarian
carcinoma (Mansouri et al., 2003; Ma et al., 2009), and
Ilymphoma (Akyurek et al., 2006; Cillessen et al., 2008).
Shiraki K et al. reported that 14 out of 20 (70%) HCC
tissues demonstrated moderate or strong cytoplasmic
staining for XIAP by immunohistochemistry (Shiraki
et al., 2003). In addition, the median survival time for
patients with high XIAP expression is short compared with
patients with low or zero XIAP expression. Ramp et al.
also reported that XIAP expression was found in 137 of
145 (95%) clear-cell renal cell carcinomas cases (RCCs),
assessed by immunohistochemistry and western-blotting.
In the same patient population, multivariate stepwise Cox
regression analysis showed that, in addition to tumor
staging (p=0.00005) and grading (p=0.00004), XIAP
expression (p=0.018) is an independent prognostic factor
indicating a poor prognosis in clear-cell RCC (Ramp et
al., 2004).

Furthermore, Shi et al. established an HCC cell line,
HCCLM3, stably expressing an siRNA construct against
XIAP, in which more than 80% of XIAP was inhibited
by 120 hours. These XIAP-knock-down HCCLM3 cells,
or cells with high XIAP expression as a negative control,
were injected into the flank of nude mice. Necropsy on
the 42nd day indicated that the average tumor volume at
the injection sites was not statistically different between
the control and XIAP-knock-down group (0.69+0.15
cm?® versus 0.6620.26 cm®, p=0.865, one-way analysis
of variance). Although pulmonary metastasis could
be detected in both groups at a 100% rate (5/5 in each
group), confirmed by histological examination, analysis
of the number of metastatic foci revealed a significantly
reduced ability of HCCLM3 cells to establish individual
metastatic foci (approximately a 40% reduction). These
observations therefore suggest that altered expression of
XIAP did not significantly affect the growth of tumor cells
at the primary site, but instead affected the prevalence
of metastasis, as revealed by reduced metastatic foci in
the lung (Shi et al., 2008). Over-expression of XIAP was
also associated with resistance to apoptosis, an enhanced
invasiveness in vitro, which could contribute to increased
metastatic foci in vivo and a subsequently reduced survival
time. XIAP expression could therefore be an independent
prognostic factor, and novel therapeutic target for the
genetic treatment of HCC patients.

Prospectively, the discovery of siRNA brings a new
hope for HCC therapy. Chen et al. revealed that the cell
line HepG2 exhibits increased sensitivity to spontaneous
apoptosis or anti-tumor agent-stimulated apoptosis
when XIAP was silenced by siRNA. After successful
transfection, XIAP expression was down regulated at
both the mRNA and protein levels. They found that the
non-silenced control group showed significantly elevated



apoptosis rates at 24 and 48 hours compared with the
XIAP-siRNA transfected group. They also observed
different apoptosis rates after treatment with Methotrexate
(MTX). Flow cytometry analysis confirmed these
observations: after adding 5 or 10 mg/ml MTX to cells
for 24 hours, the level of apoptosis in cells transfected
with XIAP-siRNA was 26.7% and 32.2%, respectively,
compared with levels of 4.6% and 17.5% in the non-
silenced control group. Forty-eight hours after adding
MTX, the corresponding levels of apoptosis were 38.4%
and 44.6% compared with levels in the control group of
6.3% and 21.1%, respectively (p< 0.05). This demonstrates
that siRNA can specially and efficiently knockdown XIAP
resulting in enhanced apoptosis, sensitizing HCC cells to
chemotherapy (Chen et al., 2006). Similar results were
also found in human pancreatic carcinoma (Shrikhande et
al.,2006; Giagkousiklidis et al.,2007; Ruckert et al.,2010;
Buneker et al.,2012), glioma (Hatano et al., 2004), breast
cancer (Lima et al., 2004; Wang et al., 2012), ovarian
carcinoma (Ma et al., 2009), melanoma (Hiscutt et al.,
2010) and renal cell cancer (Bilim et al., 2008). XIAP can
therefore be molecularly targeted by siRNA, which may
ultimately result in a novel cancer therapy. However not
all clinical samples from HCC patients are XIAP-positive
(Shi et al.,2008), so it may not be an effective therapeutic
tool for all cases of HCC.

Targeted silencing of Survivin by siRNA

Survivin (TTAP or BIRCS5 (Vucic and Fairbrother,
2007)) is the smallest human IAP protein, consisting of
a single BIR domain, and a COOH-terminal a-helical
coiled-coil domain. It is found associated with polymerized
microtubules through its coiled-coil domain. Survivin has
four variants (Survivin-AExon3, Survivin-2B, Survivin-
20 and Survivin-3B) that are formed by alternative
splicing of Survivin pre-mRNA, and each isoform has
diverse cellular localization.

Over-expression of survivin has been detected in
numerous human tumors, including colorectal cancer
(Sprenger et al., 2011; Ge et al., 2013), oral squamous
cell carcinoma (Li et al., 2012), leukemia (Yahya et al.,
2012; Yang et al., 2013), and HCC (Augello et al., 2009;
Liu et al., 2013; Wei et al., 2013). Claudia et al. found
that Survivin mRNAs were significantly overexpressed
in hepatocellular carcinoma tissue compared with non-
neoplastic tissue (FC =6.86,p<0.001). They also revealed
that an elevated Survivin mRNA level has a significant
correlation with high tumor stage (pT3 and pT4, p=0.03),
high tumor grade (III and IV, p= 0.01), and vascular
invasion (p=0.001). Although Survivin over-expression
showed no correlation with overall disease outcome,
there was a trend for decreased survival in patients with
high survivin expression (p=0.09). Interestingly, they
found that Survivin immunoreactivity was elevated
in the cytoplasm of cirrhotic liver cells, while HCC
cells generally showed weak cytoplasmic staining, and
nuclear Survivin staining was found only in five HCC
samples (12.5%). Although samples of HCC with high
levels of Survivin were correlated with a shorter overall
survival, Survivin immunoreactivity was not associated
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with clinical pathological type and survival time, since
this trend did not reach statistical significance (p= 0.39)
(Augello et al., 2009).

This discrepancy may be explained by the diverse
variants (Li, 2005), their localization, and the multi-
functional role of Survivin, which is an apoptosis-related
and cell cycle protein (Altieri, 2003). There is growing
evidence to suggest an additional role of Survivin in non-
cancerous tissues. Takashima et al. reported that levels
of Survivin mRNA increased during the progression
of chronic liver injury, suggesting that Survivin might
be an important factor for the survival of hepatocytes
(Takashima et al., 2005). In addition, Mengjie et al
reported that Survivin is unmethylated in cancer, but
selectively methylated in normal tissues. This suggests that
the targeting of Survivin for cancer treatment showed no
obvious toxicity to normal tissues and cells (Bhattacharyya
and Lemoine, 2006).

Survivin, similar to other IAPs, is also involved in the
resistance of tumor cells to anti-cancer agents including
chemotherapy drugs, and ionizing radiation (Zaffaroni et
al.,2005; Capalbo et al.,2007). Capalbo et al. reviewed the
role of Survivin for radio- or chemotherapy, and found the
value of Survivin as a predictive marker for the treatment
response to radiotherapy or chemotherapy is not reliable,
even though they saw a trend towards high expression of
Survivin correlating with an enhanced resistance to radio-
or chemotherapy (Capalbo et al., 2007). In contrast, the
silencing of Survivin by siRNA can increase apoptosis and
sensitize tumor cells to chemo- and radiotherapy (Fuessel
et al.,2006; Wu et al., 2007; Yang et al., 2008; Liu et al.,
2009b; Song et al., 2009; Zhang et al., 2010; Liu et al.,
2013). Wu et al. reported that the expression of Survivin
in HepG2 cells is significantly reduced after transfection
with Survivin siRNA groups (especially in 200 nmol/L
siRNA transfection group) compared with control
groups, as assessed by western blotting. The apoptotic
index of HepG2 cells transfected with Survivin siRNA
was significantly increased (most significantly in the
200 nmol/L siRNA groups), analyzed by flow cytometry.
Reduced expression of Survivin could also up regulate the
activity of caspase-3 (53.4+1.31 in control groups, versus
89.3+2.87 in 200 nmol/L siRNA groups), and sensitize
HCC cells to Cis-Diaminedichloroplatinum (DDP) (Wu
et al., 2007). Song et al. reported that the silencing of
Survivin in the HCC cell line SMMC-7721/ADM by
siRNA led to reduced expression of the lung resistance
related protein (LRP), a protein linked to chemo-resistance
in HCC, and reversed resistance to chemotherapy in
hepatocellular carcinoma. They injected SMMC-7721/
ADM cells into nude mice to establish xenograft tumors,
and then treated with Survivin-specific siRNA combined
with low-dose adriamycin (ADM). Tumor growth was
significantly inhibited, and no obvious signs of toxicity
were observed. Specifically, the food intake, reaction to
environmental stimuli, circulating white blood cell count,
and transaminase levels were all comparable between the
siRNA-treated and control mice. In contrast, the group
treated with high-dose ADM displayed obvious systemic
toxicity, myelosuppression, and liver damage (Song et
al., 2009). These data not only reveal that depletion of
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Survivin by siRNA could increase the sensitivity of tumor
cells to chemotherapy in vivo, but also allays concerns
that Survivin-siRNA is toxic to normal human tissues or
cells expressing Survivin.

Targeted silencing of Livin by siRNA

Livin, also known as ML-IAP, KIAP, or BIRC7 (Liu et
al.,2007), contains a single BIR domain, and a C-terminal
RING finger domain. Two splice variants (Livin-o and
Livin-B) have been identified, caused by alternative
splicing of Livin mRNA. Livin-a has an additional 18
amino acids between the BIR and RING domains than
the Livin-f3, allowing the formation of a linker a-helix.

However, the mechanism of action for the anti-
apoptotic effects of Livin remains controversial. Most
IAPs function by inhibiting the activity of caspases
through direct interactions via their BIR domains. In
support of this mechanism of action, Vucic et al. reported
that Livin inhibited caspase-9 directly through binding to
its BIR domain (Vucic et al., 2000; Vucic et al., 2002).
Although Livin has a RING domain, allowing it to act as
E3 ubiquitin ligase, the importance of the RING domain
for the anti-apoptotic actions of Livin is unclear (Liu et
al.,2007). Kasof et al. reported that the C-terminal RING
domain of Livin might mediate its subcellular localization
(Kasof and Gomes, 2001). However, subsequent work
carried out in the Vucic laboratory found that the inhibitory
effect of Livin on caspase-3 and caspase-9 is much weaker
than that of XIAP (Vucic et al., 2005). This left an open
question of how Livin inhibits apoptosis. Its mechanism
of action was revealed after the identification of SMAC/
DIABLO, a mitochondrial protein that can specially
bind to BIR domains and block the anti-apoptotic effects
of IAPs (Chai et al., 2000; Liu et al., 2000; Wu et al.,
2000). Studies revealed that there is a very high-affinity
interaction between Livin and SMAC, which competes
with the XIAP-SMAC interaction and inhibits apoptosis
by sequestering SMAC, preventing it from antagonizing
XIAP-mediated inhibition of caspases (Vucic et al.,
2005). Livin has therefore been described as blocking the
inhibition of XIAP, rather than as a direct suppressor of
caspases (Liu et al., 2007).

Although Livin can be detected in the placenta, normal
testis, spinal cord and lymph nodes, it is not expressed
in most normal differentiated tissues and cells (Lin et
al., 2000; Vucic et al., 2000; Ashhab et al., 2001; Kasof
and Gomes, 2001; Liu et al., 2007). However, it is highly
expressed in several cancers, such as melanoma, cervical
cancer, gastric cancer, pancreatic cancer, leukemia and
lymphoma, non-small cell lung cancer (NSCLC), and
carcinoma of the breast, prostate, bladder, and liver
(Gazzaniga et al., 2003; Augello et al., 2009; Liu et al.,
2009a; Yuan et al.,2009; Wang et al., 2010; El-Mesallamy
etal.,2011; Lazaretal.,2012). For example, Claudia et al.
found that Livin mRNA was significantly over-expressed
in liver cancer tissue compared with non-neoplastic
tissue (FC=2.33, p<0.001), although Livin expression
showed no correlation with disease outcome (Augello et
al., 2009). Studies of Livin expression in patients with
nasopharyngeal cancer (Xiang et al., 2006), colon cancer
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(Takeuchi et al., 2005a), metastatic melanoma (Takeuchi
et al., 2005b), and lung cancer (Tanabe et al., 2004) also
showed no correlation with clinical outcome. However
in neuroblastoma and bladder cancer, Livin was reported
to be a prognostic factor. Gazzaniga et al. used reverse
transcription-PCR (RT-PCR) to measure Livin-o and
Livin-f expression in 30 bladder cancer patients. They
found that 23% (7/30) of the cancerous tissues showed
expression of Livin-a, but not Livin-[3, while none of the
assayed normal tissue samples exhibited expression of
either Livin isoform. In the 30 cancer patients, median
relapse-free duration of patients with increased Livin-o
expression was 3.5, compared with 27.2 months in patients
without increased Livin-a (p<0.0001). Elevated Livin-a
expression was therefore risk factor for relapse in patients
with bladder cancer. However, Livin-a expression did not
correlate with the known prognostic variables of stage,
grade, and multi-centricity of the tumor (Gazzaniga et
al., 2003). In additional studies, Wang et al. reported
that, out of 40 gastric carcinoma tissues evaluated by
RT-PCR and western blot, 19 patients (47.5%) showed
elevated expression of both mRNA and protein Livin-o
and Livin-f. However, in paracancerous tissues and
benign lesions of gastric mucosa, there was no detectable
expression of either mRNA isoform. Their data also
showed that Livin expression was positively correlated
with lymph node metastases and histologic grade (p<0.05),
but not with age, gender, or the extent of tumor infiltration
(Wang et al., 2010).

Livin expression in neoplasms has also been linked
with increased aggressive behavior of tumor cells,
including decreased spontaneous apoptosis, and reduced
sensitivity to chemotherapeutic agents and ionizing
radiation. These observations could be reversed by
treatment with Livin siRNA both in vitro and in vivo. For
example, Liu et al. constructed a sSiRNA expression vector
targeting Livin, named pU-siLivin, and the human HCC
cell line SMMC-7721 was transfected with this plasmid.
After successful transfection, RT-PCR and western
blotting were used to evaluate Livin expression at the
mRNA and protein level, respectively. They observed
that mRNA expression of Livin-a and Livin-f3 in the pU-
siLivin transfected cells were reduced by >50 and 73%,
respectively, and that protein levels of Livin-o. and Livin-§
were decreased by 76 and 80%, respectively. Notably, the
silencing of Livin significantly reduced the resistance to
apoptotic stimuli, proliferation, and invasive capacity of
SMMC-7721 cells. Specifically, the number of apoptotic
cells induced by UV-irradiation increased approximately
8-fold in the pU-siLivin transfectants compared with the
control cells (p<0.05), while the cell growth index of the
transfected group was significantly decreased by days 3
and 4 after plating compared with the two control groups
(P<0.05). In addition, flow cytometric analysis revealed
that pU-siLivin induced cell cycle arrest in SMMC-7721
cells at the G1 phase of the cell cycle, and that the number
of cells in the G1 phase increased from 40.1 to 70.72%,
while the number of cells in the S phase decreased from
44.96 to 9.7%. Finally, Livin siRNA-transfected cells
showed approximately 9-fold reduced ability to penetrate
through matrigel-coated membranes compared with



control (P<0.05) (Liu et al., 2010).

In SGC-7901 gastric cancer cells, Wang et al. found
a significantly decreased cell number at 72 and 96 h after
plating in the siRNA-Livin transfected group compared
with the negative control and parental cell group
(p<0.01). In addition, the spontaneous apoptotic rate was
significantly increased in the transfected group (p<0.05).
When the sensitivity of these cells to 5-fluorouracil and
cisplatin was tested, MTT assays revealed that the siRNA-
Livin transfectants were more sensitive to cytotoxic
drugs than the negative control group. The number of
apoptotic cells induced by 5-fluorouracil and cisplatin in
the transfected group was 2.5-3-fold elevated compared
with control (p<0.001) (Wang et al., 2010). Similar data
were reported after down-regulation of Livin by siRNA
in NSCLC (Crnkovic-Mertens et al., 2006; Yuan et al.,
2009), neuroblastom (Dasgupta et al., 2010), malignant
melanoma LiBr (Wang et al., 2007), human Bladder
Cancer T24 (Yang et al., 2010), human glioma (Yuan et
al., 2012) and colon cancer cell lines (Oh et al., 2011).
Specific siRNA targeting of Livin can therefore increase
spontaneous apoptosis, and the sensitivity of tumor cells
to chemotherapy in vitro. In a xenograft model, Oh et al.
reported that siRNA targeting of Livin could significantly
decrease the tumor volume. After palpable tumors had
been created by injection of Viable HCT116 colon
cancer cells (2.0 x in 100 pL PBS) into the right flank of
4-week-old male nude mice, tumors were treated weekly
for 4 weeks by direct intra-tumoral injection with varying
doses (10, 20, or 50 umol/L) of siRNA manufactured
with atelocollagen to achieve effective delivery (Oh et
al., 2011). The mean tumor volume was significantly
decreased in the group treated with siRNA compared with
the control group in a dose-dependent fashion. There were
no significant alterations in body weight in the siRNA-
treated group, and no toxic reaction was detected in the
kidney, liver, or brain of the mice.

Targeted silencing of c-IAPs and other
members of IAP family by siRNA

Cellular IAP1 and IAP2 (c-IAP1 and c-IAP2) are
closely related (in terms of amino acid composition,
structure, and function) members of the IAP family,
consisting of three BIR domains at their N-terminii, one
RING domain near the C-terminus, and a CARD (caspase
activation recruitment) domain between the BIR and
RING domains. Through binding to TNFR-associated
factor-2 (TRAF2), c-IAP1 and c-IAP2 directly interact
with TNF-a signal transduction (Rothe et al., 1995). The
c-IAPs inhibit TNF-a-induced apoptosis mainly via the
TNF-a receptor-2, which is comprised of the “TNFR2-
TRAF Signal Complex”. Inhibition of this complex
requires co-expression of TRAF1, TRAF2, and both
c-IAPs, which activates NF-»B signaling. NF-»B is a
transcription factor that inhibits the apoptotic response
induced by TNF-o and other stimuli by blocking the
activation of the initiator caspase, caspase-8 (Tartaglia
and Goeddel, 1992b; Tartaglia and Goeddel, 1992a;
Smith et al., 1994; Rothe et al., 1995; Wang et al., 1998).
Varfolomeev et al. reported that c-IAP1 and c-IAP2 were
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critical mediators of TNF-a-induced NF-xB activation,
and found that the absence of both c-IAP1 and c-IAP2
sensitized cells to TNF-o-induced cell death (Varfolomeev
et al., 2008).

Bruce, also known as Appollon or BIRCS6, is the
largest member of the IAP family and was first identified
in the mouse. It is a large, 530 kDa membrane-associated
protein that contains a BIR domain at its N-terminus,
and an E2 ubiquitination motif (Ubc) at its C-terminus
(Hauser et al., 1998; Chen et al., 1999). Although Bruce
is upregulated in certain cancers (such as gliomas) that
are resistant to specific DNA-damaging agents, treatment
with antisense oligonucleotides against Bruce (Chen et al.,
1999) and Bruce-siRNA (Qiu et al., 2004) re-sensitized
cells to the apoptosis induced by DNA-damaging agents,
it remains unclear how Bruce inhibits apoptosis. Some
studies have reported that Bruce acts downstream of Bcl-2/
Bcl-x1 (Qiu et al., 2004; Ren et al., 2005), which inhibit
the release of caspase activators from the mitochondria
(Merry and Korsmeyer, 1997; Kroemer and Reed, 2000).
It is therefore possible that Bruce, like other IAPs, inhibits
caspases. Additional lines of evidence have revealed that
Bruce gene silencing induces apoptosis by stabilizing p53,
and activating caspase-3 (Ren et al., 2005; Lopergolo et
al., 2009).

Neuronal apoptosis inhibitory protein (NAIP),
previously linked to spinal muscular atrophy (SMA)
(Kesari et al.,2005), Alzheimer’s disease (Cotman, 1998),
and Parkinson’s disease (Hartmann et al., 2000), was the
first member of the IAP family to be cloned (BIRC1) in
1995. NAIP is a 160 kDa protein that contains a cluster
of three BIR domains at N-terminus, a central nucleotide-
binding oligomerization domain (NOD), and a C-terminal
leucine-rich repeat (LRR) domain (Davoodi et al., 2004).
The NOD and LRR domains make NAIP unique among
the IAPs, and suggest that NAIP activity is regulated
differently from other members of the family (Davoodi
etal.,2004). NAIP directly inhibits the cell death effector
proteases, caspase-3 and caspase-7, through its BIR
domains (Maier et al., 2002), and associates with the
initiator caspase, caspase-9 to inhibit apoptosis.

Inhibitor of apoptosis protein (IAP)-like protein-2
(ILP-2), also known as Ts-IAP or BIRCS, is the most
recently identified member of the IAP family, and is
closely related in sequence to ILP-1, or XIAP. Despite its
high homology to ILP-1, ILP-2 is encoded by a distinct
gene, and, under normal circumstances, is only expressed
in the testis (Richter et al., 2001). In contrast to ILP-1,
ILP-2 contains only one BIR domain at its N-terminal
region, and a RING finger domain at its C-terminus.
Although ILP-2 is structurally similar to ILP-1,ILP-2 has
no protective effect on Fas or TNF-a-mediated apoptosis.
Bettina et al. (Richter et al., 2001 )reported that ILP-2 could
potently inhibit apoptosis by stimulating over-expression
of Bax to prevent cytochrome c release, and thus inhibit
formation of the Apaf-1-caspase-9 holoenzyme, which
induces the activation of the downstream effector caspase,
caspase-3. ILP-2 therefore blocks the intrinsic apoptotic
pathway, and represents a novel therapeutic target that
would sensitize tumor cells to apoptosis when silenced.

These members of the IAP family all have a
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documented association with malignancies, including
squamous cell carcinoma, breast cancer, leukemia, colon
cancer, prostate cancer, and hepatocellular carcinoma
(Smith et al., 1994; Notarbartolo et al., 2002; Endo et al.,
2004; Zender et al., 2006; Choi et al., 2007; Lopergolo
et al., 2009). Endo et al. reported that NAIP is expressed
in colon cancer, and that its expression is higher young
patients compared with the elderly (p<0.05) (Endo et
al., 2004). Ki et al. detected Bruce expression in patients
with leukemia, and revealed that its over-expression was
associated with resistance to chemotherapy and poor
prognosis in childhood acute myeloid leukemia (Sung
et al., 2007).

Some family members have been studied in additional
cell lines. For example, Bruce has been silenced by siRNA
in the human lung cancer cell line H460 (p53+/+) (Ren et
al.,2005), HeLa cells (Qiu et al., 2004; Chu et al., 2008),
and HT-1080 cells (Chu et al., 2008), leading to reduced
resistance to apoptosis and sensitization of tumor cells
to anti-tumor agents. Importantly, much of the research
in to the newer IAP family members mentioned here
(c-IAPs, Bruce, NAIP, and ILP-2) has been carried out
in studying a combination with XIAP, Survivin or Livin,
so understanding their independent roles in tumorigenesis
requires additional studies.

Co-expression of IAPs in Hepatocellular
Carcinoma

Although previous reports have documented the
expression of TAP family members, including XIAP,
Survivin, Livin, and c-IAPs, in hepatocellular carcinoma,
most studies focus on the expression of a single IAP and
its significance in HCC. To better understand the family as
a whole, Augello et al. set out to evaluate the expression
of all IAP family members in human HCC. They found
that the mRNA of NAIP, c-IAP1, c-IAP2, XIAP, Survivin,
Bruce, and Livin were all expressed at detectable levels in
each HCC case tested, and that only NAIP was expressed
at a slightly lower level in cancerous tissue compared
with non-neoplastic tissue (Augello et al., 2009). They
concluded that Kupffer cells, which are abundant in
non-neoplastic liver tissue, express NAIP, accounting
for this unexpected observation. The significance of the
elevated expression of IAP family members in HCC differs
dramatically. For example, high Survivin mRNA levels
significantly correlate with advanced tumor stage, high
tumor grade and vascular invasion, while high c-IAP2
mRNA levels are significantly correlated with the absence
of paraneoplastic capsules (p=0.02). In contrast, high
NAIP mRNA levels correlate with a pseudoglandular
histotype (p=0.03), but high XIAP expression correlates
with significantly shorter overall patient survival. This
research may therefore provide useful information to allow
combination hepatocellular carcinoma siRNA therapy.

Conclusion and future directions

It is now widely accepted that dysregulated apoptosis
plays a major role in the development of cancer. The
dysfunction of apoptotic pathways, and dysregulated
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cellular proliferation, will ultimately lead to tumorigenesis.
Although there are many different regulators or apoptosis
that can render tumor cells resistant to apoptosis both
in vivo and in vitro, the IAP family remains one of the
most promising therapeutic candidates. Moreover, cancer
cells that over-express IAP family members will become
increasingly resistant to standard chemo- or radiotherapy
based treatments. In this context, targeting IAPs by siRNA
brings new potential for cancer treatment because of its
verified association with enhancing the sensitivity of
tumor cells to apoptosis, and reduced resistance to anti-
tumor agents. The identification of IAPs in hepatocellular
carcinoma tissue provides the foundation of siRNA as
a HCC genetic therapy, while the subsequent siRNA
targeting of IAPs in HCC presents a promising strategy
for HCC research.

However, not all clinical samples from HCC patients
test positive for a single IAP protein, and different
members of the IAP family act via different mechanisms.
Moreover, some members of the IAP family can interact,
and/or have a coordinated mechanism of action. For
instance, Claudia et al. reported that all measured IAPs
(NAIP, c-IAP1, c-IAP2, XIAP, Survivin, Bruce and
Livin) were expressed at detectable levels in liver cancer
tissues (Augello et al., 2009). This may be an obstacle for
HCC genetic therapy using single IAP-siRNA. However,
one way of improving the effectiveness of siRNA as a
HCC treatment may be to simultaneously block several
members of IAP family in liver cancer tissues, which can
be achieved by constructing siRNAs to directly target
multiple IAP genes. It may taherefore be necessary to
construct an siRNA cocktail, which is a vector containing
different siRNAs for specifically knocking down different
members of the IAP family (Caldas et al., 2006).

Additionally, recent studies revealed that certain
members of the IAP family are expressed in normal
tissues, such as Survivin, Livin, and c-IAPs. Esposito et
al. reported that c-IAP1 was important in the regulation
of apoptosis in the normal pancreas, but that its role in
the neoplastic pancreas depended on its sub-cellular
localization (Esposito et al., 2007). This brings concerns
over the use of siRNA against IAPs as a cancer therapy,
since their use may be toxic to normal tissues expressing
IAPs. Although the treatment of xenograft tumors in
nude mice with siRNA revealed no obvious whole-body
toxicity (Song et al., 2009; Oh et al., 2011), the potential
effect of JAP-siRNAs on normal tissues remains unclear.
However, tissue-specific targeted delivery of the siRNA
may be helpful in potentially toxic effects of IAP-
siRNAs in normal tissues. This is now possible, since
the identification of polymerase II promoters, some of
which have been tested clinically, and have been proven
to be tissue-specific (Dickins et al., 2007; Giering et al.,
2008). Polymerase II promoter—driven siRNA to silence
HBYV gene expression was proven to be an effective and
safe therapeutic in transgenic HBV mice, while control
mice receiving the same hairpin siRNA under the control
of a U6 promoter died of liver toxicity. It may therefore
be challenging to provide a more efficient delivery system
in the future application of IAP-targeting siRNA in HCC,
requiring more tumor-specific delivery mechanisms.



Previous reports suggested that strategies using
combination therapy with current modalities are likely
to be the basis of future successful cancer therapy
(Bhattacharyya and Lemoine, 2006). Expression of the
IAP family is regulated by various stimuli. For example,
growth factors, cytokines, hormones, anticancer agents,
and kinases inhibitors can all regulate the expression
of Survivin (Zhang et al., 2006). Specifically, the anti-
apoptotic properties of VEGF and IL-11 appear to mediate
the induction of Survivin in endothelial cells (Li, 2003),
since it has been shown that VEGF is strongly associated
with the expression of Survivin in hepatocellular cancer
(Zhu et al., 2005), and breast cancer (Ryan et al., 2006).
Another reasonable strategy to facilitate the siRNA
targeting of IAPs in HCC may therefore be to block the
interaction of multiple stimuli and IAP members, either
subsequently or simultaneously.

In conclusion, we believe there the clinical
application of IAP-siRNA shows great potential for use
as a hepatocellular carcinoma therapy. Improving the
efficiency of siRNA transfection, the construction of a
more tumor-specific sSiRNA delivery system, and the use
of combination therapy are all likely to further enhance
the potential of this therapeutic intervention.
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