RESEARCH ARTICLE

Processed Meat Consumption and Squamous Cell Carcinoma of the Oesophagus in a Large Case-Control Study in Uruguay

Eduardo De Stefani1*, Paolo Boffetta2, Alvaro Luis Ronco3,4, Hugo Deneo-Pellegrini1, Pelayo Correa5, Gisele Acosta1, Maria Mendilaharsu1

Abstract

**Background:** The role of processed meat in the aetiology of squamous cell oesophageal cancer has been explored in detail. **Methods:** In the time period 1990-2005, a case-control study was conducted in Montevideo, Uruguay including 2,368 participants (876 cases of oesophageal cancer and 1,492 controls). Relative risks, approximated by the odds ratios, were estimated by multiple unconditional logistic regression. **Results:** Processed meat was positively associated with oesophageal cancer (upper quartile vs lower quartile OR 2.30, 95%CI 1.72-3.07), whereas salted meat intake was positively associated with squamous cell oesophageal cancer (OR 3.82, 95%CI 2.74-5.33). Finally other cured meats were positively associated with oesophageal cancer (OR 1.65, 95%CI 1.22-2.22). **Conclusions:** It could be concluded that processed meat consumption could be an important risk factor for the aetiology of squamous cell oesophageal cancer in Uruguay.

**Keywords:** Squamous cell oesophageal cancer - processed meat - salted meat - other cured meats

Asian Pac J Cancer Prev, 15 (14), 5829-5833

Introduction

Oesophageal cancer is a frequent malignancy in Uruguay, mainly in the northeastern counties, in the border with Brazil (Barrios et al., 2010). Age-standardised incidence rates were of 25.3 per 100,000 men and 6.5 per 100,000 women (Barrios et al., 2010). This belt is rather similar with that one observed in Northern Iran and Northern China (Parkin et al., 2002; He et al., 2005; Mao et al., 2011). The main reasons of this high incidence are unknown, although the incidence is declining, reflecting the declination of squamous cell oesophageal cancer, which is the main histologic type in Uruguay (Devesa et al., 1998).

This declination of squamous cell oesophageal cancer could be correlated with the decrease of the use of hand-rolled cigarettes filled with black tobacco (De Stefani et al., 1994). This type of cigarette is a rich source of tobacco-specific nitrosamines (IARC, 2004), particularly nitrosonornicotine, known as an important carcinogen for oesophageal mucosa. Also the decrease in the consumption of salted meat is highly correlated with the decrease of the incidence of oesophageal carcinoma in Uruguay. Salted meat intake is the source of nitrosamines, important chemicals in oesophageal carcinogenesis (Cradock, 1991). In the rather recent monograph of World Cancer Research Fund/American Institute for Cancer Research (2007) alcohol is cited as a convincing factor for oesophageal cancer, whereas there is probable evidence that hot *mate* consumption is a risk factor for oesophageal carcinoma and there is limited/suggestive evidence that processed meat consumption could be a risk factor for this malignancy. The role of *mate* consumption in oesophageal cancer has been replicated in a recent pooled study (Lubin et al., 2013).

For all these reasons, we decided to conduct a large case-control study with the objective of studying in detail the role of processed meat consumption in the aetiology of squamous cell oesophageal carcinoma.

Materials and Methods

**Selection of cases**

In the time period 1990-2005 all newly diagnosed and microscopically validated cases of squamous cell carcinoma of the oesophagus, drawn from the four major public health hospitals. In total 897 cases were eligible for this study. Twenty-one (21) refused the interview leaving a final total of 876 cases, which were discriminated by gender in 666 males and 210 women. The cases were classified by anatomic site as follows: upper third 66 patients (7.5%), middle third 226 (25.8%), lower third 118 (13.5%), and site not otherwise specified 466 (53.2%).
In the same time period and in the same hospitals, all patients afflicted by non-neoplastic conditions, not related with tobacco smoking or alcohol drinking were eligible for the study. In total 1,532 patients were eligible and 40 of them refused the interview, leaving a final total of 1,492 controls (97.4%). The patients presented the following diseases: diseases of the skin (841 patients, 56.4%), abdominal hernia (222, 14.9%), eye disorders (145, 9.7%), urinary stones (79, 5.3%), varicoceles veins (51, 3.4%), blood disorders (40, 2.7%), injuries (36, 2.4%), hydatid cyst (36, 2.4%), fractures (29, 1.9%), and genital tract diseases (13, 0.9%).

**Interviews and questionnaire**

All participants (cases and controls) were hospitalised and shortly after this were administered with a structured questionnaire by four trained social workers. The interviewers were not aware of the objectives of the study. No proxy interviews were accepted. The questionnaire presented the following sections: sociodemographics (last name, first name, age, sex, education, monthly income, identification number), self-reported height and weight 5 years before the date of the of the interview, family history of cancer among first-degree relatives, a complete occupational history based in the jobs and its duration, a complete history of tobacco smoking (age at start, age at quit, number of cigarettes smoked per day, type of tobacco, type of cigarette), a complete history of alcohol drinking (age at start, age at quit, number of glasses drank per day or week, type of alcoholic beverage), a complete history of *mate* consumption (age at start, age at quit, number of liters drank per day, temperature of the beverage), menstrual and reproductive events, and a food frequency questionnaire (FFQ) focused on meat consumption, dairy foods, vegetables, and fruits. This FFQ allowed the estimation of total energy intake and was considered as representative of the Uruguayan diet.

**Statistical analysis**

Relative risks, approximated by the odds ratios, were calculated by multiple unconditional logistic regression (Rothman et al., 2008). We fitted a basic model which included the following terms: age (continuous), sex (categorical), residence (categorical), education (categorical), smoking in pack years (categorical), alcohol drinking (categorical), *mate* consumption (categorical), total energy intake (continuous), total vegetable and fruit intake (continuous), and red meat (continuous). This basic model included total processed meat as a categorical variable. Processed meat was replaced by salted meat and other cured meats (bacon, sausage, *mortadella*, salami, *sausage*, frankfurter, and ham) and these variables were included into the basic model. The estimates were two-sided and P value for trend was considered as significant when alpha was 95%. Interactions were calculated using the likelihood-ratio test. All the estimates were calculated using the statistical software Stata, release 13.1 (StataCorp, 2013).

### Results

Distribution of cases and controls by sociodemographics and selected risk factors are shown in Table 1. Categorical age was rather similar among both groups of participants. Female controls showed a higher percentage compared with cases. Similarly, controls displayed a higher proportion of urban patients, compared with urban cases. Finally, cases were significantly less educated compared with controls. Smoking, alcohol drinking, and *mate* consumption were significantly higher than controls.

The homogeneity of variables of processed meat intake is shown in Table 2. Total processed meat, salted meat, and other foods of the group of processed meat were homogeneous. For this reason we decided to fit a model for both sexes, including a term for gender in further analyses.

Odds ratios of squamous cell oesophageal cancer for processed meats are shown in Table 3. Odds ratios of squamous cell oesophageal cancer (higher quartile vs the lower quartile 2.30, 95%CI 1.72-3.07) for total processed meat intake (continuous) were: 1.15, 95%CI 1.11-1.19 for males and 1.12, 95%CI 1.07-1.17 for females.

### Table 1. Distribution of Cases and Controls by Sociodemographics and Selected Risk Factors

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category</th>
<th>Cases No</th>
<th>%</th>
<th>Controls No</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-39</td>
<td></td>
<td>4</td>
<td>0.5</td>
<td>8</td>
<td>0.5</td>
</tr>
<tr>
<td>40-49</td>
<td></td>
<td>53</td>
<td>6.0</td>
<td>106</td>
<td>7.1</td>
</tr>
<tr>
<td>50-59</td>
<td></td>
<td>160</td>
<td>18.3</td>
<td>250</td>
<td>16.8</td>
</tr>
<tr>
<td>60-69</td>
<td></td>
<td>286</td>
<td>32.6</td>
<td>468</td>
<td>31.4</td>
</tr>
<tr>
<td>70-79</td>
<td></td>
<td>291</td>
<td>33.2</td>
<td>496</td>
<td>33.2</td>
</tr>
<tr>
<td>80-89</td>
<td></td>
<td>82</td>
<td>9.4</td>
<td>164</td>
<td>11.0</td>
</tr>
<tr>
<td>Sex</td>
<td>Males</td>
<td>666</td>
<td>76.0</td>
<td>1072</td>
<td>71.9</td>
</tr>
<tr>
<td></td>
<td>Females</td>
<td>210</td>
<td>24.0</td>
<td>420</td>
<td>28.1</td>
</tr>
<tr>
<td>Residence</td>
<td>Urban</td>
<td>591</td>
<td>67.5</td>
<td>1185</td>
<td>79.4</td>
</tr>
<tr>
<td></td>
<td>Rural</td>
<td>285</td>
<td>32.5</td>
<td>307</td>
<td>20.6</td>
</tr>
<tr>
<td>Education (years)</td>
<td>0-2</td>
<td>314</td>
<td>35.8</td>
<td>367</td>
<td>24.6</td>
</tr>
<tr>
<td></td>
<td>3-5</td>
<td>370</td>
<td>42.2</td>
<td>556</td>
<td>37.3</td>
</tr>
<tr>
<td></td>
<td>6+</td>
<td>192</td>
<td>22.0</td>
<td>569</td>
<td>38.1</td>
</tr>
<tr>
<td>Smoking (pack yrs)</td>
<td>Never</td>
<td>182</td>
<td>20.8</td>
<td>556</td>
<td>37.3</td>
</tr>
<tr>
<td></td>
<td>1-29</td>
<td>93</td>
<td>10.6</td>
<td>193</td>
<td>12.9</td>
</tr>
<tr>
<td></td>
<td>30-39</td>
<td>133</td>
<td>15.2</td>
<td>195</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td>204</td>
<td>23.3</td>
<td>257</td>
<td>17.2</td>
</tr>
<tr>
<td></td>
<td>50+</td>
<td>264</td>
<td>30.1</td>
<td>291</td>
<td>19.5</td>
</tr>
<tr>
<td>Alcohol drinking (ml/ethanol/day)</td>
<td>Never</td>
<td>270</td>
<td>30.8</td>
<td>776</td>
<td>52.0</td>
</tr>
<tr>
<td></td>
<td>v61-120</td>
<td>143</td>
<td>16.3</td>
<td>184</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>121-240</td>
<td>153</td>
<td>17.5</td>
<td>129</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td>241+</td>
<td>139</td>
<td>15.9</td>
<td>88</td>
<td>5.9</td>
</tr>
<tr>
<td><em>Mate</em> consumption (liters/day)</td>
<td>Never</td>
<td>32</td>
<td>3.6</td>
<td>209</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>0.1-0.9</td>
<td>209</td>
<td>23.9</td>
<td>415</td>
<td>27.8</td>
</tr>
<tr>
<td></td>
<td>1.0-1.9</td>
<td>415</td>
<td>47.4</td>
<td>649</td>
<td>43.5</td>
</tr>
<tr>
<td></td>
<td>2.0+</td>
<td>220</td>
<td>25.1</td>
<td>219</td>
<td>14.7</td>
</tr>
<tr>
<td>No participants</td>
<td></td>
<td>876</td>
<td>100.0</td>
<td>1492</td>
<td>100.0</td>
</tr>
</tbody>
</table>

### Table 2. Homogeneity of Processed Meat by Sex

<table>
<thead>
<tr>
<th>Variable</th>
<th>Males OR</th>
<th>Males 95%CI</th>
<th>Females OR</th>
<th>Females 95%CI</th>
<th>P homogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total processed meat</td>
<td>1.15</td>
<td>1.11-1.19</td>
<td>1.12</td>
<td>1.07-1.17</td>
<td>0.32</td>
</tr>
<tr>
<td>Salted meat</td>
<td>1.18</td>
<td>1.14-1.21</td>
<td>1.18</td>
<td>1.12-1.24</td>
<td>0.93</td>
</tr>
<tr>
<td>Other cured meats</td>
<td>1.09</td>
<td>1.06-1.13</td>
<td>1.09</td>
<td>1.04-1.15</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Table 3. Odds Ratios of Squamous Cell Oesophageal Cancer for Processed Meat

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cases/Controls</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total processed meata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤0.1</td>
<td>103/373</td>
<td>1.0 reference</td>
</tr>
<tr>
<td>4.2-17.9</td>
<td>173/373</td>
<td>1.47 (1.07-2.02)</td>
</tr>
<tr>
<td>18.0-53.8</td>
<td>265/373</td>
<td>2.18 (1.62-2.93)</td>
</tr>
<tr>
<td>53.9+</td>
<td>335/373</td>
<td>2.30 (1.72-3.07)</td>
</tr>
<tr>
<td>P value trend</td>
<td>&lt;0.0001</td>
<td></td>
</tr>
<tr>
<td>Continuous</td>
<td>1.1</td>
<td>1.08-1.15</td>
</tr>
<tr>
<td>Salted meata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>537/1252</td>
<td>1.0 reference</td>
</tr>
<tr>
<td>0.1-8.9</td>
<td>104/123</td>
<td>1.53 (1.12-2.07)</td>
</tr>
<tr>
<td>9.0-25.7</td>
<td>91/58</td>
<td>2.84 (1.95-4.14)</td>
</tr>
<tr>
<td>25.8+</td>
<td>144/59</td>
<td>3.82 (2.74-5.33)</td>
</tr>
<tr>
<td>P value trend</td>
<td>&lt;0.0001</td>
<td></td>
</tr>
<tr>
<td>Continuous</td>
<td>1.1</td>
<td>1.10-1.16</td>
</tr>
<tr>
<td>Other cured meatsbd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤0.1</td>
<td>112/373</td>
<td>1.0 reference</td>
</tr>
<tr>
<td>4.2-8.5</td>
<td>238/373</td>
<td>1.57 (1.16-2.12)</td>
</tr>
<tr>
<td>8.6-24.8</td>
<td>288/373</td>
<td>1.94 (1.45d-2.60)</td>
</tr>
<tr>
<td>24.9+</td>
<td>238/373</td>
<td>1.65 (1.22-2.22)</td>
</tr>
<tr>
<td>P value for trend</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Continuous</td>
<td>1.1</td>
<td>1.04-1.11</td>
</tr>
</tbody>
</table>

a Multivariate adjusted for age, sex, residence, education, tobacco smoking (in pack years), alcohol drinking, matte consumption, total energy, total vegetable and fruit intake, and red meat consumption; b Multivariate adjusted for age, sex, residence, education, tobacco smoking (in pack years), alcohol drinking, matte consumption, total energy, total vegetable and fruit intake, and other cured meats; c Multivariate adjusted for age, sex, residence, education, tobacco smoking (in pack years), alcohol drinking, matte consumption, total energy, total vegetable and fruit intake, red meat consumption, and salted meat intake; d Multivariate adjusted for age, sex, residence, education, tobacco smoking (in pack years), alcohol drinking, matte consumption, total energy, total vegetable and fruit intake, red meat consumption, and salted meat intake, bacon, sausage, mortadella, salami, sausisson, frankfurter, and ham.

Discussion

According to the results of the present study, total processed meat, salted meat, and other cured meats were positively associated with increased risk of squamous cell oesophageal carcinoma. We performed an extensive search of the literature on processed meat consumption and squamous cell oesophageal cancer risk, showing some similarities and differences with our results.

Among prospective studies, the association between processed meat and oesophageal cancer has not been studied as extensively as red meat. To date, only a few cohort studies (Chyou et al., 1995; Kjærheim et al., 2004) have been conducted.
Eduardo De Stefani et al

5832

consumption is a major public health problem.

mellitus (Micha et al., 2010). Thus, processed meat
but also with coronary heart disease, stroke, and diabetes
colorectal (Larsson et al., 2005; De Stefani et al., 2012a)
(Steffen et al., 2012), stomach (Larsson et al., 2006) and
with cancers like lung (Lam et al., 2009), oesophagus
and oesophageal cancer (De Stefani et al., 1999).

showed association between processed meat consumption
and oesophageal cancer among people who consumed bacon six or more times per month
(RR=2.2, 95% CI: 1.0-5.0).

More recently, Steffen et al. (2012) conducted a
prospective study in the framework of EPIC on meat and heme iron and oesophageal cancer. This study replicated
previous findings. Interestingly, processed meat was
positive, though non-significantly, associated with squamous cell oesophageal cancer in the large NIH-AARP
Diet and Health study (Cross et al., 2011). Thus, most
of the prospective studies reported an increased risk of squamous cell oesophageal cancer associated with intake
of processed meat (Choi et al., 2013).

More than 10 case-control studies have evaluated the
association between processed meat and oesophageal cancer. Of these, the study in Switzerland found a
statistically significant increase in risk in the highest intake
category of processed meat (OR=4.68, 95% CI: 2.54-
8.62), although the association was imprecise (Levi et al.
2004). The study of Rolon et al. (1995) displayed a huge
risk of 4.7 for red meat, but processed meat consumption
was not investigated. Brown et al. (1998) showed a
significant positive association between processed meat
and squamous cell esophageal cancer among black men
with an OR of 1.6 (P value trend=0.04). The estimates
for white men in this study were rather similar (OR 1.7)
but did not reach statistical significance. The higher risks
associated with processed meat among black men suggest
an effect of N-nitroso compounds with the nitrosation
process accelerated by low levels of micronutrients
(Brown et al., 1998). A recent study in Uruguay reported
an increased risk of oesophageal cancer for high intake of
processed meat (De Stefani et al., 2014). Recently, Lagiou
et al. (2008) reported higher consumption of all examined
types of red meat associated with increased UADT cancer
risk, but the association was stronger for cancer of the
esophagus. In particular, cold cuts displayed a 26% increased in risk for oesophageal cancer in the ARCADE study (Lagiou et al., 2008). Not all case-control studies
showed association between processed meat consumption
and oesophageal cancer (De Stefani et al., 1999).

Processed meat intake is not only positively associated
with cancers like lung (Lam et al., 2009), oesophagus
(Steffen et al., 2012), stomach (Larsson et al., 2006) and
colorectal (Larsson et al., 2005; De Stefani et al., 2012a)
but also with coronary heart disease, stroke, and diabetes mellitus (Micha et al., 2010). Thus, processed meat
cConsumption is a major public health problem.

of processed meat intake in the aetiology of colorectal cancer could be related with the fat consumption, salt,
nitrites, nitrates and N-nitroso compounds. We have examined the role of nitrites, nitrates, and sodium in colorectal cancer in a factor analysis (De Stefani et al., 2012b). Aside of human evidence, experimental evidence supports the effect of these chemicals in the aetiology of cancer (Santarelli et al., 2008).

As other case-control studies, the present one has
strengths and limitations. Perhaps, the major strength of the present study is the high response rate, both for cases
and controls. Another major strength is the statistical power of our study. Also the study has limitations. The
major limitations are related with selection and recall
biases. Although selection bias is liable to manage by
statistical procedures, recall bias could lead to differential
and non-differential misclassification which, in turn, could
derive into faulty results.

In conclusion, our study showed that squamous cell oesophageal carcinoma is strongly and positively
associated with total processed meat, salted meat, and other
cured meats. As pointed out, intake of processed meat is
a major public health problem and it is recommended to
limit the consumption of this dangerous foods.

Acknowledgements
To Magdalena De Stefani PhD for editorial assistance.

References
Commission of Fight Against Cancer, Uruguay, pp.60-61
(In Spanish).
black and white men in the United States. Cancer Causes
Control, 9, 467-74.
Chyow P-H, Nomura AMY, Stemmerman GN (1995). Diet, alcohol, smoking and cancer of the upper aerodigestive
634-9.
De Stefan I, Ronco AL, Boffetta P, et al (2012a) Nutrient-
derived dietary patterns and risk of colorectal cancer: a factor
meat consumption and risk of cancer: a multisite case-control


