
Asian Pacific Journal of Cancer Prevention, Vol 15, 2014 6791

DOI:http://dx.doi.org/10.7314/APJCP.2014.15.16.6791
Silibinin Inhibits Causes Cell Cycle Arrest in Human Gastric Cancer MGC803 Cells Via STAT3 Pathway Inhibition

Asian Pac J Cancer Prev, 15 (16), 6791-6798

Introduction

Gastric cancer (GC) is one of the highest cancer-
mortality diseases with a high incidence rate (Chen et 
al., 2013), and is the second most common cause of death 
from cancer in Asia (Leung et al., 2008). Surgery is the 
cornerstone of the management of patients with resectable 
GC (Van et al., 2008). For patients with advanced stage 
GC which are not completely resected, the palliative 
chemotherapy is the main choice (Karpeh et al., 2013). 
But many chemicals or drugs have shown numerous side 
effects. Therefore, developing novel agents to prevent 
and treat GC specifically for advanced GC, would has 
potential clinical application value (Marzieh et al., 2013; 
Kazem et al., 2013). 

Numbers of recent studies have demonstrated that 
signal transducer and activator of transcription (STAT)-3 
was constitutively active in various primary tumors and 
tumor cell lines such as breast cancer, prostate cancer, 
pancreatic adenocarcinoma, colon carcinoma, as well as 
GC, activated STAT3 was often associated with tumor 
invasiveness, metastasis and prognosis by enhancing 
cancer cells proliferation, survival, and angiogenesis 
(Yakata et al., 2007; Sato et al., 2011; Morikawa et al., 
2011; Singh et al., 2012; Huang et al., 2012; Lee et al., 
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Abstract

 Background: To investigate the effect of silibinin on proliferation and apoptosis in human gastric cancer cell 
line MGC803 and its possible mechanisms. Materials and Methods: Human gastric cancer cell line MGC803 
cells were treated with various concentration of silibinin. Cellular viability was assessed by CCK-8 assay 
andapoptosis and cell cycle distribution by flow cytometry. Protein expression and mRNA of STAT3, and cell 
cycle and apoptosis regulated genes were detected by Western blotting and real-time polymerase chain reaction, 
respectively. Results: Silibinin inhibits growth of MGC803 cells in a dose- and time-dependent manner. Silibinin 
effectively induces apoptosis of MGC803 cells and arrests MGC803 cells in the G2/M phase of the cell cycle, 
while decreasing the protein expression of p-STAT3, and of STAT3 downstream target genes including Mcl-1, 
Bcl-xL, survivin at both protein and mRNA levels. In addition, silibinin caused an increase in caspase 3 and 
caspase 9 protein as well as mRNA levels. Silibinin caused G2/M phage arrest accompanied by a decrease in 
CDK1 and Cyclin B1 at protein and mRNA levels.. Conclusions: These results suggest that silibinin inhibits the 
proliferation of MGC803 cells, and it induces apoptosis and causes cell cycle arrest by down-regulating CDK1, 
cyclinB1, survivin, Bcl-xl, Mcl-1 and activating caspase 3 and caspase 9, potentially via the STAT3 pathway. 
Keywords: gastric cancer - apoptosis -  cell-cycle arrest - STAT3 pathway - silibinin
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2012; Xiong et al., 2012). Meanwhile inhibition of STAT3 
activation can suppresse cancer cells growth, invasion and 
induce cancer cells aopotosis (Ahmad et al., 2012; Sun et 
al., 2012; Wang et al., 2012; Zhang et al., 2012). Targeting 
of STAT3 can be achieved by the use of small molecule 
chemical inhibitors and other plant components or extracts 
(Sun et al., 2012; Shi et al., 2012; Zhang et al., 2012). 

Silibinin has shown strong anticancer efficacy against 
various cancers including prostate, lung, colon, breast, 
hepatocellular carcinoma and so on, but the underlying 
mechanisms are very different in different cancer cells 
(Wu et al., 2009; Lu et al., 2012; Lin et al., 2012; Yi et al., 
2012; Cufi et al., 2013; Oh et al., 2013). The purpose of 
this stduy was to observe the silibinin’s effects in GC cells, 
to examine whether silibinin modulates STAT3 activation 
and associated biological response, then to investigate its 
mechanism in gastric cancer cell lines and determine its 
therapeutic value in preventing or treating GC.

Materials and Methods

Cell line
MGC803, a well differentiated GC line was obtained 

from Chinese Academy of Medical Sciences Tumor 
Cell Center (Beijing China). The cells were cultured 
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in RPMI 1640 medium (Gibco, Shanghai, China), 
supplemented with 10% fetal bovine serum (FBS) 
(HyClone Laboratories, Logan, UT) and 1% penicillin-
streptomycin (Nacalai Tesque, Kyoto, Japan), and 
maintained at 37°C in a humidified atmosphere of 5% CO2.

Reagents
Silibinin was purchased from Sigma Chemicals 

(Sigma-Aldrich, Shanghai). Silibinin was dissolved in 
DMSO (less than 0.1%, v/v) in experiments. Monoclonal 
antibodies to STAT3, Phospho-STAT3, Bcl-xL, Mcl-1, 
Survivin, Caspase-3, Caspase-9, CyclinB1, CDK1 and 
HRP-labeled goat anti-mouse IgG were purchased from 
Santa Cruz Biotechnology Incorporation (Santa Cruz, 
CA, USA). PVDF membrane was obtained from Bio-Rad 
(CA, USA). 

Cell growth assay
The cellular viability of MGC803 cells was determined 

by a tetrazolium salt (WST-8)–based colorimetric assay 
in the Cell Counting Kit-8 (CCK8; Dojindo, Kumamoto, 
Japan). Briefly, 5×103cells/well were planted in 96-
well plates and rendered quiescent by incubation in the 
serum-free medium at 37°C for 24h. MGC803 cells 
were treated with control (silibinin 0μM) and silibinin at 
different concentrations (50, 100 and 200μM) and were 
continuously incubated for 24, 48 and 72 h. Subsequently, 
10 μl CCK-8 solution was added to each well. Then cells 
were incubated at 37°C for 1 h and the absorbance (A450) 
was finally read at 450 nm using a microplate reader. All 
experiments were performed three times. The cell growth 
inhibitory rate was calculated as follows: inhibitory rate 
(%)=[1- A450 (treated)/A450 (blank)]×100%.

Cell cycle analysis
For cell-cycle analysis was determined by flow 

cytometry of propidium iodide (PI) staining. The cells 
were plated at a density of 5×105 per well on a 6-well 
plate. The cells were treated with silibinin ( 0, 50, 100 and 
200 μM doses) in a humidified atmosphere of 5% CO2 for 
24 h. Then the cells (1×106) were collected and washed 
twice with PBS, and fixed in cold ethanol (70%) at 4°C 
overnight. Cells were stained with PI solution (0.02% 
Triton X-100, 50 mg/mL-RNase) for about 30 min in 
the dark. Samples were analyzed on a Flow Cytometry. 
The data acquisition and analysis were performed using 
MultiCycle software. 

Apoptosis assay 
To quantify silibinin-induced apoptotic death of 

MGC803 cells, annexin V/PI staining was performed 
followed by flow cytometry.MGC803 cells were treated 
with silibinin (0, 50, 100 and 200 μM) in a humidified 
atmosphere of 5% CO2 for 24 h. Then the cells (1×106) 
were collected and washed with cold PBS twice, and 
resuspended in PBS. Then 5ul Annexin V-FITC and 10ul 
propidium iodide were added to a mixture containing 
cell resuspension and binding buffer. Finally cells were 
incubated for 5 min at room temperature in the dark, and 
flow cytometry was performed for the quantification of 
apoptotic cells. 

Western blot analysis
At the end of each treatment, SGC-7901 cells were 

washed with cold PBS three times and lysed for 30 min 
on ice in cell-lysis buffer containing 20mM Tris (pH 7.5), 
250mM NaCl, 2mM EDTA (pH 8.0), 0.1% TritonX-100, 
0.1%SDS, 10μg/mL aprotinin, 5μg/mL leupeptin and 
0.4mM PMSF. Protein concentrations were determined 
via Bradford assay. Protein extracts were resolved by 12% 
SDS-PAGE sample buffer. The separated proteins were 
transferred onto polyvinylidene difluoride membranes 
(PVDF) for 2 h at 60V. The membranes were blocked 
with 5% nonfat milk power (w/v) in TBST (10mM Tris, 
100mM NaCl, and 0.1% Tween-20) overnight at 4°C. The 
PVDF was incubated with the specific primary antibodies 
(dilution ratio 1:500) for 2h at 37°C, and incubated with 
horseradish peroxidase-linked antibodies (1:2000 dilution) 
for 2 h at room temperature. The washings bands were 
visualized by ECL detection system and evaluated by 
densitometry.

Real-time PCR assay
Total RNA was extracted from cells by the Trizol 

reagent (Invitrogen, USA). The reverse transcription was 
performed at 37°C for 1h, 45°C for 30min, and 95°C 
for 5 min. Real-time PCR was performed using SYBR 
green with TaqMan assay (Applied Biosystems Foster 
City, CA) on a Light Cycler (Roche Applied Science, 
USA). The sequences of the forward and reverse primers 
were shown in Table 1. Primers and cDNA were added 
to SYBR Premix Ex Taq II (Takara Dalian, China), and 
all the reagents required for PCR were prepared. The 
PCR cycling conditions were performed for all of the 
samples as follows: 10 min at 95°C and 40 cycles for the 
melting (95°C for 15 s) and annealing/extension 60°C for 
1 min steps. The mRNA of every gene expression was 
normalized to the expressed housekeeping gene β-actin. 
The data was analyzed with Light Cycle software 4.0 
(Roche Applied Science, USA). Quantification results 
were expressed in terms of the cycle threshold (CT) value. 
The CT values were averaged for each triplicate. The ΔΔCt 
value for each gene mRNA was normalized to the value 
of the β-actin housekeeping gene mRNA.

Statistical analysis 
All experiments were repeated at least three separate 

experiments, and the results were expressed as the 
mean±standard deviations. The data were performed by 
one-way analysis of variance t-test, X2-test and spearman’s 
analysis using SPSS version18.0 (SPSS, Chicago, USA). 
P value<0.05 was considered statistically significant. 

Results 

Effect of silibinin on the SGC-7901 cell proliferation 
To observe the effect of silibinin on proliferation 

of GC cells, MGC803 cells were treated with control 
(silibinin 0μM) and silibinin at different concentrations 
(50, 100 and 200μM) for 24, 48, and 72 h, respectively. 
The absorbances of MGC803cells were detected with 
CCK-8 assay. As shown in Figure 1, the treatment with 
silibinin could inhibit the growth of SGC-7901 cells, and 
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the inhibitory effects were in a dose- and time-dependent 
manner.

Silibinin induced apoptosis of MGC803 cells
To assess apoptosis ability after silibinin treatment in 

the MGC803 cells, the apoptosis percentage was detected 
by flow cytometry assay. As shown in Figure 2, apoptotic 
cell population increased from 1.4%±0.19% in control 
to 4.72%±0.39%, 11.69%±0.69% and 22.25%±1.25% 
(p all <0.01) after 24h treatment with 50, 100 and 
200μM silibinin, respectively. When the MGC803 cells 
were treated for 48h, a further increase in percent 
apoptotic cell population to 31.94%±2.74% (p<0.01) 
and 49.96%±3.78% (p0.001) at 100 and 200μM silibinin 
concentrations compared with controls, respectively.

Silibinin caused MGC803 cells cycle arrest at G2/M phase
After MGC803 cells were treated with 50, 100 and 

200μM of silibinin for 24h, the proportion of cells at 

the G2 phase increased from 10.79%±1.28% (p<0.05), 
14.51±1.79% (p<0.01) and to 20.82±2.29% (p<0.01), 
compared with control (7.12%±0.99%) respectively. In 
similar silibinin treatments for 48h, there was a significant 
difference of the proportion of cells at the G2 phase 
compared with control as well (p<0.05). It indicates that 
silibinin effectively arrests MGC803 cells in the G2/M 
phage of cell cycle (Figure 3). 

The MGC803 cells were treated with either control 
or different doses of silibinin (50, 100 and 200μM). After 
24h and 48h, cell cycle distribution was analysed by flow 
cytometry assay, as is shown in Figure 3. A, C: 24h; B, 
D:48h. The data are mean±SD of three samples for each 
treatment respectively. #p<0.05, *p<0.01 compared with 
control. Sb, silibinin.

Effects of silibinin on STAT3 signal pathway 
To investigate the mechanism of silibinin on 

proliferation and apoptosis in human gastric cancer 
MGC803, we tested protein expression and gene levels 
of STAT3 and downstream target genes including Mcl-
1, Bcl-xL, Survivin, as well as the protein expression of 
p-STAT3. After treatment with silibinin for 48 h, western 
blot analysis showed that the expressions of p-STAT3, 

Table 1. Primer Sequences Used in Real-time Quantitative PCR Assay
Gene Primer Sequence (5’–3’)

β-actin F:CCCAGCACAATGAAGATCAAGATCAT R:ATCTGCTGGAAGGTGGACAGCGA
STAT3 F: GGCTTTTGTCAGCGATGG R:GATTCTGCTAATGACGTTATCC
Bcl-xL F:GCCACTTACCTGAATGACCACC R: AACCAGCGGTTGAAGCGTTCCT
Mcl-1 F:CTCATTTCTTTTGGTGCCTTT R:CCAGTCCCGTTTTGTCCTTAC
Survivin F: CTTTCTCAACGACCACCG R:GTAGGTGACGGGGTGAC
caspase 3 F:CATTGAGACAGACAGTGGTGTT R:CACAAAGCGACTGGATGAAC
caspase -9 F:GTTTGAGGACCTTCGACCAGCT R: CAACGTACCAGGAGCCACTCTT
Cyclin B1 F:GAAACATGAGAGCCATCCT R:TTCTGCATGAACCGATCAAT
CDK1 F:TGAAACTGCTCGCACTTG R:ATGGTAGATCCCGGCTTATT

Figure 1. The Cell Growth Inhibitory Rate of MGC803 
Cells Treated with Silibinin. MGC803 cells were treated 
the indicated concentrations of silibinin for 24, 48, 72h. The 
cell growth inhibitory rate was determined by the CCK-8 assay. 
All datas were expressed as means±SD of three samples for 
each treatment respectively. #p<0.05, *p<0.01 compared with 
control. Sb, silibinin

Figure 2. Silibinin Induces Apoptosis in SGC-7901 
Cells. A) The MGC803 cells treated with 50, 100, 200μM 
of Silibinin for 24 h and48 h were assessed for apoptosis 
by staining with Annexin V-FITC and PI. B) The apoptotic 
cells percentages. Results obtained from three independent 
experiments are expressed as means±SD. #p<0.05, compared 
with control. Sb, silibinin

Figure 3. Effects of Silibinin on Cell Cycle in MGC803 Cells. The MGC803 cells were treated with either control or 
different doses of silibinin (50, 100 and 200μM). After 24h and 48h, cell cycle distribution was analysed by flow cytometry assay, 
as is shown in Figure 3. A, C: 24h; B, D:48h. The data are mean±SD of three samples for each treatment respectively. #p<0.05, 
*p<0.01 compared with control. Sb, silibinin
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Mcl-1, Bcl-xL, Survivin obviously decreased compared 
with those of the control group (p<0.01). Real-time PCR 
assay showed that the expressions of Mcl-1, Bcl-xL, 
Survivin mRNA obviously decreased compared with 
those of the control group (p<0.05). While the total STAT3 
protein and mRNA levels remained constant during 
silibinin treatment (Figure 4)

The effects of silibinin on the expressions of caspase3 
and caspase9

The activation of caspases induce finaly the apoptosis 
of the cells. The expression of cleaved caspase-3 and 
caspase 9 in MGC803 cells treated with different doses of 
silibinin for 48h were measured by western blot analysis, 
and caspase-3 and caspase 9 gene levels were measured 
by real-time PCR. As shown in Figure 5, the level of 

cleaved caspase-3 protein was increased in response 
to 100 and 200μM silibinin (p<0.01), whilie the level 
of cleaved caspase 9 protein was increased only after 
treatment with 200μM silibinin (p<0.01), respectively. 
The data demonstrated that silibinin up- regulated the the 
expressions of caspase 3 and caspase 9 in a dose-dependent 
manner. The expressions of caspase 3 and caspase 9 
mRNA obviously decreased compared with those of the 
control group (p<0.01). 

Efects of Silibinin on expression of CDK1 and CyclinB1
To investigate the mechanism of G2/M cell cycle 

arrests of MGC803 cells by silibinin, we tested the protein 
expression and gene levels of CDK1 and Cyclin B1 which 
were the two key G2/M cell cycle regulators in MGC803 
cells treated with different doses of silibinin for 48 h by 

Figure 4. The Effects of Silibinin on the Expression of STAT3, p-STAT3, Bcl-xL, Mcl-1 and Survivin in MGC803 
Cells. A) The representative changes of these protein expressions after treatment with different doses of silibinin for 48 h by western 
blot analysis. B) Quantitative analysis for these protein levels in MGC803 cells, β-actin serves as a loading control in the western 
blot assay. C) Effects of silibinin on STAT3, Bcl-xL, Mcl-1 and Survivin mRNA expression were measured by real-time PCR. 
The levels of each gene mRNA was normalized to the value of the β-actin housekeeping gene mRNA. Results obtained from three 
independent experiments are expressed as means±SD; #p<0.05, *p<0.01, compared with control group. Sb, silibinin

Figure 5. Silibinin Activates the Expression of Caspase 3 and Caspase 9 Protein of MGC803 Cells. A) Expression 
of cleaved caspase 3 and caspase 9 in MGC803 cells treated with different doses of silibinin for 48 h by Western blot analysis. 
B) Quantitative analysis for cleaved caspase 3 and caspase 9 protein levels in MGC803 cells, β-actin serves as a loading control 
in the Western blot assay. C) Effects of silibinin on caspase 3 and caspase 9 mRNA expression were measured by real-time PCR. 
The levels of each gene mRNA was normalized to the value of the β-actin housekeeping gene mRNA. Results obtained from three 
independent experiments are expressed as means±SD; *p<0.01, compared with control group. Sb, silibinin

Figure 6. Silibinin Down-Regulates the Protein Expression of CDK1 and Cyclin B1 in MGC803 Cells. A) Expression 
of CyclinB1 and CDK1 proteins decreased in MGC803 cells treated with silibinin for 48 h compared with control group by Western 
blot analysis. B) Quantitative analysis for CDK1 and Cyclin B1 protein levels in MGC803 cells, β-actin serves as a loading control 
in the Western blot assay. C: Effects of silibinin on CDK1 and Cyclin B1 mRNA expression were measured by real-time PCR. 
The levels of each gene mRNA was normalized to the value of the β-actin housekeeping gene mRNA. Results obtained from three 
independent experiments are expressed as means±SD; #p<0.05, *p<0.01, compared with control group. Sb, silibinin
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western blot analysis and real-time PCR. As shown in 
Figure 6, the levels of CDK1 and Cyclin B1 protein and 
gene were obviously decreased in response to silibinin 
compared with control group (p<0.05). 

Discussion

Silibinin, a major bioactive component of silymarin 
flavonolignans extracted from silybum marianum, 
has been commonly used to treat many liver disorders 
including hepatitis and cirrhosis, and to protect the liver 
against poisoning from exposure to chemical toxins and 
alcohol (Feher et al., 2012). Recently, silibinin has received 
more attention for its anticancer, chemopreventive efficacy 
and nontoxic roles in humans (Cheung et al., 2010; 
Deep et al., 2010; Li et al., 2010). Extensive vitro and 
vivo studies show that the anticancer role of silibinin by 
regulating cell proliferation, angiogenesis and metastasis 
in various cancers (Cui et al., 2012; Wang et al., 2013). 
A variety of signaling pathways associated with cell 
proliferation have been identified to be involved in 
the anticancer actions of silibinin (Singh et al., 2004). 
Even more attractively is that silibinin shows protective 
effects against doxorubicin-induced toxicity (Ececen 
et al., 2011). The aim of this study is to detect whether 
silibinin works against the MGC803 cells, to investigate 
the possible mechanisms and the effects of silibinin. The 
data obtained from the present study show that silibinin 
strongly inhibited the proliferation of MGC803 cells in 
a dose- and time-dependent manner, and that this effect 
was most likely via the induction of apoptosis as well as 
causing cell cycle arrests in G2/M phase.

Constitutive STAT3 activation has a critical role in 
tumor development and tumorigenesis in multiple tumors 
and cell lines. STAT3 may promote cell proliferation and 
survival, inhibit apoptosis, promote cancer cell invasion 
and metastasis, increase angiogenesis, which is mediated 
through regulation of various downstream target genes 
including c-Myc, JunB, Mcl-1, Survivin, Bcl-2, Cyclin 
D1, MMP-2 and vascular endothelial growth factor 
(VEGF) (Stephanou et al., 2000; Masuda et al., 2002; Niu 
et al., 2002; Gritsko et al., 2006; Ghasemi et al., 2006; 
Kujawski et al., 2008; Ding et al., 2008; Verschoyle et 
al., 2008; Lin et al., 2009; Rajamanickam et al., 2010; 
Fossey et al., 2011; Mateen et al., 2013). Several reports 
indicated that STAT3 activation contributed to the 
progression and invasiveness of GC and may be used as 
a molecular staging biomarker predicting poor prognosis 
of GC (Devarajan et al., 2013; Yang et al., 2013). Previous 
studies have established that specific targeting of stomach 
epithelial STAT3 may be therapeutically effective in 
preventing gastric carcinogenesis (Hsu et al., 2012), and 
inhibition of activated STAT3 could reverse resistance to 
chemotherapy agents in human gastric cancer cells (Kim 
et al., 2009). Therefore, the inhibition of activated STAT3 
signaling pathway may be a potential and effective target 
for GC therapy.

Apoptosis has been accepted as a fundamental 
component in the pathogenesis of cancer. The origin of 
cancer involves deregulated cellular proliferation and the 
suppression of apoptotic processes, ultimately leading to 

tumor establishment and growth (Giraud et al., 2012). The 
selective induction of apoptosis in tumor cells has been 
increasingly recognized as a promising approach for cancer 
therapy (Huang et al., 2012). Apoptosis occurs via two 
main pathways, the extrinsic, or death receptor-mediated 
pathway and the intrinsic, or mitochondrial-mediated 
pathway (Hunter et al., 2007; Zhang et al., 2013). Both 
pathways converge to a final common pathway involving 
the activation of caspases, which can cleave the regulatory 
and structural molecules, and thus induce the death of 
the cells (Hunter et al., 2007). Bcl-2 family members, 
including Bcl-xl, Mcl-1 and other molecules, play major 
roles in regulating the intrinsic mitochondrial pathways. 
Inhibition of multiple Bcl-2 family members will be 
necessary to achieve optimal therapeutic effect (Ghobrial 
et al., 2005). In this study, our data shown that silibinin 
inhibits constitutively active STAT3 phosphorylation and 
siginificantly downregulate the expression of STAT3-
regulated gene products, including Bcl-xl, Mcl-1 both 
in mRNA and protein level. Meanwhile we found that 
silibinin treatment significantly activated the caspase-3 
and caspase-9. Therefore Silibinin induced apoptosis of 
MGC803 cells via inhibition of STAT3 signaling pathway 
along well with down-regulation of Bcl-xL, Mcl-1 and 
up-regulation of caspase-3 and caspase-9.

Survivin, a member of the family of inhibitor of 
apoptosis proteins which are known to inhibit both 
extrinsic and intrinsic pathways of apoptosis by acting 
as endogenous inhibitors of caspases, functions as a key 
regulator of mitosis and programmed cell death (Fischer 
et al., 2005; Giraud et al., 2012). Survivin prominently 
expressed in transformed cell lines and in all the most 
common human cancers of lung, gastric, colon, pancreas, 
prostate and breast (Kang et al., 2009). In vitro and in 
vivo studies have shown survivin to induce apoptosis, 
reduce tumor growth potential, and sensitize tumor cells 
to chemotherapeutic drugs (Hunter et al., 2007). In our 
experiment, realtime-PCR and Western blot indicates 
survivin expression is down regulated both at mRNA 
and protein level in silibinin treated group. So down-
regulation of survivin might be responsible for apoptosis 
induction of MGC803 cells by silibinin. All these findings 
in this study implicated that Silibinin induce apoptosis of 
MGC803 cells resulted from both the extrinsic and the 
intrinsic pathway.

It is well known that the cell cycle is segregated 
into four phases: DNA synthesis (S phase) and mitosis 
(M phase), the S and M phases are separated by the 
two gap phases, G1 (before DNA replication) and G2 
(before mitosis). Deregulation of the cell cycle underlies 
the aberrant cell proliferation that characterizes cancer 
(Mita et al., 2008). Cancer is frequently considered to 
be a disease of the cell cycle (Ambrosini et al., 1997). 
Several studies have suggested that inhibition of cell cycle 
regulation in cancer cells could be a potential target for 
the management of cancer (Park et al., 2003; Williams et 
al., 2012). Collectively, recent studies show that silibinin 
caused cell cycle arrest in different phases in various cancer 
cells. Exposure to silibinin resulted in a G1 arrest in human 
bladder transitional cell carcinoma cells (McDonald et al., 
2000) and human prostate cancer DU145 cells (Owa et 
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al., 2001). Silibinin treatment aslo inhibited human non-
small cell lung cancer (NSCLC) cells growth and targeted 
cell-cycle progressing causing a prominent G1 arrest in 
dose- and time-dependent manner (Tyagi et al., 2004), but 
combinations with histone deacetylase inhibitors (HDACi) 
exhibited a significant G 2/M arrest of the NSCLC cells 
(Tyagi et al., 2002). Silibinin caused G1 and G2/M cell 
cycle arrest in human prostate cancer PC3 cells (Mateen 
et al., 2010). However in the report by Dhanalakshmi S 
(Mateen et al., 2012), silibinin treatment induced G0/G1 
arrest in cell cycle progression of human colon carcinoma 
HT-29 cells, but higher dose and longer time treatment 
also caused a G2/M arrest. Further silibinin promotes 
cell-cycle arrest in G2/M phase in Fet and Geo cell lines 
and G1 arrest in HCT116 of human colon cancer (Deep et 
al., 2006). Our study demonstrated that silibinin inhibited 
the MGC803 cells proliferation by inducing G2/M cell 
cycle arrest. No significant differences were observed 
regarding the cell cycle distribution of MGC803 cells 
in the G0/G1 and S phases. Therefore all these findings 
implicated that silibinin inhibited different cancer cells in 
a different manner resulting from the particular selectivity 
and specificity of its biological responses in various cancer 
cell types. So it is important to identify the mechanism 
of silibinin action. 

Cell cycle progression and cell division are driven by 
the sequential activation of a group of serine-threonine 
kinases called cyclin-dependent kinases (CDKs) (Agarwal 
et al., 2003). The activity of the CDKs are positively 
regulated by cyclins and are negatively regulated by 
cyclin-dependent kinase inhibitors (CDKIs) (Santamaria 
et al., 2006; Hogan et al., 2007). G2/M transition is 
regulated by the sequential activation and deactivation of 
CDK-regulatory proteins and cyclin complexes (Schwartz 
et al., 2002). The cdc25C functions as a mitotic activator 
by dephosphorylating CDK1 (cdc2/p34) that forms a 
complex with Cyclin B1 and drives the cell from G2 to 
M phase (Malumbres et al., 2009). CyclinB1- CDK1 
activation initiates prophase, and that increasing levels of 
CyclinB1- CDK1 activity trigger different mitotic events. 
So the regulation of Cyclin B1-CDK1 complex activity 
is important for proper entry and progression of mitosis 
(Taylor et al., 2001; Tyagi et al., 2002). According to 
previous reports, silibinin downregulated cdc25C, CDK1 
and Cyclin B1with a concomitant decrease in CDK1 
activity in human HT-29 colon carcinoma cells (Mateen 
et al., 2012) and prostate cancer PC3 cells (Owa et al., 
2001), also decreased the level of Cyclins B1 and CDK1 
in human colorectal carcinoma LoVo cells (Masuda et al., 
2011). Consistent with these reports, in the present study, 
the realtime PCR and Western blot analysis indicated 
Silibinin decreased the expression of CDK1 and cyclinB1 
both at mRNA and protein level in human MGC803 cells. 
The molecular alterations caused by Silibinin could have 
resluted in a G2/M arrest in cancer cells.

According to previous reports, STAT3 has the capacity 
to promote proliferation through G1 and G2/M cell-cycle 
progression as the common tumor cell- autonomous 
mechanism that bridges chronic inflammation to tumor 
promotion (Olivier and Jonathon, 2010). Several agents 
and genes induce cell cycle arrest and apoptosis in human 

carcinoma cells via STAT3 signaling pathway (Bollrath et 
al., 2009; Kaur et al., 2009; Liu et al., 2012). Cucurbitacin 
E induces G2/M phase arrest in human bladder cancer 
T24 cells through STAT3/p53/p21 signaling (Chetty et 
al., 2012; Huang et al., 2012; Quoc Trung et al., 2013). 
Consistent with these observations, the data of our present 
study show clearly that silibinin caused G2/M arrest was 
associated with a marked decrease in p-STAT3, CDK1 
and cyclin B1. Therefore silibinin induce cell cycle arrest 
may be through STAT3 pathway.

In summary, the findings in present study shown that 
silibinin inhibited proliferation, induced apoptosis and 
caused cell cycle arrest at G2/M phase in human gastric 
cancer MGC803 Cells. The molecular events identified 
to be associated with silibinin efficacy include a decrease 
in p-STAT3 and down-regulation of the downstream anti-
apoptotic proteins Mcl-1, Bcl-xL, Survivin concomitant 
with up-regulation of caspase 3 and caspase 9, along 
with a decrease in the cell-cycle regulatory protein cyclin 
B1 and CDK1. Taken together, the anticancer effects of 
silibinin in MGC803 cells may be partly achieved via the 
STAT3 pathway.
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