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Introduction

Although there have been innumerable clinical trials 
over the last few decades related to the prevention, 
detection, and treatment of cancer, acquired drug resistance 
remains an inevitable obstacle to successful chemotherapy 
in various types of cancer, causing treatment failure in 
over 90% of patients with metastatic cancer (Szakacs et 
al., 2006; Saraswathy and Gong, 2013). Acquired drug 
resistance may be the result of a multifactorial etiology 
that emerges due to a variety of reasons, including host 
environmental factors, as well as genetic or epigenetic 
alterations in cancer cells (Longley and Johnston, 2005; 
Chen and Sikic, 2012; Foo and Michor, 2014). According 
to the most well known reported studies, acquired drug 
resistance in cancer cells could be caused by three major 
mechanisms, as follows: (i) decreased uptake of water-
soluble drugs which require membrane transporters to 
enter cancer cells, (ii) various changes in cancer cells 
that affect the capacity of cytotoxic drugs to kill them, 
including alterations in the cell cycle, increased repair of 
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Abstract

	 In molecular-targeted cancer therapy, acquired resistance to gemcitabine is a major clinical problem that 
reduces its effectiveness, resulting in recurrence and metastasis of cancers. In spite of great efforts to reveal the 
overall mechanism of acquired gemcitabine resistance, no definitive genetic factors have been identified that are 
absolutely responsible for the resistance process. Therefore, we performed a cross-platform meta-analysis of 
three publically available microarray datasets for cancer cell lines with acquired gemcitabine resistance, using 
the R-based RankProd algorithm, and were able to identify a total of 158 differentially expressed genes (DEGs; 
76 up- and 82 down-regulated) that are potentially involved in acquired resistance to gemcitabine. Indeed, the 
top 20 up- and down-regulated DEGs are largely associated with a common process of carcinogenesis in many 
cells. For the top 50 up- and down-regulated DEGs, we conducted integrated analyses of a gene regulatory 
network, a gene co-expression network, and a protein-protein interaction network. The identified DEGs were 
functionally enriched via Gene Ontology hierarchy and Kyoto Encyclopedia of Genes and Genomes pathway 
analyses. By systemic combinational analysis of the three molecular networks, we could condense the total number 
of DEGs to final seven genes. Notably, GJA1, LEF1, and CCND2 were contained within the lists of the top 20 
up- or down-regulated DEGs. Our study represents a comprehensive overview of the gene expression patterns 
associated with acquired gemcitabine resistance and theoretical support for further clinical therapeutic studies. 
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DNA damage, reduced apoptosis, and altered metabolism 
of drugs, and (iii) increased energy-dependent efflux of 
hydrophobic drugs.

Gemcitabine (2,́ 2 -́difluorodeoxycytidine) is a 
deoxycytidine analog with a broad spectrum that was 
established as the first-line chemotherapeutic treatment 
for locally advanced and metastatic pancreatic cancer 
in the late 1990s; it has generally been used to treat 
a variety of solid tumors, including breast, ovarian, 
pancreatic and non-small cell lung carcinoma, especially 
in combination with the platinum-based drugs, cisplatin 
and carboplatin (Toschi et al., 2005; Mini et al., 2006; 
Toschi and Cappuzzo, 2009; Zhang et al., 2013; de Sousa 
Cavalcante and Monteiro, 2014). Gemcitabine is first 
transported into the cancer cell by nucleoside transporters, 
which include the concentrative and equilibrative 
transporters. When phosphorylated by deoxycytidine 
kinase (DCK) to generate its active forms, the diphosphate 
and triphosphate, gemcitabine interferes with DNA 
replication and inhibits cancer cell growth, by modulating 
dNTP pools via the inhibition of ribonucelotide reductase 
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(composed of RRM1 and RRM2 polypeptides). Several 
mechanisms of acquired gemcitabine resistance (AGR) 
in cancers have been reported; these are anatomical 
(e.g., desmoplasia, epithelial-mesenchymal transition 
(EMT), and inherent cancer stem cell resistance), 
pathophysiological (e.g., abnormal tumor growth, 
tumor angiogenesis, altered cancer cell survival, and 
anti-apoptosis), or pharmacological (e.g., the necessity 
of phosphorylation for prodrug activation) (Nakano 
et al., 2007; Toschi and Cappuzzo, 2009; Tufman and 
Huber, 2010; Hung et al., 2012; de Sousa Cavalcante and 
Monteiro, 2014). However, none of these mechanisms was 
confirmed as the etiology of AGR, and the fundamental 
reason for-and exact process of-AGR is still being studied, 
in many different ways. Despite gemcitabine’s relatively 
broad and frequent use, the acquired resistance to it during 
cancer treatment is a common phenomenon that is caused 
by the establishment of complex crosstalk between many 
different cellular pathways. High-throughput microarray 
technologies, based on genome-wide probe selection 
and regression analysis, are widely used to elucidate 
global gene expression in complex diseases such as 
cancer. By applying these technologies, researchers have 
improved understanding of the cellular and molecular 
changes occurring during the development of acquired 
drug resistance in cancers. In three previous studies that 
used microarrays, various differentially expressed genes 
(DEGs) were identified as candidate factors that may 
influence AGR (Tooker et al., 2007; Saiki et al., 2012). 
However, published lists of identified genes show large 
inconsistencies because of the small sample size, low 
sample quality, and different laboratory protocol and 
platform in each individual study. In order to overcome 
these limitations, we identified DEGs that consistently 
appeared in all pairwise samples by meta-analysis of 
multiple microarray datasets, and performed integrative 
analysis of systemic molecular networks at the gene 
and/or protein level, in order to establish a theoretical 
framework for prospective molecular biological and 
clinical experiments. To our knowledge, we are the first 
to perform a cross-platform meta-analysis of the gene 
expression profiles associated with AGR in different 
cancer cell lines.

Materials and Methods

Selection of microarray datasets eligible for meta-analysis 
We conducted a narrow search of microarray datasets 

for meta-analysis, according to the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines published in 2009. We collated 
data from microarray gene expression studies related 
to acquired-gemcitabine-resistant cancer cell lines 
from the PubMed, National Center for Biotechnology 
Information (NCBI) Gene Expression Omnibus (GEO, 
http://www.ncbi.nlm.nih.gov/geo/), and European 
Bioinformatics Institute ArrayExpress (http://www.
ebi.ac.uk/arrayexpress/) databases. For objective 
assessment, two independent reviewers extracted 
data from the original studies; any discrepancies that 
arose between these reviewers were resolved either by 

consensus or by consultation with a third reviewer. The 
keywords “gemcitabine,” “gemcitabine cancer,” “acquired 
gemcitabine resistance (resistant),” “acquired drug 
resistance (resistant),” and “gene and/or expression and/or 
profile” were used in the search for studies. We included a 
study in the analysis if it contained the following: (i) gene 
expression profiling of gemcitabine-resistant cancer cell 
lines or gemcitabine-resistant derivatives of cancer cell 
lines that had been generated by stepwise selection, and 
(ii) sufficient data and the correct platform to facilitate 
meta-analysis. Studies that reported non-human data or 
used intrinsically drug-resistant cells were excluded from 
the meta-analysis.

Meta-analysis of multiple microarray datasets
We carried out a cross-platform meta-analysis of gene 

expression profiles in the selected microarray datasets 
using the rank product method (RankProd package in the R 
software, http://www.r-project.org/). Before meta-analysis 
of the three datasets, all genes or probe IDs from each 
dataset were annotated as Entrez database IDs, for data 
consistency, and the expression values for corresponding 
genes in the samples were log2-transformed and quantile-
normalized so that they had zero mean and unit variance. 
According to the RankProd algorithm non-parametric 
permutation test, which considers all possible pair-wise 
comparisons, the DEGs that appeared consistently in 
whole datasets were assigned to a higher rank, depending 
on the percentage of false-positives predicted in a given 
number of replicates, multiplied across the different 
microarray datasets.

GO hierarchy and KEGG pathway enrichment analysis
In order to discern biological attributes of the identified 

DEGs in the acquired-gemcitabine-resistant cancer cell 
lines, functional enrichment via Gene Ontology (GO) 
hierarchy and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis was performed using Database 
for Annotation, Visualization, and Integrated Discovery 
(DAVID) bioinformatics resources (http://david.abcc.
ncifcrf.gov/), with a significance threshold of p<0.05.

Gene regulatory network analysis
In order to determine the gene regulatory network of 

the identified DEGs, we carried out enrichment analysis 
for potential transcription factors and microRNAs, based 
on a comparison of upstream DNA sequences with an 
assembly of previously discovered gene sets retrieved 
from the Molecular Signatures database (MSigDB, http://
www.broadinstitute.org/gsea/msigdb/index.jsp), with a 
significance threshold of p<0.05 (Shi et al., 2014). The 
hypergeometric algorithm and Benjamini-Hochberg 
adjustment were used for statistical processing and 
multiple-test revision of the network analysis, respectively.

Gene co-expression network analysis
In order to predict the biological activity of the 

identified DEGs at the gene level, we constructed a 
gene co-expression network of the top 50 up- and down-
regulated DEGs using the GeneMANIA web server 
(http://www.genemania.org/) (Warde-Farley et al., 2010; 
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Molina-Navarro et al., 2014). The relationships between 
genes in the network were determined by GO term 
(biological process)-based weighting, and filtered by 
including only gene co-expression relationships with a 
significance threshold for weight value of p>0.05. Within 
the network, distinct modules were identified based on the 
fast-greedy HEN (G) algorithm, using the Community 
Clusters GLay plug-in (http://cytoscape.wodaklab.org/
wiki/CommunityStructureLayout) in the Cytoscape 
software (http://www.cytoscape.org/) (Gupta et al., 2012; 
Firoz et al., 2014). Overrepresented biological functions 
within each module were examined using the functional 
enrichment analyses in the DAVID and g:Profiler (http://
biit.cs.ut.ee/gprofiler/) programs.

Protein-protein interaction network analysis
In order to predict the biological activity of the 

identified DEGs at the protein level, the top 50 (20) 
up- and down-regulated DEGs were imported into a 
protein-protein interaction (PPI) network downloaded 
from the Biological General Repository for Interaction 
Datasets (BioGRID, http://thebiogrid.org/, (Pan, 2012). 
The PPI network was screened on a genome-wide scale 
using the Cytoscape software. Within the PPI network, 
we identified the hub proteins of distinct protein clusters 
using the Cytoscape plug-in, ClusterONE (http://apps.
cytoscape.org/apps/clusterone) (Nepusz et al., 2012). 

Overrepresented biological functions within each protein 
cluster surrounding a hub protein were examined by 
the functional enrichment analyses in the DAVID and 
g:Profiler online programs.

Results 

Selection of microarray datasets related to AGR for 
meta-analysis

From microarray datasets in the NCBI GEO database, 
we extracted 22 GEO samples within three GEO series 
(GSEs) related to AGR that met our criteria (see Materials 
and Methods; Figure 1A). All three GSEs were solely 
derived from cancer cell lines that had acquired drug 
resistance by stepwise treatment with gemcitabine, such as 
lung adenocarcinoma, pancreatic cancer, and epidermoid 
carcinoma (Table 1). With regard to the microarray 
platforms used, GSE 35141 was obtained using Illumina 
BeadChip (Illumina, San Diego, CA) and the other two 
datasets (GSE 6914 and GSE 3344) were obtained using 
Affymetrix GeneChip (Affymetrix, Santa Clara, CA).

Identification of up- or downregulated DEGs in the meta-
analysis

From cross-platform microarray meta-analysis based 
on the RankProd algorithm, we identified a total of 158 
DEGs, including 76 up- and 82 down-regulated genes 
with a significance threshold of p<0.05. The top 20 up- 
and down-regulated genes among the total DEGs are 
listed in order of significance (by p value) in Table 2. The 
up-regulated DEGs with the lowest value of p<1.0×10-10 
were CALB1, ADAM28, TRIM22, MSMB, TLE4, INHBB, 
ADH1C, IL1R2, and TRIM21. The down-regulated DEGs 
with the lowest observed value of p=0.00250 were 
ARHGAP29 and PTX3. The up- and down-regulated 
DEGs with the largest mean log2 fold change were CALB1 
(calbindin 1, 28 kDa) and ARHGAP29 (Rho GTPase 
activating protein 29), respectively. In order to interpret 
the biological significance of the identified DEGs in 
different cancer cell lines with AGR, we attempted the 
systemic approach of using various in silico analyses that 
might identify gene regulation, gene co-expression, and 
PPI networks, accompanied by functional enrichment 
analysis (Figure 1B).

Functional and pathway enrichment analysis of all the 
identified DEGs

A total of 158 DEGs identified by the meta-analysis 
were classified according to GO hierarchy functional 
category (biological process, molecular function, 
and cellular component) and KEGG pathway, with a 
significance threshold of p<0.05 (Table 3). The most 
overrepresented GO terms under biological process were 

Table 1.  Characteristics of Individual Studies Selected from GEO of NCBI for Meta-analysis
Dataset	            Sample		 Drug	            Cancer cell line	                                      Platform
	 PC	 AGR			 

GSE 6914	 4	 4	 Gemcitabine	 lung adenocarcinoma (Calu3)	 Affymetrix Human Genome U133A
GSE 35141	 6	 6	 Gemcitabine	 pancreatic cancer (PK)	 Agilent-014850 Whole Human Genome Microarray 4x44K 
GSE 3344	 1	 1	 Gemcitabine	 epidermoid carcinoma (KB)	 Affymetrix Human Genome U95 Version 2
*GEO gene expression omnibus, PC parental control, AGR acquired gemcitabine resistance

Figure 1. General Workflow Depicting the Systematic 
Review of this Study. (A) Selection of microarray datasets 
for meta-analysis of the acquired gemcitabine resistant cancer 
cell lines, according to Prisma 2009 flow diagram; (B) The 
integrated in-silico analysis of DEGs identified by meta-analysis

A)

B)



Young-Seok Lee et al

Asian Pacific Journal of Cancer Prevention, Vol 16, 20152796

enriched in the following descending order: “Defense 
response” (GO 0006952), “Response to extracellular 
stimulus” (GO 0009991), and “Response to drug” (GO 
0042493). The most enriched GO terms under molecular 
function and cellular component were “Tumor necrosis 
factor receptor superfamily binding” (GO 0032813) 
and “Extracellular region (GO 0005576). The most 
enriched KEGG pathway terms were (descending order): 
“Cytokine-cytokine receptor interaction” (Hsa 04060), 
“Metabolism of xenobiotics by cytochrome P450” (Hsa 
00980), and “Regulation of actin cytoskeleton” (Hsa 
04810). 

Gene regulation network analysis of the top 50 up- and 
down-regulated DEGs

In order to identify the network regulating gene 
expression of the top 50 up- and down-regulated DEGs, 
which might directly influence AGR, we analyzed 
potential regulatory elements that target the DEGs 

depending on their upstream DNA sequence (Table 4). 
The target sites of the following transcription factors were 
significantly enriched in the DEGs: JUN, LEF1, NFAT, 
MAZ, MLLT4, and TCF1. The target sites of the following 
microRNAs were also significantly enriched in the DEGs: 
miR-200B/200C/429, miR-19A/19B, miR-520G/520H, 
miR-524, miR-23A/23B, miR-153, miR-409, miR145, 
miR-9, and miR-129.

Gene co-expression network analysis of the top 50 up- and 
down-regulated DEGs

We constructed a co-expression network for the top 
50 up- and down-regulated DEGs, with gene-correlation 
interactions consisting of 143 nodes and 764 edges, 
by mapping the DEGs onto a massive database of 
functional-interaction datasets in the GeneMANIA web 
server (Figure 2). The network was further subdivided 
into five functional modules that were closely connected 
by >20 nodes, using the fast-greedy HEN (G) algorithm 

Table 2. The top 20 Most Strongly Up- or Down-regulated Genes in the DEGs Identified by Meta-analysis 
Enterz ID	 Gene symbol	 Log2 FC	 p value	 Gene name

Up-regulated genes				  
	 793	 CALB1	 -2.20630 		  calbindin 1, 28kDa
	 10863	 ADAM28	 -1.99019 		  metallopeptidase domain 28
	 10346	 TRIM22	 -1.78943 		  tripartite motif containing 22
	 4477	 MSMB	 -1.76001 		  microseminoprotein, beta-
	 7091	 TLE4	 -1.73700 	 <1.0E-5	 transducin-like enhancer of split 4
	 3625	 INHBB	 -1.40772 		  inhibin, beta B
	 126	 ADH1C	 -1.33476 		  alcohol dehydrogenase 1C (class I), gamma polypeptide
	 7850	 IL1R2	 -1.31214 		  interleukin 1 receptor, type II
	 6737	 TRIM21	 -1.11247 		  tripartite motif containing 21
	 25849	 PARM1	 -1.66358 	 0.00250 	 prostate androgen-regulated mucin-like protein 1
	 1004	 CDH6	 -1.63775 	 0.00272 	 cadherin 6, type 2, K-cadherin (fetal kidney)
	 51176	 LEF1	 -1.49318 	 0.00300 	 lymphoid enhancer-binding factor 1
	 2697	 GJA1	 -1.45898 	 0.00307 	 gap junction protein, alpha 1, 43kDa
	 4856	 NOV	 -1.70069 	 0.00357 	 nephroblastoma overexpressed
	 124	 ADH1A	 -1.34103 	 0.00437 	 alcohol dehydrogenase 1A (class I), alpha polypeptide
	 1002	 CDH4	 -1.48827 	 0.00466 	 cadherin 4, type 1, R-cadherin (retinal)
	 10231	 RCAN2	 -1.21286 	 0.00588 	 regulator of calcineurin 2
	 6304	 SATB1	 -0.38100 	 0.00611 	 SATB homeobox 1
	 6240	 RRM1	 -0.93649 	 0.00631 	 ribonucleotide reductase M1
	 6649	 SOD3	 -0.88427 	 0.00636 	 superoxide dismutase 3, extracellular
Down-regulated genes				  
	 9411	 ARHGAP29	 1.94459 	 0.00250 	 Rho GTPase activating protein 29
	 5806	 PTX3	 1.54702 	 0.00250 	 pentraxin 3, long
	 50810	 HDGFRP3	 1.60953 	 0.00285 	 hepatoma-derived growth factor, related protein 3r
	 72	 ACTG2	 1.28665 	 0.00300 	 actin, gamma 2, smooth muscle, enteric
	 8187	 ZNF239	 1.37927 	 0.00333 	 zinc finger protein 239
	 6696	 SPP1	 1.34688 	 0.00333 	 secreted phosphoprotein 1
	 26150	 RIBC2	 1.32767 	 0.00333 	 RIB43A domain with coiled-coils 2
	 6414	 SEPP1	 2.21272 	 0.00400 	 selenoprotein P, plasma, 1
	 7292	 TNFSF4	 1.50729 	 0.00461 	 tumor necrosis factor (ligand) superfamily, member 4
	 7431	 VIM	 1.61811 	 0.00470 	 vimentin
	 1382	 CRABP2	 1.24545 	 0.00473 	 cellular retinoic acid binding protein 2
	 1633	 DCK	 2.13356 	 0.00500 	 deoxycytidine kinase
	 2313	 FLI1	 1.39167 	 0.00500 	 Fli-1 proto-oncogene, ETS transcription factor
	 4633	 MYL2	 1.28676 	 0.00500 	 myosin, light chain 2, regulatory, cardiac, slow
	 5272	 SERPINB9	 1.02120 	 0.00500 	 serpin peptidase inhibitor, clade B (ovalbumin), member 9
	 147	 ADRA1B	 0.82309 	 0.00500 	 adrenoceptor alpha 1B
	 2947	 GSTM3	 0.80997 	 0.00521 	 glutathione S-transferase mu 3 (brain)
	 10669	 CGREF1	 1.78892 	 0.00533 	 cell growth regulator with EF-hand domain 1
	 6515	 SLC2A3	 1.68493 	 0.00545 	 solute carrier family 2 (facilitated glucose transporter), member 3
	 894	 CCND2	 1.13272 	 0.00545 	 cyclin D2
*FC fold change
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of the Cytoscape GLay plug-in, followed by functional 
enrichment analysis according to GO hierarchy and KEGG 
pathway. For example, “Module 1,” of maximum size in 
the network, was significantly enriched using biological 
terms of the GO hierarchy such as “Programmed 
cell death” (GO 0012501) and “Response to organic 
substance” (GO 0010033). 

The smallest module, “Module 4,” was significantly 

enriched using biological terms such as “Cell proliferation” 
(GO 0008283) and “Calcium signaling pathway” (Hsa 
04020), with regard to GO hierarchy and KEGG pathway, 
respectively.
Protein-protein interaction network analysis of the top 50 
up- and down-regulated DEGs

We constructed a PPI network for the top 50 up- and 

Figure 2. Functional Modules Clusters in Gene Co-
Expression Network of the Identified DEGs. From gene 
co-expression network of the top 50 up- and down-regulated 
DEGs, five functional module clusters were identified. The 
node and edge of each module cluster stand for genes with the 
DEGs and interaction of the genes, respectively. The color of 
node signifies as follows: Light blue-up-regulated DEGs, Light 
red-down-regulated DEGs, and Light brown-additional genes 
in GeneMANIA

Module 1 
 

GO : 0012501~ 
Programmed cell death 
GO : 0010033~ 
Response to organic substance 

Module 2 
 

GO : 0016337~ 
Cell-cell adhesion 
HSA : 04810~ 
Regulation of actin cytoskeleton 

Module 3 
 

GO : 0001558~ 
 Regulation of cell growth 
 HSA : 00230~ 
 Purine metabolism 

Module 5 
 

GO : 0045449~ 
Regulation of transcription 
HSA : 05202~  
Transcriptional misregulation in cancer 

Module 4 
 

GO : 0008283~ 
Cell proliferation 
HSA : 04020~ 
Calcium signaling pathway 

Table 3. The Top 15enrichment of GO Hierarchy and KEGG Pathway for the Total DEGs
GO ID	                                      GO Term	 Genes	   p value

GO_CC:0005576	 Extracellular region	 45	 9.92E-07
GO_MF:0032813	 Tumor necrosis factor receptor superfamily binding	 5	 3.91E-04
GO_BP:0006952	 Defense response	 15	 3.17E-03
GO_BP:0009991	 Response to extracellular stimulus	 8	 6.28E-03
GO_BP:0042493	 Response to drug	 7	 2.05E-02
GO_BP:0008284	 Positive regulation of cell proliferation	 10	 2.19E-02
GO_BP:0043067	 Regulation of programmed cell death	 15	 3.02E-02
GO_MF:0008083	 Growth factor activity	 6	 3.61E-02
GO_BP:0051046	 Regulation of secretion	 6	 5.04E-02
GO_BP:0007267	 Cell-cell signaling	 11	 7.44E-02
GO_CC:0031988	 Membrane-bounded vesicle	 11	 8.21E-02
GO_BP:0006355	 Regulation of transcription, DNA-dependent	 20	 8.99E-02
GO_CC:0031090	 Organelle membrane	 13	 1.03E-01
GO_BP:0043933	 Macromolecular complex subunit organization	 8	 1.74E-01
GO_MF:0030528	 Transcription regulator activity	 16	 1.95E-01
KEGG ID	                                      KEGG Pathway	 Genes	   p value

Hsa:04060	 Cytokine-cytokine receptor interaction	 8	 2.82E-02
Hsa:00980	 Metabolism of xenobiotics by cytochrome P450	 4	 3.04E-02
Hsa:04810	 Regulation of actin cytoskeleton	 7	 3.45E-02
Hsa:04270	 Vascular smooth muscle contraction	 5	 3.81E-02
Hsa:04020	 Calcium signaling pathway	 5	 4.39E-02
Hsa:00982	 Drug metabolism	 3	 4.57E-02
Hsa:04510	 Focal adhesion	 5	 4.95E-02
Hsa:05215	 Prostate cancer	 3	 5.79E-02
Hsa:04540	 Gap junction	 3	 6.98E-02
Hsa:00240	 Pyrimidine metabolism	 3	 7.36E-02
Hsa:04010	 MAPK signaling pathway	 5	 1.53E-01
Hsa:04530	 Tight junction	 3	 2.46E-01
Hsa:04310	 Wnt signaling pathway	 3	 3.18E-01
Hsa:04144	 Endocytosis	 3	 4.62E-01
Hsa:05200	 Pathways in cancer	 4	 5.30E-01

Table 4. The potential regulatory elements of the top 
50 up- and down-regulated DEGs
Transcription factor	 Target sequence	 Genes	   p value

JUN	 TGANTCA	 20	 1.93E-09
LEF1	 CTTTGT	 26	 3.56E-09
NFAT	 TGGAAA	 25	 7.38E-09
MAZ	 GGGAGGRR	 27	 1.54E-08
MLLT4	 TTGTTT	 25	 3.76E-08
TCF1	 WRGTTAATNA	 9	 2.51E-07
	 TTAACNNN		
microRNA	 Target sequences	 Genes	   p value

MIR-200B/200C/429	 CAGTATT	 14	 1.02E-09
MIR-19A/19B	 TTTGCAC	 11	 1.84E-06
MIR-520G/520H	 CACTTTG	 7	 1.88E-05
MIR-524	 CTTTGTA	 9	 2.00E-05
MIR-23A/23B	 AATGTGA	 6	 1.05E-04
MIR-153	 CTATGCA	 8	 1.05E-04
MIR-409-3P	 AACATTC	 5	 1.34E-04
MIR-145	 AACTGGA	 6	 1.63E-04
MIR-9	 TAGCTTT	 6	 1.70E-04
MIR-129	 GCAAAAA	 5	 4.33E-04
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down-regulated DEGs, composed of 1004 nodes and 
1186 edges, by mapping them onto a very large database 
of PPI datasets downloaded from the BioGRID web 
server (Figure 3). From fifteen distinct protein clusters 
surrounding hub proteins, with >15 nodes, twelve 
functional hub cluster proteins were specifically identified, 
based on their p value and node density derived using the 
Cytoscape ClusterONE plug-in followed by functional 
enrichment analysis by GO hierarchy, as follows: SYT1, 
FHL1, CCND2, GJA1, SORBS2, LEF1, SATB1, RRM1, 
FGF2, DCK, BATF, and SERPINB9. While six of these 
hub proteins (SYT1, GJA1, LEF1, SATB1, RRM1, and 
BATF) represented up-regulated DEGs, the other six 
(FHL1, CCND2, SORBS2, FGF2, DCK, and SERPINB9) 

represented down-regulated DEGs. By constructing a PPI 
network for the top20 up- and down-regulated DEGs, 
we also observed the whole schematic diagram that the 
two kinds of DEGs interact directly or indirectly in the 
network (Figure 4).

Discussion

Gemcitabine is a molecular-targeted cancer drug for 
the standard chemotherapeutic treatment of patients with 
various solid tumors, but its clinical impact is limited by 
the high degree of inherent or acquired drug resistance; 
no definitive genetic factors have been reported to be 
solely responsible for the AGR of cancers. Investigating 
alterations in gene expression, which characterize the 
response of cancer cells to gemcitabine treatment during 
the process of AGR, would help us to understand the 
underlying mechanisms of drug resistance and improve the 
efficacy of therapeutic strategies for this deadly disease. In 
this context, we performed a cross-platform meta-analysis 
of three independent microarray datasets and attempted an 
integrative analysis of three systemic molecular networks 
(gene regulation network, gene co-expression network, 
and PPI network) for the identified DEGs. In the case of 
the top 20 up- and down-regulated DEGs, most of the 
genes have been reported to be involved in carcinogenesis 
of many tumor and cancer types, suggesting that they 
may be potential key factors in the AGR process. 
Functional enrichment analysis of all the identified DEGs 
revealed that they were mainly classified as related to 
biological functions such as the cell cycle, homeostasis, 
immune response, apoptosis, replication, and signal 
transduction that are associated with the general process of 
carcinogenesis. In particular, the following GO and KEGG 
enrichment terms had direct relevance to the mechanisms 
by which cancers acquire their gemcitabine-resistant 
property: the GO terms, “Response to drug,” “Regulation 
of programmed cell death,” “Regulation of secretion,” 
and “Regulation of transcription, DNA-dependent,” 
and the KEGG terms, “Metabolism of xenobiotics by 
cytochrome P450,” “Drug metabolism,” “Pyrimidine 
metabolism,” “MAPK and Wnt signaling pathway,” 
“Endocytosis,” and “Pathways in cancer” (Nakano et 
al., 2007; Toschi and Cappuzzo, 2009; Tufman and 
Huber, 2010; Hung et al., 2012; de Sousa Cavalcante and 
Monteiro, 2014). In evaluating the biological significance 
of the identified DEGs in the complex process of AGR, 
comprehensive information on the topological positions 
of the DEGs within a network at the transcriptome level 
is no less valuable than the fold-change and p values of 
individual DEGs. Systemic analysis of the gene regulation 
network of the identified DEGs and their potential 
regulatory elements (targets of transcription factors and 
microRNAs) may facilitate a macroscopic view of AGR, 
by looking into regulatory mechanisms governing the 
expression and the function of (many different) genes and 
cellular processes, respectively, in cancers that acquire 
gemcitabine resistance. In practice, most of regulatory 
elements enriched by the top 50 up- and down-regulated 
DEGs were reported to be involved as oncogenes or tumor 
suppressors in a variety of human cancers including colon, 

Figure 3. Functional Hub Clusters in PPI Network of 
the Identified DEGs. From PPI network of proteins encoded 
by the top 50 up- and down-regulated DEGs, twelve functional 
hub clusters were identified. The node and edge of each hub 
cluster stand for protein encoded by genes with the identified 
DEGs and interaction of the proteins, respectively. The color of 
node signifies proteins that are encoded by the following DEGs: 
Light blue-up-regulated DEGs, Light red-down-regulated DEGs, 
and Light brown-additional genes in BioGRID
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31.3Figure 4. The Constructed PPI Network of the Top 20 
Up- and Down-regulated DEGs. The PPI network of 
the top 20 up- and down-regulated DEGs was constructed 
by mapping them into massive database of BIOGRID 
program. The node and edge of each hub cluster stand for 
protein encoded by genes with the identified DEGs and 
interaction of the proteins, respectively. The color of node 
signifies proteins that are encoded by the following DEGs: 
Light blue-up-regulated DEGs, Light red-down-regulated 
DEGs, and Light brown-additional genes in BioGRID
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gastric, prostate, lung, pancreatic, and breast cancer. For 
example, among transcription factors, it was reported 
that activation of the JUN-JNK complex was required 
for development of AGR in lung cancer H1299 cells, 
and increased expression of NFAT was correlated with 
tumor cell survival against apoptosis in drug-resistant 
pancreatic cancer (Teraishi et al., 2005; Griesmann et al., 
2013). LEF1 (lymphoid enhancer-binding factor 1) was 
identified as a mediator of the Wnt/β-catenin signaling 
pathway during metastasis of lung adenocarcinoma 
(Bleckmann et al.). In the case of microRNAs, it was 
reported that the miR-200 family could serve as regulators 
of EMT in metastasis of ovarian, breast, and pancreatic 
cancer, and the attenuated expression of miR-200b/200c 
was found in gemcitabine-resistant pancreatic cancer cells 
(Ali et al., 2010). The microRNA, miR-145, is known to 
be a novel regulator of MUC13 that is highly involved 
in the progression of pancreatic cancer, and miR-19a 
was discovered as a prognostic factor for poor outcome 
in patients with non-small cell lung cancer (Lin et al., 
2013; Khan et al., 2014). In another systemic approach 
for identifying expression patterns of DEGs that may be 
related to AGR in cancers, we evaluated the functional 
enrichment of DEGs into distinct modules, where they 
are co-located and form functional interactions with each 
other, within the network that was constructed by mapping 
the DEGs onto the massive gene co-expression database 
of the GeneMANIA online resource. Five modules, 
composed of the top 50 up- and down-regulated DEGs, 
were identified; genes within these modules and other 
genes already known to be in the network were largely 
involved in processes that are representative of AGR, 
including indefinite cell proliferation, for example, via 
abnormal apoptosis (modules 1, 3, and 4), intercellular 
membrane transport of small molecules (modules 2 and 4), 
deregulated transcription (modules 3 and 4), and arrested 
replication escape by reactivation of DNA synthesis 
(module 3). In parallel with the two above-mentioned 
network analyses, clustering and enrichment of functional 
hub clusters were analyzed at the protein level within 
the PPI network in order to identify hub proteins with a 
high degree of interaction. In many studies, hub nodes 
have been found to be necessary factors for the specific 
function that is executed by their corresponding network 
in an organic system, and play important functions in 
maintaining that network within the system. The twelve 
functional hub DEGs identified in the PPI network were 
enriched using GO terms for biological processes with a 
close relationship to the AGR process, such as abnormal 
apoptosis (hub clusters 3, 4, 5, 9, and 12), membrane 
transport of small molecules (hub cluster 1), deregulated 
transcription (hub clusters 2, 6, 8, and 11), and arrested 
replication escape by reactivation of DNA synthesis (hub 
clusters 7, 8, and 10). By comparing four lists of DEGs, for 
the gene regulation network, gene co-expression network, 
PPI network, and the top 50 up- and down-regulated 
DEGs, seven DEGs were shortlisted as AGR candidate 
genes from the total of 158 DEGs identified by meta-
analysis; these included four up-regulated DEGs (SYT1, 
GJA1, LEF1, and SATB1) and three down-regulated 

DEGs (FHL1, CCND2, and SORBS2) that appeared in all 
four lists. In particular, GJA1, LEF1, and CCND2 were 
affiliated to the lists of the top 20 up- and down-regulated 
DEGs more likely to be crucial for the etiology of AGR.

LEF1 belongs to a family that shares conserved 
amino acid sequence homology with high-mobility 
group protein 1 (Nguyen et al., 2009; Bleckmann et 
al., 2013). Many previous studies showed that a LEF1/
TCF4 complex is closely associated with poor survival 
in patients with different cancers (colon, gastric, breast, 
lung, and pancreatic), via regulation of cell proliferation, 
migration, invasion, and metastasis, as a transcription 
factor that mediates the Wnt/β-catenin signaling pathway 
in the nucleus. Another upregulated DEG, GJA1 (encoding 
gap junction protein, alpha 1, 43 kDa), is a member of 
the connexin gene family that encode components of 
gap junctions, which act as intercellular channels for the 
diffusion of low molecular weight materials from cell 
to cell (McLachlan et al., 2006; Li et al., 2007). GJA1, 
better known as connexin 43 (Cx43), was reported to 
function as a tumor suppressor that inhibits tumor growth, 
via regulation of EMT and angiogenesis, in breast and 
prostate cancer. Gene expression analysis of cisplatin-
sensitive and -resistant ovarian cancer cells showed that 
GJA1 expression was highly elevated in cisplatin-resistant 
ovarian cancer cells, by whole-genome oligonucleotide 
microarray analysis, and by immunoblotting and 
immunofluorescence analyses using a Cx43-specific 
antibody. CCND2 (cyclin D2), identified by the down-
regulated DEG, is known to function as a regulatory 
subunit of cyclin-dependent kinases that are involved in 
the G1/S transition in the mitotic cell cycle (Koyama-
Nasu et al., 2013). Alteration of CCND2 gene expression 
promoted phosphorylation and subsequent inactivation 
of the retinoblastoma tumor suppressor protein, RB1, 
which causes dysregulation of the G1/S transition as a 
common event in the tumorigenesis of many cancers. 
There was no choice but to exclude DCK (deoxycytidine 
kinase) and RRM1, already known as molecular targets 
in cytotoxic mechanisms of gemcitabine, from the final 
gene lists; although they were contained in module 3 
of the gene co-expression network and hub clusters 8 
and 13 of the PPI network (highly related to AGR), we 
could not analyze their potential regulatory elements in 
the gene regulation network, owing to computational 
limitation using databases containing only experimentally 
discovered relationships.

In conclusion, by performing a cross-platform 
meta-analysis of three microarray datasets for different 
cancer cell lines with AGR, we have identified a total 
of 158 candidate DEGs that have a high probability of 
being involved in the molecular mechanism of AGR. 
We have also provided a comprehensive overview of the 
gene expression pattern of the AGR-related DEGs by 
attempting integrated in silico analysis of three molecular 
networks. This topological approach of integrative 
network analysis could help to provide new insights into 
the complex nature of AGR and may be useful for studying 
prospective chemotherapeutic strategies.
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