Meta-Analysis of the Association between the rs8034191 Polymorphism in AGPHD1 and Lung Cancer Risk

Le Zhang1,2*, Tian-Bo Jin1,2,3*, Ya Gao4, Hui-Juan Wang1,2, Hua Yang1,2, Tian Feng2, Chen Chen2, Long-Li Kang3, Chao Chen1,2&

Abstract

Background: Possible associations between the single nucleotide polymorphism (SNP) rs8034191 in the aminoglycosidephosphotransferase domain containing 1 (AGPHD1) gene and lung cancer risk have been studied by many researchers but the results have been contradictory. Materials and Methods: A computerized search for publications on rs8034191 and lung cancer risk was performed. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the association between rs8034191 and lung cancer risk with 13 selected case-control studies. Sensitivity analysis, test of heterogeneity, cumulative meta-analysis, and assessment of bias were also performed. Results: A significant association between rs8034191 and lung cancer susceptibility was found using the dominant genetic model (OR=1.344, 95% CI: 1.285-1.406), the additive genetic model (OR=1.613, 95% CI: 1.503-1.730), and the recessive genetic model (OR=1.408, 95% CI: 1.319-1.503). Moreover, an increased lung cancer risk was found with all genetic models after stratification of ethnicity. Conclusions: The association between rs8034191 and lung cancer risk was significant using multiple genetic models, suggesting that rs8034191 is a risk factor for lung cancer. Further functional studies of this polymorphism and lung cancer risk are warranted.

Keywords: Lung cancer - single nucleotide polymorphism - AGPHD1 - genetic polymorphism - meta-analysis
Le Zhang et al

previous studies and better understand the effect of the SNP rs8034191 on the risk of lung cancer we performed a meta-analysis of 13 selected case-control studies.

Materials and Methods

Publication search and inclusion/exclusion criteria

In August 2013, we searched PubMed, Google Scholar, EMBASE, and the China National Knowledge Infrastructure using the following search terms: AGPHD1, rs8034191, lung cancer, gene, genotype, mutation, and polymorphism. Articles identified in the primary literature met our initial criteria for inclusion in the meta-analysis if they were published in English, focused on humans, and were free of obvious overlap with other studies.

From the publications identified above, two investigators independently selected articles containing information about the association between AGPHD1 and lung cancer morbidity and checked the corresponding reference lists. If multiple studies were published on the same population or subpopulation, only the most recent or informative study was included in the meta-analysis.

Articles were included in this meta-analysis if they 1) examined the hypothesis that rs8034191 is associated with lung cancer risk, 2) followed a nested case-control, case-control, or cross-sectional study design, and 3) provided estimates of ORs and corresponding 95% CIs or sufficient information on genotype/allele counts between cases and controls to calculate the ORs and 95% CIs. Articles were excluded if they included non-case-control studies, a control population containing patients with malignant tumor, or were redundant with other published studies. A flow chart outlining the selection process for inclusion in the meta-analysis is shown in Figure 1.

Data extraction

The following information was extracted from each study: the first author’s name, the year of publication, the country in which the study was performed, ethnicities of subjects, and the number of cases and controls with the TT, TC, and CC rs8034191 genotypes. Two investigators independently extracted the data from all eligible publications, and any inconsistencies were resolved by discussion.

All statistical analyses were performed using STATA software (version 11.0: Stata Corporation, College Station, TX). Two-sided p-values less than 0.05 were considered statistically significant. We calculated the allelic frequencies for the case and control groups in each study and assessed them for Hardy-Weinberg equilibrium (HWE) using a chi-square test (Egger et al., 1997). The OR and 95% CI were determined to assess the strength of the association between each rs8034191 polymorphism and lung cancer risk. For each study, the OR and 95% CI were assessed in an additive model, a recessive model, and an additive model. Subgroup analyses were performed based on the source of the controls and the ethnicity of the study participants. The chi-squared based Q-statistic was calculated to test for heterogeneity among the studies. If the studies were found to be heterogeneous (p<0.05), the pooled ORs were analyzed using a random-effects model (Higgins et al., 2002); otherwise, a fixed-effects model was used (Egger et al., 1997). The I² statistic was then used to quantitatively estimate heterogeneity, with I² less than 25%, between 25% and 75%, and greater than 75% representing low, moderate, and high degrees of inconsistency, respectively (Higgins et al., 2003; Hemminki et al., 2006). The significance of the combined OR was determined using a Z test (p<0.05 was considered statistically significant). Cumulative meta-analyses were performed on all eligible cancer studies according to case sample size. Additionally, sensitivity of the meta-analysis was evaluated through the sequential removal of each study.

Finally, we produced a Begg’s funnel plot and performed an Egger’s test to statistically assess publication bias.

Figure 1. Study Inclusion and Exclusion Procedure

Table 1. Characteristics of the studies on the association between AGPHD1 rs8034191 polymorphisms and cancer risk included in the meta-analysis

<table>
<thead>
<tr>
<th>ID</th>
<th>Author (Year)</th>
<th>Ethnic group</th>
<th>Sample Size (Case/Control)</th>
<th>Source of controls</th>
<th>Case Alleles</th>
<th>Control Alleles</th>
<th>p-value (HWE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Amos et al (Texas discovery) 2008</td>
<td>Caucasian</td>
<td>1153/1137</td>
<td>HB</td>
<td>426 536</td>
<td>191</td>
<td>493 522</td>
</tr>
<tr>
<td>2</td>
<td>Amos et al (Texas discovery) 2008</td>
<td>Caucasian</td>
<td>698/591</td>
<td>HB</td>
<td>259 328</td>
<td>111</td>
<td>269 253</td>
</tr>
<tr>
<td>3</td>
<td>Amos et al (UK) 2008</td>
<td>Caucasian</td>
<td>183/960</td>
<td>HB</td>
<td>670 858</td>
<td>303</td>
<td>448 415</td>
</tr>
<tr>
<td>4</td>
<td>Schwartz et al (Caucasian) 2009</td>
<td>Caucasian</td>
<td>304/360</td>
<td>HB</td>
<td>231 119</td>
<td>90</td>
<td>300 116</td>
</tr>
<tr>
<td>5</td>
<td>Schwartz et al (African American) 2009</td>
<td>African American</td>
<td>421/360</td>
<td>PB</td>
<td>231 119</td>
<td>10</td>
<td>300 106</td>
</tr>
<tr>
<td>6</td>
<td>Zienolddiny et al (Norwegian) 2009</td>
<td>Norwegian</td>
<td>352/424</td>
<td>PB</td>
<td>117 178</td>
<td>57</td>
<td>176 187</td>
</tr>
<tr>
<td>7</td>
<td>Truong et al (Caucasian) 2010</td>
<td>Caucasian</td>
<td>725/94/63</td>
<td>HB</td>
<td>2586 3488</td>
<td>1185</td>
<td>4036 4256</td>
</tr>
<tr>
<td>8</td>
<td>Truong et al (Asian) 2010</td>
<td>Asian</td>
<td>1690/2117</td>
<td>-</td>
<td>1583 104</td>
<td>3</td>
<td>1992 122</td>
</tr>
<tr>
<td>9</td>
<td>Sakoda et al (non-Hispanic white) 2011</td>
<td>Caucasian</td>
<td>746/1475</td>
<td>PB</td>
<td>258 369</td>
<td>119</td>
<td>625 691</td>
</tr>
<tr>
<td>10</td>
<td>Wei et al (Caucasian) 2011</td>
<td>Caucasian</td>
<td>198/295</td>
<td>HB</td>
<td>64 100</td>
<td>34</td>
<td>127 137</td>
</tr>
<tr>
<td>11</td>
<td>Jaworewska et al (Polish) 2011</td>
<td>Caucasian</td>
<td>833/831</td>
<td>HB</td>
<td>286 419</td>
<td>128</td>
<td>368 361</td>
</tr>
<tr>
<td>12</td>
<td>Chen et al (Caucasian) 2011</td>
<td>Caucasian</td>
<td>487/974</td>
<td>HB</td>
<td>222 212</td>
<td>53</td>
<td>433 442</td>
</tr>
<tr>
<td>13</td>
<td>Wang et al (Chinese) 2012</td>
<td>Asian</td>
<td>381/410</td>
<td>HB</td>
<td>350 29</td>
<td>2</td>
<td>385 25</td>
</tr>
</tbody>
</table>

Table 2. Stratified Analyses of the Association between AGPHD1 rs8034191 Polymorphisms and Lung Cancer Risk

<table>
<thead>
<tr>
<th>Variables</th>
<th>Dominant model OR(95% CI)</th>
<th>p*</th>
<th>Recessive model OR(95% CI)</th>
<th>p*</th>
<th>Additive model OR(95% CI)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>1.127(0.888-1.432)</td>
<td>0.447</td>
<td>1.887(0.489-7.274)</td>
<td>0.399</td>
<td>1.902(0.494-7.327)</td>
<td>0.395</td>
</tr>
<tr>
<td>Caucasian</td>
<td>1.352(1.291-1.417)</td>
<td>0.107</td>
<td>1.412(1.323-1.508)</td>
<td>0.262</td>
<td>1.613(1.503-1.730)</td>
<td>0.153</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1.344(1.285-1.406)</td>
<td>0.142</td>
<td>1.408(1.319-1.503)</td>
<td>0.296</td>
<td>1.613(1.503-1.730)</td>
</tr>
</tbody>
</table>

*p-value from chi-square test for heterogeneity; *A fixed-effects model was used when the p value from the heterogeneity test was <0.05; otherwise, a random-effects model was used

Results

Eligible studies and quality assessment

Through the procedure outlined in Figure 1 we identified nine articles that met the inclusion criteria. These articles covered 13 case-control studies including 16,858 cases and 19,576 controls. The characteristics of the studies are listed in Table 1. The studies focused solely on lung cancer and represented multiple ethnic populations. The alleles at rs8034191 were in HWE in all of the studies. After evaluating these studies, all 13 were deemed to be of sufficient quality to be included in our analysis.

Meta-analysis results

After pooling the 16,858 cases and 19,576 controls...
Sensitivity of the meta-analysis

The pooled OR values were not qualitatively changed by the elimination of any individual study (data not shown), indicating that the final results of the meta-analysis were relatively stable and reliable. Likewise, the results of the meta-analysis were not influenced by departure of the allele frequency from HWE.

Publication bias

A major concern for any meta-analysis is the potential introduction of a publication bias based on the inclusion/exclusion criteria used to select studies for the analysis. To investigate whether publication bias was present in this study, a Begg’s funnel plot was constructed (Figure 5). The shape of the Begg’s funnel plot was relatively symmetric, indicating there was no obvious publication bias. An Egger’s test based on this plot revealed no statistically significant asymmetry in the funnel plot for any of the genetic models ($p=0.933$).

Discussion

We performed a comprehensive meta-analysis to evaluate the association of a common polymorphism in the 15q25.1 with the risk of lung cancer. By performing subgroup analyses, we identified ethnicity as a potential source of inconsistency between studies. This is not surprising, as it is well established that genetic heterogeneity is inevitable in disease identification strategies (Higgins et al., 2003). Specifically, the overall results of this study demonstrated that the $rs8034191$-T allele of the AGPHD1 gene might be a risk factor for the development of lung cancer in Caucasians, but not in Asians (Table 2). We also noticed remarkable differences in the $rs8034191$-C allele between Caucasians and Asians, making it very difficult to detect weak associations in Asians unless examining a very large population. This suggests that different genetic backgrounds may differentially affect this allele or that different populations may have different linkage disequilibrium patterns; for example, the studied polymorphisms may be in linkage with another causal variant in one ethnic population but not in another (Hemminki et al., 2006). Considering the divergent genetic backgrounds, it is necessary to construct a database of polymorphisms related to lung cancer incidence in ethnic/racial groups.

To the best of our knowledge, the present study is the only meta-analysis to date investigating the association of the $rs8034191$ polymorphism with lung cancer susceptibility. Although potential sources of heterogeneity cannot be easily eliminated, the strengths of this study include the relatively large sample size, the lack of deviation from Hardy-Weinberg equilibrium, and the high quality of the studies involved. However, this study should be interpreted with several technical limitations in mind. First, most of the studies in this meta-analysis were case-control studies, which are susceptible to selection bias by including only non-fatal cases. Second, because only studies in the English language were considered, a publication bias may have been introduced. To address this, we performed a funnel plot and an accompanying Egger’s test, which did not reveal an obvious bias. Moreover, any asymmetry in the funnel plot, either through visual interpretation or statistically testing, may result from a fundamental difference between small and large studies that arises from inherent inter-study heterogeneity. There is no perfect method to test for publication bias, and the validity of the funnel plot and Egger’s test have been challenged (Yu et al., 2010). Thus, we cannot completely rule out the low probability that relevant studies (for example small negative studies) are missing from the plot although the trim and fill method suggested that no missing studies were required to make the funnel plot symmetrical for either polymorphism. Third, the single locus-based nature of this meta-analysis precluded the possibility of investigating gene-gene and gene-environment interactions, as well as haplotype-based effects. In particular, further studies should investigate other markers adjacent to 15q25.1 to clarify whether the observed association is causal or due to linkage disequilibrium. It is likely that the $rs8034191$SNP alone makes a minor contribution to risk prediction in lung cancer patients, and further studies are needed to determine whether multiple polymorphisms integrated with other risk factors will enhance the predictive capabilities. Additional studies are necessary to fully understand the relationship between the $rs8034191$ SNP and lung cancer susceptibility.

In conclusion, we have expanded previous studies by providing evidence that the $rs8034191$-T allele of the AGPHD1 gene might be a risk factor for the development of lung cancer in Caucasians, but not in Asians. Functional studies of the association between this polymorphism and cancer risk are warranted.

Acknowledgements

This work is supported by National 863 High-Technology Research and Development Program (No. 2012AA02A519). We are grateful to all the patients and individuals in the studies who made this work possible. We would also like to thank the clinicians and other hospital staff who contributed to the data collection for this study.

References

Egger M, Davey SG, Schneider M, Minder C (1997). Bias in


