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Introduction

	 Cancer is a major public health problem all over the 
world. In the United States, one in four deaths is due 
to cancer (Siegel et al., 2013). Now, the mechanism of 
carcinogenesis is poorly understood. It has been suggested 
that susceptibility genes combining with environmental 
factors may be important in the development of cancer 
(Lichtenstein et al., 2000). Epidemiologic studies indicate 
that folate metabolism imbalance can lead to reduced 
S-adenosylmethionine (SAM) production and modification 
of DNA methylation profile promoting stimulation of proto-
oncogene and inactivation of tumor growth suppressor 
genes. Serine hydroxymethyltransferase (SHMT) is a key 
enzyme controlling folate metabolism. It catalyzes the 
reversible conversion of serine and tetrahydrofolate (THF) 
to glycine and methylene THF to provide one-carbon units 
for the synthesis of SAM, purine, and thymidine. SHMT1 
is one of SHMT isoenzymes, which plays a crucial role 
in generating one-carbon units for purine, thymidylate, 
and methionine synthesis in the cytoplasm (Girgis et 
al., 1997). It is reported that a polymorphism in 1420 
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Abstract

	 A series of studies have explored the role of cytosolic serine hydroxymethyltransferase (SHMT1) C1420T 
polymorphism in cancer risk, but their results were conflicting rather than conclusive. To derive a more 
precise estimation of the association between C1420T and cancer risk, the present meta-analysis of 28 available 
studies with 15,121 cases and 18,023 controls was conducted. The results revealed that there was no significant 
association between the polymorphism and cancer risk overall. In stratified analysis by cancer type (breast cancer, 
gastrointestinal cancer, leukemia, lymphoma, and others), the results showed that 1420T allele was associated 
with decreased risk in leukemia (CT vs. CC: OR= 0.825, 95% CI =0.704-0.966; and CT+TT vs. CC: OR= 0.838, 
95% CI = 0.722-0.973), but the same results were not present for other cancer types. When subgroup analysis 
was performed by source of control (population-based [PB] and hospital-based [HB]), a borderline inverse 
association was observed for the HB subgroup (CT vs. CC: OR= 0.917, 95% CI = 0.857-0.982) but not for the 
PB subgroup. Stratifying by geographic area (America, Asia and Europe), significant inverse association was 
only found in Asia subgroup (CT vs. CC: OR= 0.674, 95% CI = 0.522-0.870). In summary, the findings suggest 
that SHMT1 C1420T polymorphism is not associated with overall cancer development, but might decrease 
cancer susceptibility of Asians as well as reduce leukemia risk. Large well-designed epidemiological studies will 
be necessary to validate the risk identified in the current meta-analysis.  
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C>T (rs1979277) can convert the codon for leucine to 
phenylalanine, resulting in a lower plasma and red blood 
cell folate levels in 1420CC individuals (Heil et al., 2001). 
Consequently, the cancer risk might be different in the 
mutation carriers. A series of studies have explored the 
role of SHMT1 C1420T polymorphism in cancer risk, 
but their results are conflicting rather than conclusive. 
Therefore, we performed a meta-analysis of all studies 
available now to derive a more precise estimation of the 
association between SHMT1 C1420T polymorphism and 
cancer risk.

Materials and Methods

Publication search
	 In order to identify all previously published studies 
on the association of SHMT1 C1420T polymorphism 
with cancer, PubMed, Embase, and Web of Science 
were searched with following keywords and subject 
terms: “Cytosolic serine hydroxymethyltransferase”, 
“cSHMT”, “SHMT1”, and “polymorphism” by two 
independent investigators (last search update: October 8, 
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2013). Reference lists were examined manually to further 
identify potentially relevant studies. All studies matching 
the eligible criteria listed below were included in our 
meta-analysis. When more than one of the same subject 
population was included in several publications, only the 
most recent population was used in this meta-analysis.

Inclusion criteria
	 The following inclusion criteria were used in selecting 

literature for further meta-analysis: (1) evaluation of 
SHMT1 C1420T polymorphism and cancer risk; (2) a 
case-control design; (3) sufficient published data for 
calculating odds ratios (ORs) with their 95% confidence 
intervals (95% CIs); (4) genotype frequencies in controls 
conform to Hardy-Weinberg equilibrium (HWE). 

Data extraction
	 Two investigators independently extracted the data. 
Discrepancies were adjudicated by third investigator until 
consensus was achieved on every item. From each of 
included articles the following information was abstracted: 
the name of first author, year of publication, country origin, 
ethnicity, cancer type, source of controls, total number of 
cases and controls, the number of cases and controls with 
C1420T polymorphism genotypes, and P value for HWE, 
respectively.

Statistical methods
	 For the controls of each study, HWE was assessed 
using the chi-square goodness-of-fit test and a P<0.05 
was considered representative of a departure from 
HWE. The odds ratio (OR) and its 95% confidence 
interval (95% CI) were used to assess the strength of 
association between SHMT1 C1420T polymorphism and 
cancer risk. The pooled ORs were performed for allelic 
comparison (T vs. C), homozygote comparison (TT vs. 
CC), heterozygote comparison (CT vs. CC), recessive 

Table 1. Characteristics of the Studies Involvd in SHMT1 C1420T Polymorphism and Cancer Risk
First author	        Year	         Country	      Ethnicity          Cancer type  Source of controls  Cases     Controls        PHWE

Skibola	 2002	 UK	 Caucasian	 ALL	 HB	 71	 114	 0.578
Hishida	 2003	 Japan	 East Asian	 Lymphoma	 HB	 108	 494	 0.106
Skibola	 2004	 USA	 Mixed	 NHL	 PB	 333	 729	 0.509
Chen	 2004	 USA	 Mixed	 CRC	 PB	 271	 458	 0.793
Lightfoot	 2005	 USA	 Caucasian	 NHL	 PB	 589	 754	 0.181
Zhang	 2005	 USA	 Caucasian	 SCCHN	 HB	 721	 1234	 0.261
Niclot	 2006	 France	 Caucasian	 FL	 HB	 169	 205	 0.547
Lissowska	 2007	 Poland	 Caucasian	 Breast	 PB	 1959	 2257	 0.259
van den Donk	 2007	 Netherlands	 Caucasian	 CRA	 HB	 743	 697	 0.724
Moore	 2007	 Spain	 Caucasian	 Bladder	 HB	 1092	 1011	 0.909
Hazra	 2007	 USA	 Mixed	 CRA	 HB	 521	 519	 0.446
Lim	 2007	 USA	 Mixed	 NHL	 PB	 270	 240	 0.065
Wang	 2007	 USA	 Mixed	 Lung	 HB	 1032	 1145	 0.318
Steck	 2008	 USA	 African	 Colon	 PB	 239	 322	 0.168
Guerreiro	 2008	 Portugal	 Caucasian	 CRC	 HB	 196	 200	 0.067
Cheng	 2008	 China	 East Asian	 Breast	 HB	 354	 534	 0.719
de Jonge	 2009	 Netherlands	 Caucasian	 ALL	 HB	 244	 497	 0.764
Berglund	 2009	 Sweden	 Caucasian	 NHL	 Not State	 258	 241	 0.63
Komlosi	 2010	 Hungary	 Caucasian	 Colon	 HB	 476	 461	 0.11
Komlosi	 2010	 Hungary	 Caucasian	 Rectal	 HB	 479	 478	 0.143
Lightfoot	 2010	 UK	 Caucasian	 Leukemia	 PB	 896	 761	 0.131
Vainer	 2010	 Russia	 Caucasian	 Breast	 PB	 830	 809	 0.895
Weiner	 2011	 Russia	 Caucasian	 NHL	 HB	 141	 504	 0.357
Yang	 2011	 China	 East Asian	 ALL	 PB	 361	 367	 0.845
Kasperzyk	 2011	 USA	 Mixed	 HL	 HB	 443	 338	 0.146
Weiner	 2012	 Russia	 Caucasian	 Prostatic	 HB	 371	 284	 0.806
Carvalho Barbosa Rde	 2012	 Brazil	 Mixed	 Breast	 HB	 120	 120	 0.958
Liu	 2012	 USA	 Mixed	 Colon	 PB	 1414	 1774	 0.819
Li	 2013	 USA	 Mixed	 NHL	 PB	 420	 476	 0.059

PHWE, P value of the Chi square goodness-of-fit test for Hardy–Weinberg equilibrium in controls; PB, population-based; HB, 
hospital-based; ALL, acute lymphocytic leukemia; NHL, non-Hodgkin lymphoma;  CRC, colorectal cancer; SCCHN, squamous 
cell carcinoma of the head and neck; FL, follicular lymphoma; CRA, colorectal adenoma;  HL; Hodgkin lymphoma 		

Figure 1. Flow Chart of the Selection of Publications 
Included in the Meta-analysis
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model (TT vs. CC+CT), and dominant model (CT+TT 
vs. CC), respectively. The statistical significance of the 
pooled ORs was determined by Z test, and P<0.05 was 
considered statistically significant. A chisquare-based Q-test 
was performed to assess the Inter-study heterogeneity. The 
fixed effect model (the Mantel-Haenszel method) (Mantel 
et al., 1959) was used to access the pooled ORs if the 
heterogeneity was not significant (P>0.1); otherwise, the 
random effect model (the DerSimonian and Laird method) 
(DerSimonian et al., 1986) was used. Subgroup analyses 
were performed based on cancer type (breast cancer, 
gastrointestinal cancer, leukemia, lymphoma, and others), 
source of control (population-based [PB] and hospital-based 
[HB]), and geographic region (America, Asia and Europe) to 
explore the source of heterogeneity. Meta-regression (Sharp, 
1998) was conducted to further explore the heterogeneity 
quantitatively for among the studies (the analysis was based 
on allelic comparison). In addition, sensitivity analyses 
were performed to reflect the influence of individual data 
on summary ORs. Finally, Publication bias was evaluated 
using the Begg’s funnel plot and Egger’s test (Egger et al., 
1997). All statistical analyses were done with Stata software 
(Version 12; Stata Corporation, College Station, Texas, 
USA), and all tests were two-sided.

Results 

Characteristics of the studies
	 Figure 1 outlines the search strategy used to obtain 
relevant literature. A total of 45 publications were achieved 
by an extensive search. We excluded 17 studies and one 
population of a study (five subjects were overlapped in 
other publications (Koushik et al., 2006; Wang et al., 2006; 
Vainer et al., 2010; Mohammad et al., 2011; Naushad et 
al., 2011a); genotype frequencies of eight studies were not 
provided (Lee et al., 2007; Gibson et al., 2011; Metayer et 
al., 2011; Naushad et al., 2011b; Piskac-Collier et al., 2011; 
Galbiatti et al., 2012; Lautner-Csorba et al., 2013; Swartz 
et al., 2013); and four studies (Wang et al., 2007b; Yu et 
al., 2007; Patino-Garcia et al., 2009; Curtin et al., 2011; 
Naushad et al., 2012) and one of populations in a study 
(Steck et al., 2008) did not conform to HWE). A total of 28 
case-control studies with 29 populations met our inclusion 
criteria (Skibola et al., 2002; Hishida et al., 2003; Chen et 
al., 2004; Skibola et al., 2004; Lightfoot et al., 2005; Zhang 
et al., 2005; Niclot et al., 2006; Hazra et al., 2007; Lim et al., 
2007; Lissowska et al., 2007; Moore et al., 2007; van den 
Donk et al., 2007; Wang et al., 2007a; Cheng et al., 2008; 
Guerreiro et al., 2008; Steck et al., 2008; Berglund et al., 
2009; de Jonge et al., 2009; Komlosi et al., 2010; Lightfoot 
et al., 2010; Weiner et al., 2010; Kasperzyk et al., 2011; 
Weiner et al., 2011; Yang et al., 2011; Carvalho Barbosa 
Rde et al., 2012; Liu et al., 2012; Weiner et al., 2012; Li 
et al., 2013), including 15, 121 cases and 18, 023 controls. 
Table 1 presents the main characteristics of each study in 
the meta-analysis. 

Evidence Synthesis
	 The main results of present meta-analysis including 
the heterogeneity test were shown in Table 2. The results 
of overall meta-analysis did not suggest any associations 
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between C1420T polymorphism and cancer susceptibility 
for all genetic models (T vs. C: OR= 0.990, 95% CI = 
0.943-1.039; TT vs. CC: OR= 1.028, 95% CI = 0.922-
1.146; CT vs. CC: OR= 0.968, 95% CI = 0.924-1.015; 
TT vs. CC+CT: OR= 1.040, 95% CI = 0.937-1.155; and 
CT+TT vs. CC: OR= 0.971, 95% CI = 0.918-1.027). 
	 In stratified analysis by cancer type, a decreased risk 
of cancer was only found in leukemia subgroup (CT vs. 
CC: OR= 0.825, 95% CI =0.704-0.966; and CT+TT 
vs. CC: OR= 0.838, 95% CI = 0.722-0.973). Subgroup 
analysis was performed by source of control, a borderline 
inverse association was observed for HB subgroup (CT 
vs. CC: OR= 0.917, 95% CI = 0.857-0.982), but not for 
PB subgroup. Stratifying by geographic area, significant 
inverse association was only found in Asia subgroup (CT 
vs. CC: OR= 0.674, 95% CI = 0.522-0.870). However, no 
significant association was observed in America subgroup 
and Europe subgroup.

Sensitivity Analysis
	 From the results of the leave-one-out sensitivity 
analysis, all the results above were not materially altered 
(data not shown). We further explored the source of 
heterogeneity by sample size (>800 and ≤800) and 
ethnicity (African, Caucasian, East Asian, and Mixed) 
with meta-regression. The results revealed that sample 
size (P=0.455) and ethnicity (P=0.458) did not contribute 
to the source of heterogeneity.

Publication bias
	 Begg’s funnel plot and Egger’s test were used to 
assess the publication bias of included studies. The 
graphical funnel plots for all genetic models appeared to 
be symmetrical. Then, Egger’s test was used to provide 
statistical evidence of funnel plot symmetry. The results 
still did not show any evidence of publication bias in the 
overall meta-analysis (T vs. C: t= -0.94, P= 0.356; TT vs. 
CC: t= 0.46, P= 0.651; CT vs. CC: t= -1.94, P= 0.063; TT 
vs. CC+CT: t= 0.71, P= 0.483; CT+TT vs. CC: t= -1.03, 
P= 0.313). 

Discussion

Polymorphisms in folate-related genes may influence 
cellular folate metabolism by reducing its uptake, 
increasing its efflux, and/or shifting its intracellular 
distribution (Kim 1999). This may influence the risk of 
cancer through several mechanisms. First, low availability 
of folates for the thymidylate synthase reaction and 
DNA synthesis results in uracil misincorporation into 
DNA, possibly leading to double-strand breaks and 
chromosomal damage (Blount et al., 1997). Second, 
decreased availability of folate for the methionine cycle 
results in reduced transmethylation capacity and DNA 
hypomethylation/ dysmethylation of proto-oncogenes or 
tumor suppressor genes (Das et al., 2004). Indeed, DNA 
hypomethylation and uracil misincorporation have been 
shown to be important factors in carcinogenesis (Duthie 
et al., 2002; Lucock 2004). 

The present meta-analysis explored the association 
between SHMT1 C1420T and cancer risk. With a sample 

size of 33, 144, the main message of this meta-analysis was 
lack of evidence of an overall association between SHMT1 
C1420T and cancer risk. Further analysis stratified by 
cancer type showed 1420T allele was associated with a 
minor decreased risk only in leukemia, suggesting 1420T 
allele might be a protective factor for leukemia. It should 
be noted that the four relative small studies (Skibola et al., 
2002; de Jonge et al., 2009; Lightfoot et al., 2010; Yang 
et al., 2011) with only 1572 cases and 1739 controls had 
driven the borderline inverse association, which may be 
due to selection bias. In stratifying analysis by source 
of control, the association between 1420T allele and 
reduced risk of cancer was significant in HB subgroup 
but not in PB subgroup. The hospital-based controls 
usually have some biases because such controls may not 
be representative of the general population very well, 
particularly when the genotypes under investigation were 
associated with the disease conditions that the hospital-
based controls may have. If considering this, the results 
should be interpreted with caution. In subgroup analysis 
by geographic area, significant inverse association was 
only found in Asia subgroup but not in America subgroup 
and Europe subgroup. Besides the small sample size of 
Asia subgroup, many other factors may contribute to 
the different result for different geographic area. Firstly, 
different genetic backgrounds may cause the discrepancy. 
The subjects of America and Europe studies were 
mostly Caucasians, whose 1420T allele frequency was 
different from East Asians (31.88% vs. 9.43%, P<0.001). 
Secondly, different populations may have differences in 
dietary intake of nutrients, some of which (such as folate, 
coffee and alcohol) may take part in carcinogenesis. 
Last, some clinical heterogeneity like age, years from 
onset and disease severity etc. may also make different 
contributions. Evidences also suggested that the SNPs in 
other enzymes controlling folate metabolism implicated 
in cancer risk (Jiang et al., 2013; Morita et al., 2013; Tan 
et al., 2013). Therefore, further studies estimating the 
effect of the SHMT1 C1420T polymorphism and other 
SNPs in linkage disequilibrium or in the same pathway 
along with gene-environment interactions may provide a 
better, comprehensive understanding of the associations.

Some limitations likely affect the objectivity of 
the conclusions and they should be considered when 
interpreting the results. First, there is significant 
heterogeneity among included studies. Although sources 
of heterogeneity were explored by subgroup analysis 
and meta-regression, the results showed that cancer 
type, geographic region, source of control, sample 
size, and ethnicity did not contribute to the source of 
heterogeneity. Second, several eligible studies did not 
present the genotype data of C1420T; therefore, a bias 
may have occurred. Third, in the subgroup analysis, the 
number of each subgroup was relatively small especially 
for Asia subgroup, not having enough statistical power to 
explore the real association. Furthermore, the data was not 
stratified by age, folate intake, and other suspected factors. 
Only based well-designed studies with the above factors 
taken into account, a better, comprehensive understanding 
of the relationship between the C1420T polymorphism 
and cancer risk is obtained.
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In conclusion, our meta-analysis suggests that 
SHMT1 C1420T polymorphism is not associated with 
overall cancer development, but might decrease cancer 
susceptibility of Asians as well as reduce leukemia 
risk. However, conclusions of the present meta-analysis 
are based on relatively small numbers of studies and 
participants, and their interpretation has to be cautious. 
Large well-designed epidemiological studies will be 
necessary to validate the risk identified in the current 
meta-analysis.
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