Receiver Operating Characteristic Curve Analysis of SEER Medulloblastoma and Primitive Neuroectodermal Tumor (PNET) Outcome Data: Identification and Optimization of Predictive Models


Purpose: This study used receiver operating characteristic curves to analyze Surveillance, Epidemiology and End Results (SEER) medulloblastoma (MB) and primitive neuroectodermal tumor (PNET) outcome data. The aim of this study was to identify and optimize predictive outcome models. Materials and
Methods: Patients diagnosed from 1973 to 2009 were selected for analysis of socio-economic, staging and treatment factors available in the SEER database for MB and PNET. For the risk modeling, each factor was fitted by a generalized linear model to predict the outcome (brain cancer specific death, yes/no). The area under the receiver operating characteristic curve (ROC) was computed. Similar strata were combined to construct the most parsimonious models. A MonteCarlo algorithm was used to estimate the modeling errors.
Results: There were 3,702 patients included in this study. The mean follow up time (S.D.) was 73.7 (86.2) months. Some 40% of the patients were female and the mean (S.D.) age was 16.5 (16.6) years. There were more adult MB/PNET patients listed from SEER data than pediatric and young adult patients. Only 12% of patients were staged. The SEER staging has the highest ROC (S.D.) area of 0.55 (0.05) among the factors tested. We simplified the 3-layered risk levels (local, regional, distant)to a simpler non-metastatic (I and II) versus metastatic (III) model. The ROC area (S.D.) of the 2-tiered model was 0.57 (0.04).
Conclusions: ROC analysis optimized the most predictive SEER staging model. The high under staging rate may have prevented patients from selecting definitive radiotherapy after surgery.