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Introduction

	 According to the World Health Organization (WHO), 
breast cancer accounts for 519,000 deaths worldwide. 
Surprisingly, 69% of those deaths were in developing 
countries, refuting the belief that breast cancer is a disease 
of developed countries (WHO, 2004). The symptoms 
of breast cancer include presence of a lump, which 
is commonly pea sized, in or near the breast or in the 
underarm that changes the appearance of the overlying 
skin and causes pain (Merck Manual of Diagnosis and 
Therapy, 2012). The complications of the breast cancer 
include chest pain, mastitis, metastasis, nipple discharge, 
and side effects of radiation therapy and chemotherapy 
(Hurria, 2012). The metastasis of the breast cancer occurs 
via hematogenous spread or lymphatic spread, generally to 
lung, pleura, liver, bone, adrenal glands, gastro intestinal 
track, pancreas and peritoneum (Mülle et al., 2001).
	 Early diagnosis of breast cancer is very important as 
its signs and symptoms appear in the later stages of the 
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Abstract

	 Background: With recent progress in health science administration, a huge amount of data has been collected 
from thousands of subjects. Statistical and computational techniques are very necessary to understand such 
data and to make valid scientific conclusions. The purpose of this paper was to develop a statistical probability 
model and to predict future survival times for male breast cancer patients who were diagnosed in the USA during 
1973-2009. Materials and Methods: A random sample of 500 male patients was selected from the Surveillance 
Epidemiology and End Results (SEER) database. The survival times for the male patients were used to derive 
the statistical probability model. To measure the goodness of fit tests, the model building criterions: Akaike 
Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC) 
were employed. A novel Bayesian method was used to derive the posterior density function for the parameters 
and the predictive inference for future survival times from the exponentiated Weibull model, assuming that the 
observed breast cancer survival data follow such type of model. The Markov chain Monte Carlo method was 
used to determine the inference for the parameters. Results: The summary results of certain demographic and 
socio-economic variables are reported. It was found that the exponentiated Weibull model fits the male survival 
data. Statistical inferences of the posterior parameters are presented. Mean predictive survival times, 95% 
predictive intervals, predictive skewness and kurtosis were obtained. Conclusions: The findings will hopefully 
be useful in treatment planning, healthcare resource allocation, and may motivate future research on breast 
cancer related survival issues.  
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disease. Early diagnosis ensures early management of 
the breast cancer and decreases the mortality associated 
with the disease. Male breast cancers occur in patients 
experiencing gynecomastia due to hormonal problems 
and overabundance of estrogen precursors. These are 
usually due to side effects of therapeutic drugs, hormonal 
imbalance during puberty or side effects of androgenic 
and anabolic steroid abuse. According to the National 
Cancer Institute estimates for 2013, about 2,240 males 
are diagnosed annually and 410 males die of breast cancer 
in US (ACS, 2013). We are focusing on the survival 
estimations for male breast cancer patients because of 
paucity of statistical studies for male survival times.
	 In recent years, the healthcare industry collected 
an unprecedented amount of phenomic data (clinical, 
imaging, biochemical, cellular), and genomic data (DNA 
sequencing and microarray analysis), from thousands of 
subjects which are not fully utilized by the researchers 
and are not even available for public usage. These large 
databases require a new direction of statistical analysis 
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and the implementation of newer analytical approaches 
to identify data based statistical probability distributions 
and to draw a scientific conclusion about future situations 
of disease patterns and death rates. 
	 The data extracted from health related lab/experiments 
may follow several statistical probability distributions 
including exponentiated exponential and exponentiated 
Weibull. Statistical and computational techniques are 
immensely necessary to understand such informative data 
and to make scientific conclusions that are reliable.
	 The Exponentiated Exponential Model (EEM) is 
frequently used in modeling the data for engineering 
and biomedical sciences. The EEM is a generalization 
of the exponential distribution, which was introduced 
by Gupta and Kundu (1999) and received tremendous 
and widespread attention. The EEM has two parameters 
(scale and shape). A random variable x is said to have the 
exponentiated exponential distribution if its probability 
the density function (pdf) is given by 

p(x|a, l)={	 a l exp{-(lx)} (1-exp{-(lx)})a-1, x≥o; a, l>0,
		  0 elsewhere,	 (1)

	 where x>0, λ>0 and α>0. We can write x ~ EE (α, λ).   
The distribution of Eqn. (1) was introduced by Gupta and 
Kundu (1999). In the particular, if α= 1, is the exponential 
distribution. 
	 In 1939, Waladdi Weibull, a Swedish physicist, 
introduced Weibull distribution. In 1993, Mudholkar 
and Srivastava presented the first exponentiated Weibull 
model (EWM) that contained distributions with bathtub 
shaped and unimodal failure rates. Since then, it has been 
extensively used for analyzing the lifetime data by Nassar 
and Eissa (2003), and Choudhury (2005). 
	 The probability density function (pdf) for the 
exponentiated Weibull model is given by

p(x|a, l, b)={	aβλ xβ-1 exp{-(lxβ)} (1-exp{-(lxβ)})a-1, x≥o; a, β, λ>0,
		  0 elsewhere,	 (2)

	 where α and β are the shape parameters, and λ is the 
scale parameter respectively. 
	 Statistical inference to predict future outcome using 
past observations is known as predictive inference. 
Most of the studies on EEM and EWM have addressed 
the estimation of parameters and reliability, and hazard 
functions but, there are not enough studies which are 
related to the posterior distribution of the parameters and 
predictive inference for future outcome. The derivation 
of predictive inferences is necessary for future advances 
in biomedical science. 

	 The purpose of Bayesian inference is to develop the 
posterior distribution of the parameters given a set of 
observed data. According to Gelman (2004), the Bayesian 
method can be divided into three components.
	 For further information regarding Bayesian method, 
the readers are referred to Berger (1985), Geisser (1993), 
Bernardo and Smith (1994), Ahsanullah and Ahmed 
(2001), Gelman et al. (2004), and Baklizi (2004; 2008).  
Additional applications of Bayesian method for predictive 
inference have been discussed by Raqab (1995; 2009), 
Thabane (1998), Thabane and Haq (2000), Khan et 
al. (2004; 2013), Ali-Mousa and Al-Sagheer (2006), 
Baghestani et al. (2009),  and Khan (2012a; 2012b; 2013a; 
2013b). 
	 The main goals of this paper are to: i) study some 
demographic and socio-economic variables; ii) review 
right skewed models EEM and EWM; iii) display 
different scenarios of the EEM and EWM by changing the 
parameter; iv) a justification to prove that the given sample 
data follows the EEM and EWM by using model selection 
criteria for goodness of fit tests; v) draw a Bayesian 
analysis of the posterior distribution of the parameters; 
vi) derive Bayesian predictive model for future survival 
time from the EEM and EWM; vii) utilize the predictive 
models in the breast cancer survival data sets to obtain the 
predictive inference for future response and the likelihood 
of males getting breast cancer and; viii) to obtain the 
predictive intervals for the future survival times. 
	 This paper is organized as follows: A real breast 
cancer survival data example is discussed in details in 
section 2. Measures of goodness of fit tests and log-
likelihood functions for both models are presented in 
Section 3. Section 4 addresses the Bayesian predictive 
model including the likelihood function, posterior density 
function, predictive density for response given a sample 
of observations from the EWM. In section 5 the results 
and discussion are included. The last section, which is 6, 
gives the concluding remarks.

Materials and Methods

A real data example
	 We formally requested and acquired the breast 
cancer patients’ data (N=657,712) from the Surveillance, 
Epidemiology and End Results (SEER; 1973-2009) 
website. SEER data contain breast cancer patients’ 
information mostly on 12 states in the USA. A 
representative probability random sampling scheme was 
employed to draw a sample from the randomly selected 
nine states to represent race categories. 

Figure 1. The Process of Bayesian Data Analysis, 
Gelman (2004)

Figure 2. Selection of Male Patients from SEER (1973-
2009)
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	 This data was split according to gender (where 
males=4,269) and then a simple random sampling (SRS) 
method was used to select a sample of size 500 male breast 
cancer patients.

Measures of goodness of fit
	 The main methods currently used by several 
researchers to compare various models goodness of 
fit are: Akaike Information Criterion (AIC), Deviance 
Information Criterion (DIC), and Bayesian Information 
Criterion (BIC). The widely used method, DIC, is 
a Bayesian measure of fit which is used for overall 
comparison of different models, for example, public 
data by Congdon (2005; 2007). It shows how good the 
model predictions fit the given data, while it represents 
the complexity of fitness given each model of the data. 
Akaike (1973) generalized his work over factor analysis 
by introducing information criterion which later became 
popular as Akaike’s information criterion or AIC. 
Bayesian information criterion (BIC) is an asymptotic 
result assumed that the data distribution is an exponential 
family and can only be used to compare estimated models 
when numerical values of the dependent variable are 
identical for all estimates being compared. The model 
with lower value of BIC is preferred over others. AIC, 
BIC, and DIC values are reported in Table 4 for the EEM 
and EWM based on the male survival times.
	 Assuming the data x=(x1, x2, . . . , xn) represents n male 
breast cancer patients survival times, then one may obtain 
the log-likelihood function from the EWM specified by 
(2) which is given by

Log L ((a, β, λ)|x)=n log(a)+n log(β)+n log(λ)
		            +(a-1)S

n

i=1
log(1-exp{-λxβ

i)-λS
n

i=1
xβ

i+(β-1)S
n

i=1
log(xi)

	 Ahmed et al. (2008) used a new reparameterization 
method for the Birnbaum-Saunders lifetime model. Later, 
Achcar et al. (2013) considered a reparameterization some 
skewed models. One may utilize a reparameterization 
method by considering the log-likelihood functions from 
the EWM that is described as follows: Assume r

1
=log(a); 

r
2
=log(β); and r

3
=log(λ). Furthermore, we assume that r

1
, 

r
2
 and r

3
 are independently distributed. To obtain non-

informative prior for r
1
, r

2
 and r

3
, let a uniform prior 

distribution for ri be U(-ai, aj), "i=1,2,3. Then the joint posterior 
density is given by

p(r
1
, r

2
, r

3
|x)=p(r

1
, r

2
, r

3
)5exp{n(r

1
+r

2
+r

3
)-er3S

n

i=1
xi

er2+(er1-1)
		        Sn

i=1
log(1-exp{-er3xi

er2
})+(er2-1)S

n

i=1
log(xi)}

	 Similarly, one may obtain the log-likelihood function 
from the EEM (1) or from the log-likelihood function of 
the EWM (when β=1) and may use the reparameterization 
method to derive the joint posterior density for r

1
 and r

2
.

	 By using the reparameterization method, one would 
obtain better performance of the posterior distributions 
for the parameters and their results are reported in Table 
5. The posterior kernel densities for the parameters are 
given in Figure 5.
	 Table 4 consists of AIC, BIC, and DIC values for the 
EE and EW models. This is a common way to test the 
goodness of fit models. Lower values of AIC, BIC, and 

Table 1. Frequency Distribution of Selected Male 
Breast Cancer Patients 
State	 N   %

California	 70	 14
Connecticut	 94	 18.8
Georgia	 42	 8.4
Hawaii	 16	 3.2
Iowa	 52	 10.4
Michigan	 98	 19.6
New Mexico	 33	 6.6
Utah	 27	 5.4
Washington	 68	 13.6

Total	 500	 100

Table 2. Age at Diagnosis and Survival Time of Male 
Breast Cancer Patients, Classified by Mean, Standard 
Deviation (SD), Median, Range, and Quartiles, SEER 
(1973-2009)
Characteristics	 Categories	 Male

Age at diagnosis (years)	 Mean	 66.19
	 SD	 12.45
	 Median	 67
	 Range	 30-99
	 Quartiles 1/2/3	 57/67/75
Survival time (months)	 Mean	 84.14
	 SD	 75.25
	 Median	 65
	 Range	 1-407
	 Quartiles 	 28/65/119
*N1=4,269, n1=500

Figure 3. Number of Male (n1=500) Patients Randomly 
Selected from Nine States (darker color represents a 
high density and lighter color is the low density) of 
Breast Cancer Patients

Table 3. Race, Ethnicity, and Marital Status of Male 
Breast Cancer Patients
Characteristics	 Categories	 Male

Race	 White	 436
	 Black	 45
	 Other	 19
Hispanic Origin	 Non-Hispanic	 483
	 Hispanic	 17
Marital status at diagnosis	 Single	 54
	 Married	 334
	 Divorced/Separated	 33
	 Widowed	 57
	 Unknown	 22
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DIC infer better model fit of the data. Here, goodness of fit 
of survival times of male patients is being tested. In case 
of males, the data fits the EW distribution better than the 
EE distribution. The estimated value of BIC is the highest 
(12235.73) while the DIC value is the lowest (12225.30) 
for males in the case of EEM. The estimated value of BIC 
is the largest (5540.67) while the DIC value is the least 
(5530.30) for males in the case of EWM. Comparing the 
estimated values of all AIC, BIC, and DIC based on the 
EEM and EWM in the case of males, the EWM fits better 
for the male survival times because it produces smaller 
values of AIC, BIC, and DIC.
	 Figure 4A portrays the different scenarios of the 
EE model where each graph is composed of three 
superimposed models with certain parameters. Figure 
4A shows scenarios of the EEM with some values of the 
parameters. The left graph in Figure 4A contains three 
inverted J-shaped graphs that have a fixed α and increasing 
λ parameters. The red line graph shows more variability 
compared to the green and purple line graphs. The right 
graph in Figure 4A, contains three right skewed graphs 
when α is increasing and λ is fixed. In the right graph, 
λ is kept constant while values of α is increasing. It is 
observed that the green line is showing more variability 
as compared to the purple and red lines.
	 Figure 4B portrays the different scenarios of the EW 
model where each graph is composed of four superimposed 
models with certain parameters. The graphical scenario 
of EW models where in the left graph, α is kept fixed 
with increased values of β and λ. The left graph displays 
three approximately normally distributed graphs, and one 
positively skewed graph. In the right graph, λ is kept fixed 
with decreased values of α and β. The right graph displays 
three approximately normally distributed graphs where 
one is very wide, and one positively skewed graph. In 
Figure 4B left graph, it is noted that the red line is showing 
more variability compared to the other three normal graphs 
and in the right graph, the orange line is more variable as 

Figure 4. Scenarios of the A) EEM and B) EWM with 
Some Values of the Parameters

A)

B)

Figure 5. Kernel Density of the Posterior Parameters 
in the Case of Exponentiated Weibull for Male Breast 
Cancer Patients (n1=500)

Figure 6. Predictive Density for a Single Future 
Survival Time

Table 5. Summary Results of the Posterior Parameters in the Case of Exponentiated Weibull for Male Breast 
Cancer Patients 
Node	 Mean	 SD	 MC error	 Median	 95%CI	 Start	 Sample

alpha	 2.733	 0.01425	 8.62E-05	 2.728	 (2.719, 2.771)	 1001	 80000
beta	 0.8069	 0.007026	 3.33E-05	 0.8068	 (0.7934, 0.821)	 1001	 80000
lambda	 0.04908	 6.87E-04	 4.10E-06	 0.04929	 (0.04724, 0.04977)	 1001	 80000
rho1	 1.005	 0.00519	 3.14E-05	 1.004	 (1, 1.019)	 1001	 80000
rho2	 -0.2146	 0.008704	 4.12E-05	 -0.2147	 (-0.2314, -0.1972)	 1001	 80000
rho3	 -3.014	 0.01419	 8.46E-05	 -3.01	 (-3.052, -3)	 1001	 80000
*Dbar=post.mean of -2logL; Dhat=-2LogL at post.mean of stochastic nodes; **r

1
=(1, 2), r

2
=(-1, 1), r

3
=(-4, -3)

	 Dbar	 Dhat	 pD	 DIC
zeros	 5529.27	 5528.25	 1.029	 5530.3
total	 5529.27	 5528.25	 1.029	 5530.3

Table 4. Selection of the Exponentiated Exponential 
and Exponentiated Weibull Models for Male on the 
Basis of AIC, BIC, and DIC Criterions
Model Criterions:	 EEM	 EWM

AIC	 12227.3	 5532.25
BIC	 12235.73	 5540.67
DIC	 12225.3	 5530.3
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compared to the other three graphs.
	 In Bayesian approach, the knowledge of the 
distribution of the parameters is updated through the use 
of the observed data, resulting in what is known as the 
posterior distribution of the parameters. In the case of 
breast cancer data, we are interested in estimating the 
posterior distribution of the parameters assuming that 
observed random variables form an appropriate theoretical 
probability distribution.
	 Table 4 indicates the summary results of the posterior 
distribution of the parameters from the exponentiated 
Weibull by using the breast cancer males’ patient data. 
By setting the values of the r

1
, r

2
 and r

3
 the results of the 

posterior distribution parameters α, β, and λ are estimated 
using the MCMC method. Markov chain Monte Carlo is a 
class of algorithms used in statistics for generating samples 
from a probability distribution (Gilks et al., 1996). The 
log-likelihood function is derived from the EWM and then 
by its parameter values which are assigned to appropriate 
probability distribution. The WinBugs software is used 
to obtain the summary results (Mean, SD, MC Error, 
Median, and Confidence Intervals) of the parameters. 
The early iterations are ignored in order to remove any 
biases of estimated values of the parameters resulting from 
the survival values of x utilized to initialize the chain, a 
process that is called burn-in. After removing the burn-
in samples, the remaining samples are treated as if the 
samples are from the original distribution. The procedure 
was conducted by 80,000 Monte Carlo repetitions to 
produce the inference for the posterior parameters in Table 
5.
	 Figure 5 displays the graphical representation of the 
parameters’ behavior in the case of exponentiated Weibull 
given the male survival data. It is noted that the shape 
parameter β plays approximately symmetric distribution 
and other model parameters are following skewed 
distributions.

The Bayesian predictive survival model
	 The Bayesian predictive method is growing more 
popular, finding new practical applications in the fields 
of health sciences, environmental sciences, and social 
sciences, among others. The Bayesian predictive approach 
which is used for the design and analysis of survival 
research studies in the health sciences is now widely used 
to reduce healthcare cost and to successfully allocate 
health care resources. 
	 In this section, a predictive survival model for the 

breast cancer patients is developed by using a novel 
Bayesian method. It is found that the male cancer patients’ 
data follow the EWM by using AIC, BIC, and DIC. 
	 Assuming the data x=(x1, . . . , xn) represents n male 
breast cancer patients survival times that follow the EWM, 
let z be a future response (or future survival days), then 
the predictive density of z given the observed data x is

p(z|x)=ccc  p(z| a, β, λ) p(a, β, λ |x) dλ, dβ, da, 

	 where p(a, β, λ |x) is the posterior density function, and   
p(z| a, β, λ) represents the probability density function of a 
future response (z) that may be defined from model (2). 
The posterior density is given by

p(a, β, λ |x) a L(a, β, λ |x) p(a, β, λ),

	 where L(a, β, λ |x) is the likelihood function, p(a, β, λ) is 
the prior density for the parameters.
	 To derive the likelihood function, let x1, . . . , xn be a 
random sample of size n from model (2). Thus, x=(x1, . . . 
, xn)’ forms an observed sample. Then given a set of data  
x=(x1, . . . , xn) from (2), the likelihood function is given by

L(a, β, λ |x) a (aβλ)nexp{-S
n

i=1
(-λxβ

i)}[P
n

i=1
(xβ-1)][P

n

i=1
(1-exp{-λxβ

i)})
a-1]

	 Ahmed (1992) discussed an estimation theory under 
uncertain prior information. Ahsanullah and Ahmed 
(2001) discussed in details on Bayes and empirical Bayes 
estimates of survival and hazard functions of a class 
of distribution. Ahmed and Tomkins (1995) estimated 
lognormal mean by making use of uncertain prior 
information. Khan et al. (2004) derived the Bayesian 
predictive model from the Weibull life model by means 
of a conjugate prior for the scale parameter and a uniform 
prior for the shape parameter. It is assumed that the prior 
density for the scale parameter (λ) is given by

p(λ) a λ exp {-λ}, λ>0,	 (3

	 Considering Khan et al. (2004), the shape parameters, 
α and β, have a uniform prior over the interval (0, α) and 
(0, β), respectively, which is given below:

p(a, β) a 1/aβ, a, β>0,	 (4

	 Thus, the joint prior density is

p(a, β, λ) a λexp{-λ}/aβ, a, β, λ>0,	 (5

	 Considering the prior density in (5), the posterior 
density of α, β, and λ is given by

p(a, β, λ) a (aβ)n-1λn+1exp{-S
n

i=1
(λxβ

i)2-λ}[P
n

i=1
(xi

β-1)][P
n

i=1
(1-exp{-(λxβ

i)})
a-1]

	 A numerical integration command ‘NIntegrate’ in 
conjunction with the symbolic computational software 
Mathematica version 8.0, Wolfram Research (2012), is 
applied to plot the predictive density graph. The predictive 
means, standard deviations, predictive intervals, and the 
measures of skewness and kurtosis are obtained. The 
Mathematica package is also utilized to carry out all 
related calculations. 
	 Figure 6 shows the graphical representation of the 

Table 6. Predictive Inference Based on 500 Male 
Survival Data Points
Summary statistics	 Predictive intervals

Mean=88.237	 90%: (3.960938, 201.724312)
SE=3.17231	 95%: (2.145168, 249.461554)
	 98%: (1.605262, 290.309872)
	 99%: (1.427024, 320.156072)
*Raw moments	 Corrected moments	 Skewness and kurtosis
m1=88.2397	 μ1=m1=88.2397	 β1=2.90855
m2=12818.10	 μ2=5031.80	 β2=6.83539
m3=2.62785106	 μ3=608728	 γ1=1.70545
m4=6.83625108	 μ4=1.730655108	 γ2=3.83539
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predictive density based on the male breast cancer patients’ 
survival days. It is noted that the predictive density formed 
right skewed model. 
	 The summary results of male predictive means, 
standard errors, and predictive intervals for a future 
survival day are given in Table 6. The predictive shape 
characteristics, raw moments, corrected moments, and 
measures of skewness and kurtosis are also presented in 
the same table. 
	 These findings are very important towards health care 
researchers and providers to characterize future disease 
patterns and to make an effective future plan in our health 
industry. 

Results 
	 We used a random sample consisting of 500 breast 
cancer male patients diagnosed during 1973-2009 in the 
USA. The mean±SD, of age at diagnosis for breast cancer 
patients was 66.19±12.45 for males. The minimum age at 
diagnosis for males 30 years. In the sample, oldest males 
at the time of the diagnosis was 99 years. The mean±SD, 
of survival time for male was 84.14±75.25 months. For 
males, the survival time ranged from 1 to 407 months. In 
this sample, among 500 males, race was distributed as 87% 
White, 9% Black, and 4% other among male cases. There 
were nearly 3% people of Hispanic origin. The majority 
of these patients were married. The basic statistical 
calculations helped us to conclude that the breast cancer 
in male is diagnosed at a higher age. The late diagnosis 
makes survival time look shorter after diagnosis. 
	 In the case of the goodness of fit analysis, the breast 
cancer data from male sample followed exponentiated 
Weibull distribution with lower DIC value as 5530.30. 
For EW distribution, mean±SD values for a, β and λ are 
2.73±0.01, 0.81±0.01 and 0.05±6.87×10-4, respectively. 
Rho values for males are r

1
=(1, 2), r

2
=(-1, 1), r=(-4, -3). 

The Markov Chain errors and confidence intervals for 
posterior parameters are given in Table 5. The dynamic 
kernel densities for each of the parameters are reported in 
Figure 5 so that one can observe the shape of the kernel 
density.
	 Figure 6 shows the graphical representation of the 
single future survival time. The shape of the future 
distribution of survival times is positively skewed. The 
raw and corrected moments are described in Table 6 based 
on males’ survival times.

Discussion
A Statistical probability modeling has become essential 

for the modern practice of medicine, pharmaceutical, and 
clinical studies, the effective future direction of health 
care, and the health profession of education. Statistical 
probability models can describe the nature of data from 
any scientific field. From such statistical models, one can 
make statistical inferences about the parameters as well as 
the future observations because they play a very important 
role in decision making for future patterns of diseases in 
human health.

In this study, we selected a random sample of male 

breast cancer patients from the SEER (1973-2009) 
database. The methods for measuring the goodness of 
fit tests are used to select the best statistical probability 
models for the male based on breast cancer survival data. 
The sample is composed of male data from nine randomly 
selected states out of 12 states in the USA. To develop 
statistical probability models for survival days of males, 
we used model selection criterions, AIC, BIC, and DIC 
to measure the best fit to the breast cancer survival data. 
We found that the EWM best fits the male survival data. A 
detail analysis of the posterior models for the parameters 
is described with their summary results. 

A novel reparameterization method is performed in 
terms of the log-likelihood functions for the EW models 
to accelerate better performance of the Bayesian posterior 
parameters and to draw its corresponding dynamic kernel 
densities. The summary results of the posterior parameters 
are reported with very less MC errors which are negligible 
by using the MCMC method. The results are obtained after 
running 80,000 Monte Carlo repetitions. The results of 
the posterior distribution of parameters using the breast 
cancer patients’ data will contribute a new addition to the 
knowledge of the model parameters.

A summary table for the predictive means, standard 
deviations, and the predictive intervals are obtained for 
the predictive density of a single future survival time. The 
measures of skewness and kurtosis of a future response 
from the predictive model are also given. Based on the 
results of skewness and kurtosis one would comment 
that the shape of the future survival model for the males 
is positively skewed. These findings will be extremely 
helpful for the healthcare researchers and providers to 
predict a male patient’s possible future medical outcome 
given the patient’s current and past history of reported 
conditions.

Descriptive statistics are obtained by using the SPSS 
software. An advanced computational software package, 
‘Mathematica version 8.0’, is used to show the graphical 
representations of the EE and the EW models, to display 
the predictive density and also to achieve additional 
predictive inferences for male survival times. WinBugs 
software is used to check the goodness of fit tests, to 
obtain the summary results of the posterior parameters, 
to determine the kernel densities of the parameters, and 
also to carry out all related calculations.
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