RESEARCH ARTICLE

Knockdown of UHRF1 by Lentivirus-mediated shRNA Inhibits Ovarian Cancer Cell Growth

Feng Yan¹,², Li-Jia Shao², Xiao-Ya Hu¹*

Abstract

Human UHRF1 (ubiquitin-like PHD and RING finger domain-containing 1) has been reported to be over-expressed in many cancers, but its role in ovarian cancer remains elusive. Here, we determined whether knockdown of UHRF1 by lentivirus-mediated shRNA could inhibit ovarian cancer cell growth. Lentivirus-mediated short hairpin RNAs (lv-shRNAs-UHRF1) were designed to trigger the gene silencing RNA interference (RNAi) pathway. The efficiency of lentivirus-mediated shRNA infection into HO-8910 and HO-8910 PM cells was determined using fluorescence microscopy to observe lentivirus-mediated GFP expression and was confirmed to be over 80 percent. UHRF1 expression in infected HO-8910 and HO-8910 PM cells was evaluated by real-time PCR and Western blot analysis. The Cell Counting Kit-8 (CCK-8) assay was used to measure cell viability; flow cytometry and Hoechst 33342 assay was applied to measure cell cycle arrest and apoptosis. Cell invasion was assessed using transwell chambers. Our results demonstrated that the loss of UHRF1 promoted HO-8910 and HO-8910 PM cell apoptosis, while inhibiting cell proliferation. In addition, UHRF1 knockdown significantly inhibited the invasion of human ovarian cancer cells. In the present study, we also showed that depleting HO-8910 cells of UHRF1 caused activation of the DNA damage response pathway, with the cell cycle arrested in G2/M-phase. The DNA damage response in cells depleted of UHRF1 was illustrated by phosphorylation of CHK (checkpoint kinase) 2 on Thr68, phosphorylation of CDC25 (cell division control 25) on Ser 216 and phosphorylation of CDK1 (cyclin-dependent kinase 1) on Tyr 15.

Keywords: Ovarian cancer cells - UHRF1 - apoptosis - cell cycle - phosphorylation - transcription factors

Asian Pac J Cancer Prev, 16 (4), 1343-1348

Introduction

Cancer has been viewed as a set of diseases that are driven by wide-spread aberrant epigenetic changes that include mutations in tumour-suppressor genes and oncogenes, and chromosomal abnormalities. Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) is a novel anti-apoptotic gene, and over-expression of UHRF1 is involved in tumorigenicity (Geng et al., 2012; Wang et al., 2012; Yang et al., 2012). UHRF1 also known as ICBP90 (inverted CCAAT box binding protein 90) identified as a multidomain protein is a nuclear protein that acts as a fundamental regulator in cell proliferation and maintains DNA methylation after replication and heterochromatin formation (Fang et al., 2012). UHRF1 contributes to silencing of tumor suppressor genes by recruiting DNA methyltransferase 1 (DNMT1) to their semi-methylated promoters via its SRA domain and represses the expression of several tumour suppressor genes (TSGs) including p16INK4A, hMLH1, BRCA1, RB1 and E2F-1(Mousli et al., 2003). Conversely, UHRF1 is regulated by other TSGs such as p53, p73, p21Cip1/WAF1 (Arima et al., 2004; Alhosin et al., 2011; Achour et al., 2013).

In non-cancerous cells, UHRF1 is required for cell cycle progression. UHRF1 mRNA and protein fluctuate with the cell cycle (Tien et al., 2011). In cancer cells, UHRF1 levels are high and the protein is equally expressed in all phases of the cell cycle (Arima et al., 2004). For example, cancer cell lines such as HeLa, Jurkat and A549 show constant ICBP90 expression throughout the entire cell cycle (Mousli et al., 2003). However, reports on the effects of UHRF1 depletion in cancer cells have been varied. For example, Wang et al. found lentiviral-mediated RNA interference (RNAi) of UHRF1 induced apoptosis and cell cycle arrest at the G0/G1 phase in colorectal cancer cell lines (Wang et al., 2012), but Dandache et al. and Tien et al. both assumed that a down-regulation of UHRF1, cell cycle arrest in G2/M-phase in different human colorectal cancer cell lines (Tien et al., 2011; Dandache et al., 2012). Arima et al. showed that HeLa cells remain blocked G1/S transition after DNA damage (Arima et al., 2004). Abbady et al. proposed that ICBP90 down-regulation is a key event in G1 arrest

¹College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, ²Department of clinical Laboratory, Nanjing Medical University Cancer Hospital & Jiangsu Cancer Hospital, Nanjing, China *For correspondence: xyhu@yzu.edu.cn, yanfeng1895@163.com
Ovarian cancer is the most lethal gynecological cancer. Although at least 70% of patients respond to platinum-based chemotherapy, the majority of patients eventually relapse. Ovarian cancer is the most lethal of all gynecologic neoplasms. Early-stage malignancy is frequently asymptomatic and difficult to detect and thus, by the time of diagnosis, most women have advanced disease. Most of these patients, although initially responsive, eventually develop and succumb to drug-resistant metastases. The success of typical postsurgical regimens, usually a platinum/taxane combination, is limited by primary tumors being intrinsically refractory to treatment and initially responsive tumors becoming refractory to treatment, due to the emergence of drug-resistant tumor cells.

In the present study, we successfully constructed the tumor-specific lentivirus-mediated shRNA targeting UHRF1 gene. The tumor-specific RNA interference system efficiently and specifically knocked down UHRF1 expression, induced the apoptosis and inhibited cell growth in ovarian cancer cells. We test cell cycle of UHRF1 knockdown cancer cells by flow cytometry, found cell cycle arrest at the G2/M phase. Moreover, we found loss of UHRF1 induces G2/M arrest might be relative with DNA damage and response pathway.

Materials and Methods

Cell culture

HO-8910 and HO-8910 PM ovarian cells, obtained from the cell bank of the Chinese Academy of Science in Shanghai, China, were cultured in RPMI-1640 with 10% fetal bovine serum (Gibco), 100 U/mL penicillin, 100 µg/mL streptomycin at 37℃ under 5% CO₂ humidified air.

Construction of vectors and lentiviruses

The lentiviral expressing short hairpin RNA (shRNA) targeting the sequence of UHRF1 gene (TGAAATACGTGCGCGGAGAA) and negative control (TTCTCCCGACGTCTCAGG) were purchased from Shanghai Genechem Co. Ltd. Correct insertions of shRNA cassettes were confirmed by restriction mapping and direct DNA sequencing. The shRNA-expressing lentiviral were transfected into 293T cells together with the lentiviral helper plasmids to generate respective lentiviruses. Infectious lentiviruses were harvested 48 h post-transfection, centrifuged to remove cell debris, and then filtered through 0.45 µm cellulose acetate filters. Virus titer was determined by fluorescence-activated cell sorting analysis of GFP positive 293T cells and was approximately 1×10⁵ transducing units (TU)/mL medium. The ability of the five lv-shRNA-UHRF1 vectors to knock down UHRF1 was investigated using qPCR.

qPCR

HO-8910 and HO-8910 PM cells were divided into 3 groups: UHRF1 knockdown cells (kd), negative control cells (nc), blank control (bl). 4 d post-infection, total RNA was extracted with TRizol (Invitrogen, California, USA). Reverse transcription (RT) was performed using a Reverse Transcribease Kit (Promega). GAPDH was used as an endogenous control. qPCR was performed in triplicate using SYBR Mastermix on a TP800 (TaKaRa, Japan). The qPCR cycling conditions were: pre-degenerate at 95℃ for 15 s, followed by 40 cycles of denaturation at 95℃ for 5 s, annealing at 55℃ for 30 s and extension at 72℃ for 30 s; a final extension of 65℃ for 30 s. Values were normalized to the expression of the β-actin gene using the 2-ΔΔCt method. UHRF1, sense: 5’-CGTGGTCAGATGAAGTCC-3’; antisense: 5’-CACGTGGGCGTAGAGTTCC-3’; for GAPDH, sense: 5’-TGACTTCAACAGCGACACCCA-3’; antisense: 5’-CCACCTGTGGCTGTAGCCAAA-3’.

Protein preparation and western blot analysis

Total protein of each group cell was extracted using precooled RIPA lysis buffer. The protein concentration was determined by Nano-drop 2000 spectrophotometer. 50 µg protein sample of each group cell was separated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to polyvinylidene difluoride (PVDF) membranes that were blocked with 5% bovine serum albumin for 2 hours. Afterward, the membranes were incubated overnight with primary antibodies at 4℃. After washing three times for 15 min with TBST at room temperature, membranes were incubated with secondary peroxidase-conjugated goat anti-mouse secondary antibodies for 2 hours at room temperature. Following extensive washing, the immunoreactivity was visualized by enhanced chemiluminescence (ECL kit, Pierce Biotechnology), and membranes were exposed to Kodak XAR-5 films (Sigma-Aldrich). The antibody used, the protein they have been raised against and the dilutions they were used at are listed in Table 1.

CCK-8 assay

Cells were plated in 96-well plates at a density of 5000 cells per well. Then, at 24 h, 48 h, 72 h, 96 h, 10 µL CCK-8 solution was added into the medium (Dojindo, Kumamoto, Janpan) for 2 h at 37℃. Absorbance of each was quantified at 450 nm with an automated ELISA reader (Bio-Tech Instruments, Winooski, VT, USA).

Flow cytometric apoptosis assay and Hoechst 33342 assay

Approximately 1×10⁵ cells/well were plated in triplicate in 6-well plates. After 2 d, cells were harvested and washed twice with PBS. Then, remove the PBS, cells were resuspended in 100 µL Annexin V/PI incubation buffer and incubated for 15 min at room temperature in the dark. Binding buffer (400 µL) was then added to each sample and flow cytometry was performed. The percentage of apoptotic cells was determined on a FACSCalibur flow cytometer (BD, New Jersey, USA). Annexin V-FITC (fluorescein isothiocyanate)/PI (propidium iodide) analysis
Table 1. Antibody Used

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Catalogue number</th>
<th>Supplier</th>
<th>Dilution used</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHRF1</td>
<td>Ab57083</td>
<td>Abcam</td>
<td>1:500</td>
</tr>
<tr>
<td>β-actin</td>
<td>SC-1616</td>
<td>Santa Cruz Biotechnology</td>
<td>1:2000</td>
</tr>
<tr>
<td>Cyclin-D2</td>
<td>#2924</td>
<td>Cell signal technology</td>
<td>1:1000</td>
</tr>
<tr>
<td>Cyclin-E</td>
<td>HE-11</td>
<td>Santa Cruz Biotechnology</td>
<td>1:200</td>
</tr>
<tr>
<td>Cyclin-B1</td>
<td>SC-752</td>
<td>Cell signal technology</td>
<td>1:200</td>
</tr>
<tr>
<td>CDK1</td>
<td>#9112</td>
<td>Cell signal technology</td>
<td>1:1000</td>
</tr>
<tr>
<td>Phospho-CDK1 Ty3r15</td>
<td>#9111</td>
<td>Cell signal technology</td>
<td>1:800</td>
</tr>
<tr>
<td>CHK2</td>
<td>#2662</td>
<td>Cell signal technology</td>
<td>1:1000</td>
</tr>
<tr>
<td>Phospho-CHK2 Thr68</td>
<td>#2661</td>
<td>Cell signal technology</td>
<td>1:1000</td>
</tr>
<tr>
<td>CDC 25</td>
<td>#3652</td>
<td>Cell signal technology</td>
<td>1:1000</td>
</tr>
<tr>
<td>Phospho-CDC25</td>
<td>#9258</td>
<td>Cell signal technology</td>
<td>1:1000</td>
</tr>
</tbody>
</table>

was performed according to the manufacturer’s protocol (Annexin V/APC Apoptosis Detection Kit, eBioscience, USA).

HO-8910 and HO-8910 PM cells at logarithmic growth were seeded in 6-well plates by density of 5x10^5 cells/mL. 4 d after transfection, three group cell were washed twice with PBS, then incubated with 2 mmol/L Hoechst 33342 (Beyotime, Jiangsu, China) for 15 min in dark at room temperature. Cells after stain were viewed under a fluorescence microscope (Leica, German). The images were recorded on a computer with a digital camera attached to the microscope, and the images were processed by computer. The Hoechst reagent was taken up by the nuclei of the cells, and apoptotic cells exhibited a bright blue fluorescence.

Cell cycle analysis

Cells were plated in 6-well plates. Logarithmically growing cells were synchronized. 48 hours later, cells were harvested by trypsinisation, washed twice with ice-cold phosphate-buffered saline (PBS), and fixed with 70% ethanol at -20°C overnight. Subsequently, the cells were digested with RNaseA at 37°C for 20 min. Finally, 100 ul of propidium iodide (PI) solution (50 mg/L) was added to the cell suspension and cells were stained at room temperature for 10 min. The reaction products were measured using the FACSARIA flow cytometer (Becton Dickenson). The experiments were carried out in triplicate.

Statistical analysis

Statistical analysis was performed with SPSS 16.0. Quantitative data were expressed as mean±standard deviation. Comparisons between multiple groups were conducted with one-way ANOVA, and those between two groups with SNK test. A value of p<0.05 was considered statistically significant.

Results

Lentivirus-mediated high-efficiency infection of HO-8910 and HO-8910 PM cells for knockdown of UHRF1

The concentration dose of lv-shRNAs-UHRF1 used was 1x10^9 TU/mL. The infection efficiency of HO-8910 and HO-8910 PM ovarian cancer cells was over 80 percent (Figure 1). The knockdown effect was analyzed by real-time PCR and Western blot analysis.

To determine the effect of lv-shRNA-UHRF1 on the expression of UHRF1 in HO-8910 and HO-8910 PM cells, mRNA and protein levels were analyzed. HO-8910 and HO-8910 PM cells were infected with either lv-shRNA-nc or lv-shRNA1-UHRF1. Four days post-infection, cells were collected and UHRF1 mRNA levels were detected by real-time PCR. Five days post-infection, cells were collected and protein levels were detected by Western blot analysis. As shown in Figure 2A, the infection of lv-shRNA-UHRF1 vectors resulted in a considerable decrease in the levels of UHRF1 mRNA compared with that of negative control group cells (nc) and blank (bl) group cells (p<0.01), while the expression was similar.
of Annexin V-stained cell populations. The apoptosis rate of kd group cells was about 16%, and the nc group cells of that was about 8%. This result indicates that UHRF1 interferes with the progression of apoptosis in ovarian cancer cells. Hoechst 33342 was used to observe cell apoptosis more visible. The results were in accordance with flow cytometric apoptosis assay.

Cell invasion assay

The invasion activity of knockdown UHRF1 cells was estimated based on the number of cells that had migrated through the filter of the transwell chamber (Figure 5). The number of invaded cells decreased in lv-shRNA-UHRF1 cells compared with the scrambled lv-shRNA-NC group cells.

Cell cycle analysis: UHRF1 depletion arrests cells in the G2/M-phase

To characterize the cell cycle behaviour of ovarian cancer cells depleted of UHRF1, we used flow cytometric apoptosis assay. As can be seen in Figure 6A, a small percentage of cells remain blocked in G2/M phase. The population of cells in HO-8910 in G2/M phase was increased from 2.5% to 4.2% after lv-shRNA-UHRF1 lentivirus infection (p<0.05). However, we never found any cell cycle arrest in HO-8910 PM cells. Consistant with this, Western blot analysis did not show any change in the level of G1- or S-phase cyclins (Figure 6B), indicating that there was no cell cycle block in the G1- or S-phases. Instead, we saw an increase in the mitotic cyclin B1, suggesting that UHRF1 depletion caused a block after cyclin B synthesis.

Loss of UHRF1 associated with DNA damage pathway

Cyclin-dependent kinases are regulators of cell cycle progression. Because CDK1 (cyclin dependent kinase 1, also called Cdc2) is required for progression of cells from the G2-phase into and through mitosis, we questioned whether the G2/M-phase block was associated
Discussion

Ovarian cancer is the most lethal gynecological cancer.

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (21475063),...
References

