Analysis of TP53 Polymorphisms in North Indian Sporadic Esophageal Cancer Patients

Sukhpreet Kaur1, Vasudha Sambyal1*, Kamlesh Guleria1, Mridu Manjari2, Meena Sudan3, Manjit Singh Uppal4, Neeti Rajan Singh4, Gursimran Singh5, Harpreet Singh6

Abstract

Background: To investigate the relationship of five TP53 polymorphisms (p.P47S, p.R72P, PIN3 ins16bp, p.R213R and r.13494g>a) with the esophageal cancer (EC) risk in North Indians. **Materials and Methods:** Genotyping of p.P47S, p.R72P, PIN3 ins16bp, p.R213R and r.13494g>a polymorphisms of TP53 in 136 sporadic EC patients and 136 controls using polymerase chain reaction and PCR-RFLP. **Results:** The frequencies of genotype RR, RP and PP of p.R72P polymorphism were 16.91 vs 26.47%, 58.82 vs 49.27% and 24.27 vs 24.27% among patients and controls respectively. We observed significantly increased frequency of RP genotype in cases as compared to controls (OR=1.87, 95% CI, 1.01-3.46, p=0.05). The frequencies of genotype A1A1, A1A2 and A2A2 of PIN3 ins16bp polymorphism were 69.12 vs 70.59%, 27.20 vs 25% and 3.68 vs 4.41% among patients and controls. There was no significant difference among genotype and allele distribution between patients and controls. The frequencies of genotype GG, GA and AA of r.13494g>a polymorphism were 62.50 vs 64.70%, 34.56 vs 30.15% and 2.94 vs 5.15% among patients and controls respectively. No significant difference between genotype and allele frequency was observed in the patients and controls. For p.P47S and p.R213R polymorphisms, all the cases and controls had homozygous wild type genotype. The RP-A1A1-GG genotype combination shows significant risk for EC (OR=2.01, 95%CI: 1.01-3.99, p=0.05). **Conclusions:** Among the five TP53 polymorphisms investigated, only p.R72P polymorphism may contributes to EC susceptibility.

Keywords: Esophageal cancer - TP53 - polymorphism

Asian Pac J Cancer Prev, 15 (19), 8413-8422

Introduction

Among human cancers, esophageal cancer (EC) appears to be a complex multistep process with multifunctional etiologies in which environmental, geographical and genetic factors have been attributed to play critical roles in the development of cancer (Tsigris et al., 2007). Worldwide, EC ranks eighth in cancer incidence and sixth in cancer mortality (Ferlay et al., 2010). The geographical regions with higher risk of esophageal cancer, which extend from Turkey through countries such as Iran, Mongolia, Kazakhstan and the Taihang mountain range in North-central China are collectively called “Asian esophageal cancer belt” (Mao et al., 2011). The geographical regions with higher risk of esophageal cancer, which extend from Turkey through countries such as Iran, Mongolia, Kazakhstan and the Taihang mountain range in North-central China are collectively called “Asian esophageal cancer belt” (Mao et al., 2011). The estimated number of esophageal cancer cases in India for the year 2015 and 2020 are 42,184 and 42,513 respectively (Takiar et al., 2010). In India, high incidence of esophageal cancer has been reported in states of Jammu and Kashmir, Assam and Karnataka (Ali et al., 2011).

Genetic variants in genes controlling DNA repair and cell proliferation have been proven to be important in determining individual susceptibility to the occurrence of common cancers (Hunt et al., 2013). Tumor suppressor genes mediate cellular response to genotoxic insults through its effects on gene transcription, DNA synthesis and repair, genomic stability and apoptosis (Vogelstein and Kinzler, 1992). TP53 (OMIM 191170) “the guardian of the genome” is mostly inactivated in sporadic human tumors resulting in inactivation of a wide range of anti-proliferative responses regulating cell cycle progression, apoptosis, autophagy, differentiation, senescence, DNA repair and oxidative metabolism (Levine, 1997; Hainaut and Hollstein, 2000; Petitjean et al., 2007; Levine and Oren, 2009). The p53 protein has also other biological functions like senescence, angiogenesis, cellular differentiation and immune response (Suzuki and Matsubara, 2011).

1Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India, 2Department of Pathology, 3Department of Radiotherapy, 4Department of Surgery, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar, Punjab, India, 5Dr. D.Y. Patel Medical College and Hospital, Pune, 6Liver & Digestive Diseases Centre, The Mall, Amritsar

*For correspondence: vasudhasambyal@yahoo.co.in
The TP53 pathway is well known for maintaining genomic integrity and preventing cells from undergoing oncogenic transformation (Hamroun et al., 2006). Genetic polymorphisms can contribute to differences between individuals in susceptibility to various cancers by affecting the regulation of gene expression (Wade et al., 2013). Analysis of polymorphisms in a variety of genes has revealed a correlation between specific allele variants and cancer predisposition (Rogler et al., 2011). The loss of p53 function also mediates resistance to chemotherapy induced apoptosis, which is often associated with poor clinical outcome (Owen et al., 1997).

In TP53 gene, polymorphisms have been identified in both coding and non-coding regions (Murphy, 2006; Bojesen and Nordestgaard, 2008; Costa et al., 2008; Whibley et al., 2009). About 200 genetic polymorphisms have been identified in TP53 (http://p53.iarc.fr), many of which show geographic and population variations, but their effects on cancer risk appear to be inconsistent across studies (Whibley et al., 2009; Stacey et al., 2011).

The p.R72P and p.P47S are functionally important polymorphisms of TP53. The p.P47S is present in the N-terminal domain of TP53 that leads to non-synonymous amino acid substitution from Proline to Serine. The p.P47S polymorphism has been investigated in various cancers including breast (Alawadi et al., 2011), colorectal (Sameer et al., 2010), gliomas (Pinto et al., 2008), bladder (Santos et al., 2011), brain (Almeida et al., 2009) and urinary bladder (Jaiswal et al., 2011) cancer. Significant association of S47 has been reported in Caucasian lung cancer (Felley-Bosco et al., 1993) and South Indian colorectal cancer (Singamsetty et al., 2014) patients. So far there is no published report on p.P47S polymorphism in EC.

The p.R72P is a non-conservative change of the arginine to proline located within the prolin-rich domain of TP53 which is the critical site for apoptosis signaling (Sakamuro et al., 1997). The two isoforms of this polymorphism (R72 and P72) differ in their biochemical and biological properties and behave differently (Thomas et al., 1999). The R72 form has been reported to induce apoptosis more effectively than P72 form (Dumont et al., 2003). Several studies have focused on the association between TP53 p.R72P polymorphism and esophageal cancer susceptibility. However, contradictory data is available, where few studies reported an association while several studies found no association. Positive association between p.R72P polymorphism and EC have previously reported in European and Asian (Kawaguchi et al., 2000), Chinese (Lee et al., 2000; Li et al., 2002; Lu et al., 2004; He et al., 2005; Hong et al., 2005; Cai et al., 2006; Shao et al., 2008; Yang et al., 2008; Ma et al., 2012; Yang et al., 2013), South African (Vos et al., 2003), German (Pantelis et al., 2007), Caucasian (Cescon et al., 2009; Renouf et al., 2013) and Korean (Piao et al., 2011) population. Still other studies which have failed to demonstrate any association between codon 72 variants of TP53 and EC cancer risk have been in Chinese (Guimaraes et al., 2001; Hu et al., 2003), Japanese (Hamajima et al., 2002) and Caucasian (Liu et al., 2010) population.

A rare polymorphism p.R213R localized in exon 6 resulted from alteration of CGA to CGG at codon 213. Though, published studies substantially lack information on p.R213R polymorphism in EC. No association of p.R213R polymorphism with cancer risk has been observed in Brazilian Barretts esophagus patients (Pilger et al., 2007).

Intronic polymorphisms of TP53 gene may influence coding-region sequence alterations that results in increase of a deleterious phenotype (Malkinson and You, 1994). PIN3 Ins16bp polymorphism (rs17878362) a 16 base pair duplication in intron 3 has been implicated in regulation of gene expression and DNA protein interactions (Mattick 1994, 2004).

Several case-control studies have reported an increased risk of various cancer types associated with PIN3 Ins16bp polymorphism, with the most consistent association reported for breast (Wang-Gohrke et al., 2002; Costa et al., 2008) and colorectal cancers (Gemignani et al., 2004; Perfumo et al., 2006). To date, there are three reports examining the association between PIN3 ins16bp polymorphism and the risk for EC. Two of these reports found a positive association between A2A2 genotype and EC (Vos et al., 2003; Malik et al., 2011), whereas one study from North India failed to find an association (Umar et al., 2012).

The r.13494g>a is a rare polymorphism in the intron 6 of TP53 resulting from G > A transition at 61bp downstream of exon 6. The r.13494g>a has been studied in various cancers including ovarian (Wang-Gohrke et al., 1999; Yair et al., 2000), head and neck (Mitra et al., 2003; Chen et al., 2007), esophageal (Pilger et al., 2007), breast (Peller et al., 1995; Sjalander et al., 1996; Weston et al., 1997; Akkiprik et al., 2009; Singh et al., 2008; Hrstka et al., 2009), cervical (Mitra et al., 2004), colorectal (Mammano et al., 2009), lung (Biros et al., 2001; Wang et al., 2007), prostate cancer (Mittal et al., 2011) and yielded inconsistent results for association.

The previous published studies showed that these polymorphisms vary in different ethnic and population groups. In Punjab state in North West part of India, Population Based Cancer Registry (PBCR) has reported prevalence of cancer as 90 patients per one lakh of population with maximum incidence varying in different districts, i.e. in Muktsar (136.3 per lakh), Mansa (134.8 per lakh), Bathinda (125.8 per lakh) to lower incidence in Taran Taran district (40.9 per lakh). Amritsar district has highest incidence of cancer (81.2 per lakh) in Majha region of Punjab. (http://www.downtoearth.org.in/content/punjab-cancer-capital-india). In Amritsar city, the third largest city of Punjab state, increased incidence of esophageal cancer is being reported (personal Communication, SGRD Rotary Cancer Hospital, Vallah, Sri Amritsar). There is no published report on TP53 polymorphisms in the esophageal cancer patients from this region. The present case-control study was conducted to investigate the relationship of five TP53 polymorphisms (p.P47S, p.R72P, PIN3 Ins16bp, p.R213R and r.13494g>a) with the esophageal cancer risk in North Indian sporadic esophageal cancer patients. The identification of susceptibility factors that predispose individuals to esophageal cancer will give further insight.
into the etiology of this cancer and provide targets for the future development of therapeutic approaches.

Materials and Methods

Clinical evaluation and selection of subjects

This study was approved by the ethical committee of Guru Nanak Dev University, Amritsar, Punjab, India. The patients were recruited from Sri Guru Ram Das Institute of Medical Sciences and Research, Vallah, Amritsar, Punjab. Patients included were those who had no prior history of any cancer and had not undergone chemotherapy, radiotherapy or blood transfusion. The controls were age and gender matched unrelated healthy individuals from the same geographical region as that of patients. The individuals who had family history for any type of cancer or chronic diseases or on regular medication were not included in the study. Relevant information including self reported personal history and disease history of each subject was recorded on a pre-tested structured questionnaire by interview and from medical records. After informed consent, 5ml venous blood was collected from each subject.

DNA extraction and genotyping

Genomic DNA was extracted from peripheral blood leucocytes using standard phenol chloroform method (Adeli and Oghonna, 1990). The DNA fragment harboring p.P47S, p.R72P, PIN3, p.R213R and r.13494g>a polymorphisms were amplified using the published primer sequences (Table 1). Amplification was performed in 15μl reaction volume containing 0.4μl of dNTPs, 6pmoles of each oligonucleotide primer and 0.9U of Taq DNA polymerase (Bangalore GeNei). A negative control without DNA template was included in each reaction. Details of reaction conditions have been mentioned in Table 1. The amplified PCR products were analyzed on ethidium bromide stained agarose gel. The PCR products were digested with appropriate restriction enzyme (Table 1) using the manufacturer instructions (New England Biolabs, Beverly, MA), followed by agarose gel electrophoresis. The genotype were categorized as wild type, heterozygous and homozygous variant based on band sizes as mentioned in Table 1 and Figures 1-4. Genotyping was performed without knowledge of case/control status to ensure quality control.

Statistical analysis

Continuous variables were analyzed by t-test and presented as means ± standard deviation (SD). Categorical variables were presented as percentages and were compared by chi-square test. Hardy Weinberg equilibrium (HWE) was tested by comparing the observed to expected genotype frequencies in controls using a χ² test. The odds ratios (ORs), 95%CI ranges and corresponding p-values were calculated using the Web-Assotest program (http://www.ekstroem.com) for measuring the association between different genotypes and esophageal

![Figure 1. Restriction Digestion of PCR Products Demonstrating the Patterns of Digestion in Different Genotypes of p.P47S Polymorphism of TP53. Lane 1-5=Wild type homozygous genotype (PP)](image)

![Figure 2. Restriction Digestion of PCR Products Demonstrating the Patterns of Digestion in Different Genotypes of p.R72P Polymorphism of TP53. Lane 1, 6 and 8=PP genotype; Lane 2-5=Heterozygous genotype (RP); Lane 7=RR genotype)](image)

![Figure 3. A photograph of Gel Demonstrating the Different Genotypes of PIN3 Polymorphism of TP53. Lane 1 and 2=A1A1 genotype, Lane 3=A1A2 genotype; Lane 4=A2A2 genotype)](image)

![Figure 4. Restriction Digestion of PCR Products Demonstrating the Patterns of Digestion in Different Genotypes of p.R213R and r.13494g>a Polymorphisms of TP53. Lane 1-7=Wild type homozygous genotype (AA). Lane 8, 12 and 13=GG genotype; Lane 9 and 10=GA genotype; Lane 11=AA genotype)](image)
Table 2. Genotype and Allele Frequencies of TP53 Polymorphisms in Esophageal Cancer Patients and Healthy Controls

<table>
<thead>
<tr>
<th>Variant (SNP No.)</th>
<th>Location</th>
<th>Screening Method</th>
<th>PCR product size (bp)</th>
<th>Annealing Temperature, MgCl2</th>
<th>Restriction enzyme</th>
<th>Restriction digestion patterns for different Alleles</th>
<th>Primers</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>p.P47S (rs1800371)</td>
<td>Exon 4</td>
<td>PCR-RFLP</td>
<td>201/185*</td>
<td>59°C, 1mM</td>
<td>MspI</td>
<td>S allele-201/185 P allele-201/185</td>
<td>Pinto et al., 2008</td>
<td></td>
</tr>
<tr>
<td>p.R72P (rs1042522)</td>
<td>Exon 4</td>
<td>PCR-RFLP</td>
<td>279</td>
<td>59°C, 1mM</td>
<td>BstUI</td>
<td>P allele-279</td>
<td>Kazemi et al., 2009</td>
<td></td>
</tr>
<tr>
<td>PIN3 (rs17878362)</td>
<td>Intron 3</td>
<td>PCR</td>
<td>-</td>
<td>61°C, 1mM</td>
<td>-</td>
<td>A1 allele-119, A2 allele-135</td>
<td>Costa et al., 2008</td>
<td></td>
</tr>
<tr>
<td>p.R213R (rs100372)</td>
<td>Exon 6</td>
<td>PCR-RFLP</td>
<td>1621</td>
<td>59°C, 1.5mM</td>
<td>TaqI</td>
<td>A allele-312, 383 and 926 G allele-695 and 926</td>
<td>Pilger et al., 2008</td>
<td></td>
</tr>
<tr>
<td>r.13494g>a (rs1625895)</td>
<td>Intron 6</td>
<td>PCR-RFLP</td>
<td>1621</td>
<td>59°C, 1.5mM</td>
<td>MspI</td>
<td>A allele-633, 297, 277, 168, 124 and 120</td>
<td>Pilger et al., 2008</td>
<td></td>
</tr>
</tbody>
</table>

*Size divergence is due to 16bp ins/del polymorphism in intron 3

Table 2. Genotype and Allele Frequencies of TP53 Polymorphisms in Esophageal Cancer Patients and Healthy Controls

<table>
<thead>
<tr>
<th>Variant (SNP No.)</th>
<th>Genotype</th>
<th>Allele</th>
<th>Patients n(%)</th>
<th>Controls n(%)</th>
<th>OR (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p.P47S (rs1800371)</td>
<td>PP</td>
<td>136(100)</td>
<td>136(100)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PS</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>272(100)</td>
<td>272(100)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p.R72P (rs1042522)</td>
<td>RR</td>
<td>23(16.91)</td>
<td>36(26.47)</td>
<td>1(Reference)</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>RP</td>
<td>80(58.82)</td>
<td>67(49.27)</td>
<td>1.87(1.01-3.46)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PP</td>
<td>33(24.27)</td>
<td>33(24.27)</td>
<td>1.57(0.77-3.19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIN3 Ins16bp (rs17878362)</td>
<td>A1</td>
<td>94(69.12)</td>
<td>96(70.59)</td>
<td>1(Reference)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>37(27.20)</td>
<td>34(25.00)</td>
<td>1.11(0.64-1.92)</td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>5(3.68)</td>
<td>6(4.41)</td>
<td>0.85(0.25-2.88)</td>
<td></td>
<td>0.79</td>
</tr>
<tr>
<td>r.13494g>a (rs1625895)</td>
<td>A1</td>
<td>225(82.72)</td>
<td>226(83.09)</td>
<td>1(Reference)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>47(17.28)</td>
<td>46(16.91)</td>
<td>1.03(0.66-1.60)</td>
<td></td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>136(100)</td>
<td>136(100)</td>
<td>136(100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistically significant p values (p<0.05) are displayed in bold; OR- Odds ratio; CI- confidence interval
and revealed 1.87 folds increased risk for EC (OR=1.87, 95%CI, 1.01-3.46, p=0.05. The frequencies of R and P allele were 46.32 vs 51.10% and 53.68 vs 48.90% in patients and controls respectively.

The frequencies of genotype A1A1, A1A2 and A2A2 of TP53 PIN3 ins16bp were 69.12 vs 70.59%, 27.20 vs 25% and 3.68 vs 4.41% among patients and controls. No significant difference was found among genotype and allele frequency of PIN3 ins16bp polymorphism between patients and controls. The frequencies of genotype GG, GA and AA of TP53 r.13494g>a were 62.50 vs 64.70%, 34.56 vs 30.15% and 2.94 vs 5.15% among patients and controls respectively. There was no significant difference between genotype and allele frequency in the EC patients and controls. For p.P47S and p.R213R polymorphisms, all the cases and controls had homozygous wild type genotype.

We also evaluated all possible interactions of p.R72P with PIN3 ins16bp, p.R72P with r.13494g>a and PIN3 ins16bp with r.13494g>a polymorphisms. It was observed that RP-A1A1 combination of p.R72P and PIN3 ins16bp polymorphism showed significant risk for EC (OR=1.93, 95%CI: 0.99-3.73, p=0.05). The genotype combination RP-GG of p.R72P and r.13494g>a polymorphism showed 1.95 folds risk for EC (OR=1.95, 95%CI: 0.99-3.83, p=0.05). Analysis of genotype combinations of p.R72P, PIN3 ins16bp and r.13494g>a polymorphisms of TP53 showed significant risk for EC in individuals with RP-A1A1-GG genotype combination (OR=2.01, 95%CI: 1.01-3.99, p=0.05).

We stratified our study subjects according to gender, age, smoking, alcohol consumption etc. to investigate the relationship of the studied polymorphisms with EC susceptibility risk. We found that RP genotype of p.R72P was significantly associated with risk for EC in rural (p=0.05) as well as patients with age >50 years (p=0.02).

Discussion

The pathogenesis of esophageal cancer has not been fully elucidated till date. Despite the advances in surgical techniques and treatments, the prognosis of EC remains poor, since the disease is usually diagnosed at an advanced stage. TP53 is a central mediator of responses to DNA damage and cellular stress and would therefore be expected to play major roles in determining not only

<table>
<thead>
<tr>
<th>Polymorphism</th>
<th>Population</th>
<th>Screening Method</th>
<th>Patients</th>
<th>Controls</th>
<th>Inference</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>p.P47S</td>
<td>North Indian</td>
<td>PCR-RFLP</td>
<td>136</td>
<td>136</td>
<td>No association</td>
<td>Present study</td>
</tr>
<tr>
<td>PIN3 16bp Ins</td>
<td>North Indian</td>
<td>PCR</td>
<td>136</td>
<td>136</td>
<td>No association</td>
<td>Present study</td>
</tr>
<tr>
<td></td>
<td>South African</td>
<td>PCR-SSCP</td>
<td>DNA sequencing</td>
<td>73</td>
<td>115</td>
<td>Γ risk with A2A2 genotype</td>
</tr>
<tr>
<td>p.R72P</td>
<td>North Indian</td>
<td>PCR-RFLP</td>
<td>135</td>
<td>195</td>
<td>Γ risk with A2A2 genotype</td>
<td>Pilger et al., 2007</td>
</tr>
<tr>
<td></td>
<td>North Indian</td>
<td>PCR</td>
<td>255</td>
<td>255</td>
<td>No association</td>
<td>Umar et al., 2012</td>
</tr>
<tr>
<td></td>
<td>European and Asian</td>
<td>Sequencing</td>
<td>136</td>
<td>136</td>
<td>Γ risk with RP genotype</td>
<td>Present study</td>
</tr>
<tr>
<td>Chinese</td>
<td>PCR-RFLP</td>
<td>90</td>
<td>254</td>
<td></td>
<td>Γ risk with PP genotype</td>
<td>Lee et al., 2000</td>
</tr>
<tr>
<td>Chinese</td>
<td>PCR-RFLP</td>
<td>32</td>
<td>57</td>
<td></td>
<td>No association</td>
<td>Guimarães et al., 2001</td>
</tr>
<tr>
<td>Japanese</td>
<td>PCR</td>
<td>102</td>
<td>241</td>
<td></td>
<td>No association</td>
<td>Hamajima et al., 2002</td>
</tr>
<tr>
<td>Chinese</td>
<td>Allele Specific PCR</td>
<td>62</td>
<td>50</td>
<td></td>
<td>Γ risk with RR genotype and HPV infection</td>
<td>Li et al., 2002</td>
</tr>
<tr>
<td>Chinese</td>
<td>PCR-SSCP</td>
<td>120</td>
<td>232</td>
<td></td>
<td>No association</td>
<td>Hu et al., 2003</td>
</tr>
<tr>
<td>South African</td>
<td>PCR-SSCP</td>
<td>73</td>
<td>115</td>
<td></td>
<td>Γ risk with R allele</td>
<td>Vo et al., 2003</td>
</tr>
<tr>
<td>Chinese</td>
<td>PCR-RFLP</td>
<td>104</td>
<td></td>
<td></td>
<td>Γ risk with RR genotype and HPV infection</td>
<td>Lu et al., 2004</td>
</tr>
<tr>
<td>Chinese</td>
<td>PCR-RFLP</td>
<td>110</td>
<td></td>
<td></td>
<td>Γ risk with RR genotype and HPV infection</td>
<td>He et al., 2005</td>
</tr>
<tr>
<td>Chinese</td>
<td>PCR-RFLP</td>
<td>758</td>
<td>1420</td>
<td></td>
<td>Γ risk with PP genotype</td>
<td>Hong et al., 2005</td>
</tr>
<tr>
<td>Chinese</td>
<td>PCR-RFLP</td>
<td>204</td>
<td>389</td>
<td></td>
<td>Γ risk with PP genotype</td>
<td>Cai et al., 2006</td>
</tr>
<tr>
<td>German</td>
<td>PCR</td>
<td>53</td>
<td></td>
<td></td>
<td>Γ risk with R allele and HPV infection</td>
<td>Pantelis et al., 2007</td>
</tr>
<tr>
<td>Chinese</td>
<td>PCR-RFLP</td>
<td>673</td>
<td>694</td>
<td></td>
<td>Γ risk with PP genotype</td>
<td>Shao et al., 2008</td>
</tr>
<tr>
<td>Chinese</td>
<td>DNA sequencing</td>
<td>435</td>
<td>550</td>
<td></td>
<td>Γ risk with RR genotype and HPV infection</td>
<td>Yang et al., 2008</td>
</tr>
<tr>
<td>Caucasian</td>
<td>TaqMan assay</td>
<td>371</td>
<td></td>
<td></td>
<td>Γ risk with PP genotype</td>
<td>Cescon et al., 2009</td>
</tr>
<tr>
<td>Caucasian</td>
<td>TaqMan assay</td>
<td>312</td>
<td>454</td>
<td></td>
<td>No association</td>
<td>Li et al., 2010</td>
</tr>
<tr>
<td>Korean</td>
<td>Real Time PCR</td>
<td>340</td>
<td>1700</td>
<td></td>
<td>Γ risk with P allele</td>
<td>Piao et al., 2011</td>
</tr>
<tr>
<td>Chinese</td>
<td>PCR-RFLP</td>
<td>226</td>
<td>226</td>
<td></td>
<td>Γ risk with RP and PP genotype</td>
<td>Ma et al., 2012</td>
</tr>
<tr>
<td>Caucasian</td>
<td>PCR-RFLP</td>
<td>358</td>
<td></td>
<td></td>
<td>Γ risk with PP genotype</td>
<td>Renouf et al., 2013</td>
</tr>
<tr>
<td>Chinese</td>
<td>TaqMan assay</td>
<td>307</td>
<td>311</td>
<td></td>
<td>Γ risk with RR and RP genotype</td>
<td>Yang et al., 2013</td>
</tr>
<tr>
<td>r.13494g>a</td>
<td>North Indian</td>
<td>PCR-RFLP</td>
<td>136</td>
<td>136</td>
<td>No association</td>
<td>Present study</td>
</tr>
<tr>
<td>Brazilian</td>
<td>PCR-RFLP</td>
<td>45</td>
<td>100</td>
<td></td>
<td>No association</td>
<td>Pilger et al., 2007</td>
</tr>
<tr>
<td>p.R213R</td>
<td>North Indian</td>
<td>PCR-RFLP</td>
<td>136</td>
<td>136</td>
<td>No association</td>
<td>Present study</td>
</tr>
<tr>
<td>Brazilian</td>
<td>PCR-RFLP</td>
<td>35</td>
<td>100</td>
<td></td>
<td>No association</td>
<td>Pilger et al., 2007</td>
</tr>
</tbody>
</table>
Asians have been reported to express the P allele, whereas the TP53 p.R72P polymorphism varies by ethnic group. Well as in controls in the current study. The distribution of protective factor for EC (Jiang et al., 2011). A meta-analysis of nine case-control studies involving a total of 2,114 EC cases and 3,431 controls revealed that TP53 R72 allele is a risk for esophageal cancer in European and African (Voss et al., 2003), and German (Pantelis et al., 2002; Lu et al., 2004; He et al., 2005; Yang et al., 2008; Yang et al., 2013). Association of R72 allele with increased risk of EC has also been reported in Korean patients (Piao et al., 2011). Significant association of PP genotype of p.R72P polymorphism has been reported with increased risk for adenocarcinoma in Chinese non-smoker females (Ren et al., 2013) and cervical cancer in Indians (Zhou et al., 2012). p.R72P polymorphism has also been reported to be associated with risk of cervical cancer development in Human papillomavirus (HPV) 16 infected women (Chansaenroj et al., 2013). In esophageal cancer, HPV may have a role only in the presence of altered promoter methylation of Aurora A and tobacco use (Mohiuddin et al., 2013).

The R72 variant has been reported to be a more potent inhibitor of chemotherapy-induced apoptosis than the corresponding P72 variant (Bergamaschi et al., 2003). Patients, homozygote for R72 allele, with breast, lung or head and neck cancers have been shown to survive and respond better to chemotherapy and radiotherapy (Sullivan et al., 2004; Nelson et al., 2005; Tommiska et al., 2005; Xu et al., 2005). The RP genotype has been associated with better tumor response to neoadjuvant chemotherapy in lung cancer patients (Gervas et al., 2009). These p53-mediated responses are crucial both in reducing cancer frequency in vertebrates and in mediating the response of commonly used cancer therapies (Johnstone et al., 2002; Lozano and Zambetti 2005; Haupt and Haupt 2006).

Polymorphisms in the non-coding region of TP53 could also play an important role in the regulation of gene expression. It has been reported that PIN ins16bp polymorphism may have an impact on the levels and alternative splicing of TP53 mRNA (Gemignani et al., 2004). In the present study, no association of PIN3 polymorphism with EC risk was observed. This was consistent with a study conducted in other states of North India which revealed no association of PIN3 polymorphism with EC risk (Umar et al., 2012). However, A2A2 genotype of PIN3 polymorphism has been reported to be associated with increased risk of esophageal cancer in Kashmiri North Indian (Malik et al., 2011) and South African (Vos et al., 2003) patients.

In p.R72P polymorphism, we observed deviation from HWE in patients (p<0.05) which may be due to genetic reasons including non-random mating, the alleles reflecting recent mutations that have not reached equilibrium, as well as methodological reasons (Mitchell et al., 2003; Hosking et al., 2004). In the present study, RP genotype of p.R72P polymorphism was significantly associated with increased risk of esophageal cancer as compared to RR and PP genotypes (OR=1.87; 95%CI=1.01-3.46; p=0.05). Association of RP genotype with increased cancer risk has previously been documented in Chinese esophageal squamous cell carcinoma patients (Yang et al., 2013). We observed higher frequency of RR genotype in controls as compared to patients. The impact of p.R72P polymorphism of TP53 in development of esophageal cancer is still controversial. RP genotype of p.R72P polymorphism has been reported to be associated with increased risk for esophageal cancer in European and Asian (Kawaguchi et al., 2002), Chinese patients (Li et al., 2002; Lu et al., 2004; He et al., 2005; Yang et al., 2008; Yang et al., 2013). Association of R72 allele with increased risk of EC has also been reported in South African (Vos et al., 2003), and German (Pantelis et al., 2007) patients. A positive association of the R72 allele with p53 overexpression has been reported in esophageal cancer tissue (Lee et al., 2006). A meta-analysis of nine case-control studies involving a total of 2,114 EC cases and 3,431 controls revealed that TP53 R72 allele is a protective factor for EC (Jiang et al., 2011).

The frequency of PP genotype was same in patients as well as in controls in the current study. The distribution of the TP53 p.R72P polymorphism varies by ethnic group. Asians have been reported to express the P allele, whereas Caucasians express the R allele (Siddique et al., 2005). PP genotype has been described as risk genotype for EC in Chinese (Lee et al., 2000; Hong et al., 2005, Cai et al., 2006, Shao et al., 2008) and Caucasians (Cescon et al., 2009; Renouf et al., 2013). Association of P72 allele with increased risk of EC has also been reported in Korean patients (Piao et al., 2011). Significant association of PP genotype of p.R72P polymorphism has been reported with increased risk for adenocarcinoma in Chinese non-smoker females (Ren et al., 2013) and cervical cancer in Indians (Zhou et al., 2012). p.R72P polymorphism has also been reported to be associated with risk of cervical cancer development in Human papillomavirus (HPV) 16 infected women (Chansaenroj et al., 2013). In esophageal cancer, HPV may have a role only in the presence of altered promoter methylation of Aurora A and tobacco use (Mohiuddin et al., 2013).
in Esophageal Cancer (Ryan et al., 2001). In patients, 13.97% subjects were underweight. A low body mass index reportedly increases the risk for squamous cell carcinoma (Ryan et al., 2006). Leanness has been associated with increased risk for squamous cell carcinoma of esophagus in North Americans (Gallus et al., 2001; Smith et al., 2008).

We observed that 60.29% of EC patients were of age>50 years. It has been reported that people between the age of 50 and 70 years have a greater risk of developing esophageal cancer with 3-4 times higher risk in men as compared to women (Steyerberg et al., 2007; Ferlay et al., 2010; Mao et al., 2011) though in the present study more females were affected compared to males. Ageing is associated with the ability to maintain and repair somatic cells (Kirkwood et al., 2000). It has been proposed that age associated tissue dysfunction is caused by the accumulation of molecular and cellular damage (Hasty et al., 2003). In patients, 13.97% subjects were smokers, 29.41% were alcoholic while 11.77% were both smokers and alcoholic. Several studies investigating the effects of smoking and alcohol intake on the risk of esophageal cancer have demonstrated that long duration, high consumption and the interaction of these habits may increase the risk of cancer through a variety of mechanisms including genotoxicity, tumor promotion, hormonal action and immunotoxicity. In a study from Brazil, it has been reported that the agricultural workers who were exposed to pesticides and other agriculture chemicals. Many pesticides are carcinogenic in nature and may increase the risk of cancer through a variety of mechanisms including genotoxicity, tumor promotion, hormonal action and immunotoxicity. In a study from Brazil, it has been reported that the agricultural workers were at a higher risk for esophageal cancer as compared to non-agricultural workers (Meyer et al., 2011).

In conclusion, our data suggest that among the five TP53 polymorphisms investigated, only p.R72P polymorphism and the RP-A1A1-GG genotype combination may contributes to EC susceptibility. The discrepancy among results of the present and previous studies may be due to ethnic and geographic differences, environmental factors and life style among various populations. Further comprehensive studies on other genes of various pathways involved in esophageal cancer along with TP53 are needed to elucidate accurate EC risk in Punjab, North-West India.

Acknowledgements

We are thankful to the patients and controls for taking part in this study. The present study was supported by the DST grant SR/S0/HS/0089/2010 sanctioned to VS and KG. Research fellowship to SK under University with Potential for Excellence Scheme of UGC is duly acknowledged. We are thankful to Dr. Geeta Sharma, Principal, Sri Guru Ram Das Institute of Medical Sciences and Research, Vallah, Anristsar, Punjab for her help in providing access to patients and facilities for execution of research work.

References

to cancer risk and progression. Exp Oncol, 32, 205-8.

Sukhpreet Kaur et al

