RESEARCH ARTICLE

Prognosis and Clinicopathology of CXCR4 in Colorectal Cancer Patients: a Meta-analysis

Lu-Ning Li¹, Kai-Tong Jiang¹, Peng Tan², Ai-Hua Wang¹, Qing-Yin Kong¹, Cui-Yue Wang¹, Hua-Rong Lu¹, Jing Wang³*

Abstract

The chemokine receptor 4 (CXCR4) has been widely used in diagnosis and prognosis of colorectal cancer (CRC). However, there is no current consensus on the impact of CXCR4 on CRC patients. The purpose of this study was to evaluate the prognostic and clinicopathological importance of CXCR4 in CRC patients. Databases, such as PubMed, Cochrane library, CBM and EMBASE updated to 2014 were searched to include eligible articles. We analysed correlations between CXCR4 expression and clinicopathological features and overall survival (OS). A total of 1, 055 CRC patients from twelve studies were included in the study. The pooled odds ratios (ORs) which indicated CXCR4 expression was likely to be associated with TNM stage (OR=0.43, CI=0.34-0.55, P<0.00001), lymph node status (OR=2.23, CI=1.23-4.05, P=0.008) and vascular invasion (OR=2.21, CI=1.11-4.39, P=0.02). Poor overall survival of CRC cancer was found to be significantly related to CXCR4 expression had no correlation with gender or differentiation. Based on the published studies, CXCR4 overexpression in patients with CRC indicates poor survival outcome and clinicopathological factors.

Keywords: Prognosis - clinicopathology - CXCR4 - colorectal cancer

Asian Pac J Cancer Prev, 16 (9), 4077-4080

Introduction

Colorectal cancer (CRC) is the third most common cancer in males and the second most common cancer in females worldwide and has high mortality rates (Jemal et al., 2011). CRC patients are usually treated with surgery, post-operative recurrence and metastasis remain the two most troublesome problems for prolonging patient's survival time after surgery. Therefore, it is necessary to understand the etiology and pathogenesis of canceration.

Recent studies have highlighted the role of chemokines and their receptors in cancer metastasis (Stetler et al., 2001). CXC chemokine receptor 4 (CXCR4) and its corresponding chemokine ligand play an important role in the mechanism of cancer metastasis. CXCR4 is mostly expressed in various cancers including CRC, breast cancer, gastric cancer, esophageal cancer, prostate cancer, and ovarian cancer, and so on (Balkwill et al., 2004). The expression of CXCR4 affects the metastatic behavior of CRC cells, which is associated with poor patient prognosis. CXCR4-overexpressing cancer cells have an increased ability of migration in vitro and metastasis to other organs (Kang et al., 2003; Luker et al., 2006).

Although evidence showed that CXCR4 plays an important role in in CRC patients, there were some

controversies. This meta-analysis aims to evaluate the value of CXCR4 as a prognostic and clinicopathological marker for colorectal cancer patients.

Materials and Methods

Literature search strategy

We comprehensively searched PubMed, Cochrane library, CBM and EMBASE databases for relevant articles published updated to June2014.The searching terms used were: colorectal cancer ("colorectal cancer", "colorectal carcinoma", "colorectal tumor"), CXCR4 ("CXCR4", "chemokine receptor 4"), prognosis or outcome, survival. All bibliographies were indentified in the reference lists.

Criteria for inclusion and exclusion

Studies eligible for inclusion in this meta-analysis met the following criteria in order to ensure the high quality of this article: *i*) All the patients with colorectal cancer diagnosed by pathology, who underwent surgical resection; *ii*) researches revealed the relationship between CXCR4 expression and colorectal cancer clinicopathological parameters and prognosis; *iii*) CXCR4 expression was detected by immunohistochemistry (IHC) method or reverse transcription polymerase chain

¹Department of Gastroenterology, Linyi People's Hospital, ²Internal medicine teaching and research section of Shandong Medical College, Linyi, ³Department of Hepatology, Provincial Hospital Affiliated to Shandong University, Jinan, China *For correspondence: Wjingsmile123@126.com

Lu-Ning Li et al

reaction (RT-PCR); iv) for duplicate articles, only the most complete and/or recently published one was included and v) publications in English. The following studies were excluded: i) articles about cell lines or animals; ii) review articles without original data.

Data extraction

The following information were collected independently by 2 reviewers (Li and Wang) from each publication: first author, publication time, country, number of patients enrolled, method, antibody source, dilution, as well as other related events. Disagreements between the two reviewers were settled by discussion with a third reviewer.

Statistical analysis

Analysis was performed using the Review Manager 5.1 (Cochrane Collaboration, Oxford, UK). Comparisons of dichotomous measures were performed by pooled estimates of odds ratios (ORs) as well as

their 95 % CIs. *P* value of <0.05 was considered to be statistically significant. Heterogeneity was tested using a chi-square test with significance being set at P<0.10; the total variation among studies was estimated by I square. If there was heterogeneity among studies, we used a random effect model to pool the ORs; otherwise, a fixed effect model was selected.

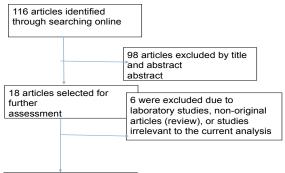
Results

Identification of relevant studies

The flow graph of articles selection was shown in Figure 1. At first, 116 articles were identified using the search strategy. Original data were initially screened,

based on paper titles and abstracts. 98 articles not relevant to our goal were excluded. Among the 18 articles, six of those were excluded due to laboratory studies, non-original articles (review), or studies irrelevant to the current analysis. Eventually, the remaining twelve studies were included for further analysis (Joseph et al., 2005; Alessandro et al., 2006; Fukunaga et al., 2006; N Yoshitake et al., 2008; Frank et al., 2009; Shang et al., 2010;Yugang et al., 2010; Adam et al., 2012; Crescenzo et al., 2013;Tinghua et al., 2013; Ying et al., 2014; Shinichiro et al., 2014) (Figure 1).

Study characteristics


The main characteristics of the 12 studies were shown in Table 1.The total number of patients included was 1913. The studies were conducted in 4 countries (China, Taiwan, America, Italy and Japan) and published between the year 2005 and 2014. Both the IHC and RT-PCR were used to evaluate the expression of CXCR4 in colorectal cancer specimens. The most commonly used antibody was a R&D Systems antibody against CXCR4. HR and 95% CI were obtained from Kaplan-Meier curves. Positive CXCR4 expression was defined by IHC and RT-PCR.

CXCR4 expression and clinicopathological features

All the included studies evaluated the correlation of CXCR4 expression with gender, histological differentiation, tumor depth, vascular invasion and status of lymph node metastasis. The analysis showed that CXCR4 expression had no correlation with gender (OR=0.97, CI=0.80-1.18, P=0.78, Figure 2A) or differentiation (OR=0.55, CI=0.41-0.73, P<0.0001, Figure 2B). However, CXCR4 expression was likely to be associated with TNM stage (OR=0.43, CI=0.34-

First author	Year	Origin	Cases	Method	Antibody source Dilution		Counting method
Adam C.Yopp	2012	American	75	IHC	R&D	4.208333333	Staining intensity score and percentage of positive cells
Alessandro Ottaiano	2006	Italy	72	IHC	R&D	1:30	Staining intensity score and percentage of positive cells
Crescenzo D'Alterio	2014	Italy	68	IHC	R&D	0.111111111	
Frank M	2009	American	70	IHC RT-PCR	R&D		Staining intensity score
Joseph Kim	2005	American	139	IHC	antihuman CXCR4antibody	0.180555556	
N Yoshitake	2008	Japan	60	IHC	R&D	1:20	
S. Fukunaga	2007	Japan	161	IHC			
Shang- Chiung	2010	Taiwan	388	IHC	R&D	1:50	
Shinichiro Yamada	2014	Japan	16	RT-PCR			
Tinghua Hu	2013	China	76				Staining intensity score and percentage of positive cells
Ying Gao	2014	China	720	IHC RT-PCR			Staining intensity score
Yugang Wu	2010	China	68	IHC RT-PCR	R&D		Staining intensity score and percentage of positive cells

Table 1. Characteristics of Eligible Studies

12 articles identified in this

meta analysis

Figure 1. Flow chart for Selection of Studies

~	Mai	~	Fema	alo		Odds Ratio		Odds Ratio
Study or Subgroup	Events		Events	Total	Weight			M-H, Fixed, 95% Cl
Adam C.Yopp 2012	38	51	9	24	1.5%	4.87 [1.72, 13.77]		
Alessandro Ottaiano 2006	17	38	14	34	4.0%	1.16 [0.45, 2.95]		- 21
Crescenzo D' Alterio 2014	18	39	15	29	4.6%	0.80 [0.31, 2.10]		
Frank M 2009	19	35	16	35	3.6%	1.41 [0.55, 3.61]		— •••
Joseph Kim 2005	22	45	26	47	6.4%	0.77 [0.34, 1.75]		
N Yoshitake 2008	31	41	16	19	2.6%	0.58 [0.14, 2.42]		
S. Fukunaga 2007	51	96	36	64	10.0%	0.88 [0.47, 1.67]		
Shang-Chiung Wang 2010	89	269	54	119	24.7%	0.60 [0.38, 0.93]		
Shinichiro Yamada 2014	3	9	3	7	1.1%	0.67 (0.09, 5.13)		
Tinghua Hu 2013	30	42	20	34	3.1%	1.75 [0.67, 4.55]		
Ying Gao 2014	120	412	88	308	35.1%	1.03 (0.74, 1.42)		+
Yugang Wu 2010	26	41	15	26	3.3%	1.27 [0.47, 3.47]		
Total (95% CI)		1118		746	100.0%	0.97 [0.80, 1.18]		4
Total events	464	1110	312	740	100.070	0.57 [0.00, 1.10]		1
Heterogeneity: Chi ² = 17.74		= 0.09)		6			<u> </u>	
Test for overall effect: Z = 0.				•			0.01	0.1 1 10 100
		,						Male Female
	Differenti		Undiffer			Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events			ht M-H, Fixed, 95% C		M-H, Fixed, 95% Cl
Alessandro Ottaiano 2006	29	69	2		3 1.9			
Crescenzo D' Alterio 2014	31	63	2		5 1.6			
Joseph Kim 2005	31 44	62 56	17		30 9.9			
N Yoshitake 2008 S. Fukunaga 2007	44	146	3		4 1.0 15 6.6			
S. Fukunaga 2007 Tinghua Hu 2013	78	140	33		42 10 9			
Ying Gao 2014	139	549			42 10.8			-
-								_
Total (95% CI)		976		2	70 100.0	0% 0.55 [0.41, 0.73	1	•
Total events	369		135					
Heterogeneity: Chi# = 3.70, df			0%				0.01	0.1 1 10 100
Test for overall effect: Z = 4.01	(P < 0.000	1)						Differentiated Undifferentiated
	+		III+P			Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% Cl
Frank M 2009	24	47	11	23	3.4%	1.14 [0.42, 3.09]		
N Yoshitake 2008	21	32	26	28	4.5%	0.15 [0.03, 0.74]	-	$\rightarrow 2C$
Shang-Chiung Wang 2010	47	185	96	203	32.3%	0.38 (0.25, 0.58)		- 20
Tinghua Hu 2013	15	30	35	46	6.5%	0.31 [0.12, 0.84]		_ - _
Ying Gao 2014	67	315	141	405	45.9%	0.51 [0.36, 0.71]		-
Yugang Wu 2010	15	36	25	31	7.4%	0.17 [0.06, 0.52]		
Total (95% CI)		645		736	100.0%	0.43 [0.34, 0.55]		•
Total events	189		334					
Heterogeneity: Chi ² = 9.58, df = 5 (P = 0.09); i ² = 48%								
			² = 48%				0.01	0.1 1 10 100
Test for overall effect: Z = 6.			² = 48%				0.01	0.1 1 10 100
	89 (P < 0.0					Odds Ratio	0.01	+ + v
		0001)	LN-	Total	Weight I	Odds Ratio VI-H, Random, 95% CI		
Test for overall effect: Z = 6.	89 (P < 0.0 LN+	0001)	LN-	Total 32	<u>Weight 1</u> 11.5%			+ + ∨ Odds Ratio
Test for overall effect: Z = 6. <u>Study or Subgroup</u> Alessandro Ottaiano 2006 Crescenzo D' Alterio 2014	89 (P < 0.0 LN+ Events 11 12	0001) Total 40 27	LN- Events 20 21	32 41	11.5% 11.6%	M-H, Random, 95% Cl 0.23 [0.08, 0.62] 0.76 [0.29, 2.02]		+ + ∨ Odds Ratio
Test for overall effect: Z = 6. <u>Study or Subgroup</u> Alessandro Ottaiano 2006 Crescenzo D' Alterio 2014 N Yoshitake 2008	89 (P < 0.0 LN+ Events 11 12 26	0001) Total 40 27 27	LN- Events 20 21 21	32 41 33	11.5% 11.6% 5.4%	M-H, Random, 95% Cl 0.23 [0.08, 0.62] 0.76 [0.29, 2.02] 14.86 [1.78, 123.71]		+ + ∨ Odds Ratio
Test for overall effect: Z = 6. <u>Study or Subgroup</u> Alessandro Ottaiano 2006 Crescenzo D' Alterio 2014 N Yoshitake 2008 S. Fukunaga 2007	89 (P < 0.0 LN+ Events 11 12 26 49	0001) Total 40 27 27 68	LN- 20 21 21 38	32 41 33 93	11.5% 11.6% 5.4% 13.9%	M-H, Random, 95% Cl 0.23 [0.08, 0.62] 0.76 [0.29, 2.02] 14.86 [1.78, 123.71] 3.73 [1.91, 7.31]		+ + ∨ Odds Ratio
Test for overall effect: Z = 6. <u>Study or Subgroup</u> Alessandro Ottaiano 2006 Crescenzo D' Alterio 2014 N Yoshitake 2008 S. Fukunaga 2007 Shang-Chiung Wang 2010	89 (P < 0.0 LN+ Events 11 12 26 49 40	0001) <u>Total</u> 40 27 27 68 79	LN- 20 21 21 38 98	32 41 33 93 290	11.5% 11.6% 5.4% 13.9% 15.1%	M.H. Random, 95% CI 0.23 [0.08, 0.62] 0.76 [0.29, 2.02] 14.86 [1.78, 123.71] 3.73 [1.91, 7.31] 2.01 [1.21, 3.33]		+ + v Odds Ratio
Test for overall effect: Z = 6. <u>Study or Subgroup</u> Alessandro Ottaiano 2006 Crescenzo D' Alterio 2014 N Yoshitake 2008 S. Fukunaga 2007 Shang-Chiung Wang 2010 Shinichiro Yamada 2014	89 (P < 0.0 LN+ Events 11 12 26 49 40 5	0001) <u>Total</u> 40 27 27 68 79 11	LN- 20 21 21 38 98 1	32 41 33 93 290 5	11.5% 11.6% 5.4% 13.9% 15.1% 4.3%	M-H, Random, 95% CI 0.23 (0.08, 0.62) 0.76 (0.29, 2.02) 14.86 (1.78, 123.71) 3.73 (1.91, 7.31) 2.01 (1.21, 3.33) 3.33 (0.28, 40.29)		+ + v Odds Ratio
Test for overall effect. Z = 6. <u>Study or Subgroup</u> Alessandro Ottaiano 2006 Crescenzo D' Alterio 2014 N Yoshitake 2008 S. Fukunaga 2007 Shang-Chiung Wang 2014 Shinichiro Yamada 2014 Tinghua Hu 2013	89 (P < 0.0 LN+ Events 11 12 26 49 40 5 37	0001) Total 40 27 27 68 79 11 48	LN- 20 21 21 38 98 1 13	32 41 33 93 290 5 28	11.5% 11.6% 5.4% 13.9% 15.1% 4.3% 11.4%	M.H. Random, 95% CI 0.23 [0.08, 0.62] 0.76 [0.29, 2.02] 14.86 [1.78, 123.71] 3.73 [1.91, 7.31] 2.01 [1.21, 3.33] 3.33 [0.28, 40.29] 3.88 [1.42, 10.57]		+ + v Odds Ratio
Test for overall effect. Z = 6. <u>Study or Subaroup</u> Alessandro Ottaiano 2006 Crescenzo D' Alterio 2014 N Yoshitake 2008 S. Fukunaga 2007 Shang-Chung Wang 2010 Shinichiro Yamada 2014 Tinghua Hu 2013 Ying Gao 2014	89 (P < 0.0 LN+ Events 11 12 26 49 40 5 37 138	0001) Total 40 27 27 68 79 11 48 339	LN- 20 21 21 38 98 1 13 70	32 41 33 93 290 5 28 381	11.5% 11.6% 5.4% 13.9% 15.1% 4.3% 11.4% 16.1%	M.H. Random, 95% CI 0.23 (0.08, 0.62) 0.76 (0.29, 2.02) 14.86 [1.78, 123.71] 3.73 [1.91, 7.31] 2.01 [1.21, 3.33] 3.33 (0.28, 40.29) 3.88 [1.42, 10.57] 3.05 [2.18, 4.28]		+ + v Odds Ratio
Test for overall effect. Z = 6. <u>Study or Subgroup</u> Alessandro Ottaiano 2006 Crescenzo D' Alterio 2014 N Yoshitake 2008 S. Fukunaga 2007 Shang-Chiung Wang 2014 Shinichiro Yamada 2014 Tinghua Hu 2013	89 (P < 0.0 LN+ Events 11 12 26 49 40 5 37	0001) Total 40 27 27 68 79 11 48	LN- 20 21 21 38 98 1 13	32 41 33 93 290 5 28	11.5% 11.6% 5.4% 13.9% 15.1% 4.3% 11.4%	M.H. Random, 95% CI 0.23 [0.08, 0.62] 0.76 [0.29, 2.02] 14.86 [1.78, 123.71] 3.73 [1.91, 7.31] 2.01 [1.21, 3.33] 3.33 [0.28, 40.29] 3.88 [1.42, 10.57]		+ + v Odds Ratio
Test for overall effect. Z = 6. <u>Study or Subgroup</u> Alessandro Ottaliano 2006 Crescenzo D' Alterio 2014 N Yoshitake 2008 S. Fukunaga 2007 Shang-Chung Wang 2010 Shinichiro Yamada 2014 Tinghua Hu 2013 Ying Gao 2014 Yugang Wu 2010	89 (P < 0.0 LN+ Events 11 12 26 49 40 5 37 138	0001) Total 40 27 27 68 79 11 48 339	LN- 20 21 21 38 98 1 13 70	32 41 33 93 290 5 28 381 37	11.5% 11.6% 5.4% 13.9% 15.1% 4.3% 11.4% 16.1% 10.7%	M.H., Random, 95% CI 0.23 (0.08, 0.62) 0.76 (0.29, 2.02) 14.86 (1.78, 123.71) 3.73 (1.91, 7.31) 2.01 (1.21, 3.33) 3.33 (0.28, 40.29) 3.88 (1.42, 10.57) 3.05 (2.18, 4.28) 5.69 (1.89, 17.09)		+ + v Odds Ratio
Test for overall effect. Z = 6. <u>Study or Subaroup</u> Alessandro Ottaiano 2006 Crescenzo D' Alterio 2014 N Yoshitake 2008 S. Fukunaga 2007 Shang-Chung Wang 2010 Shinichiro Yamada 2014 Tinghua Hu 2013 Ying Gao 2014	89 (P < 0.0 LN+ Events 11 12 26 49 40 5 37 138	00001) 40 27 68 79 11 48 339 32	LN- 20 21 21 38 98 1 13 70	32 41 33 93 290 5 28 381 37	11.5% 11.6% 5.4% 13.9% 15.1% 4.3% 11.4% 16.1%	M.H. Random, 95% CI 0.23 (0.08, 0.62) 0.76 (0.29, 2.02) 14.86 [1.78, 123.71] 3.73 [1.91, 7.31] 2.01 [1.21, 3.33] 3.33 (0.28, 40.29) 3.88 [1.42, 10.57] 3.05 [2.18, 4.28]		+ + v Odds Ratio
Testfor overall effect Z = 6. <u>Study or Subaroue</u> Alessandro Ottaiano 2006 Crescenzo D' Alavio 2014 N Yoshitake 2008 S Fukunaga 2007 Shindichio Yamada 2014 Ying Gao 2014 Ying Gao 2014 Ying Gao 2014 Total (95% CI)	89 (P < 0.0 LN+ <u>Events</u> 11 12 26 49 40 5 37 138 26 344	00001) Total 40 27 27 68 79 11 48 339 32 671	LN- Events 20 21 38 98 1 13 70 16 298	32 41 33 93 290 5 28 381 37 940	11.5% 11.6% 5.4% 13.9% 15.1% 4.3% 11.4% 16.1% 10.7% 100.0%	M.H., Random, 95% CI 0.23 (0.08, 0.62) 0.76 (0.29, 2.02) 14.86 (1.78, 123.71) 3.73 (1.91, 7.31) 2.01 (1.21, 3.33) 3.33 (0.28, 40.29) 3.88 (1.42, 10.57) 3.05 (2.18, 4.28) 5.69 (1.89, 17.09)		Odds Ratio MH, Random, 95% Cl
Testfor overall effect Z = 6. Study or Suburcoue Alessandro Ottaiano 2006 Crescenzo D ² Aleño 2014 N Yoshtake 2008 Shang-Chung Wang 2010 Shang-Chung Wang 2010 Ting Uas 2014 Yuga ga 2014 Yuga ga 2014 Total (95% Ct) Total events	89 (P < 0.0 LN+ <u>Events</u> 11 12 26 49 40 5 37 138 26 32 40 5 37 138 26 40 5 37 138 26 40 5 37 138 26 40 5 37 138 26 40 5 37 138 26 40 5 37 138 26 40 5 37 138 26 40 5 37 138 26 40 5 37 138 26 40 5 37 138 26 40 5 37 138 26 40 5 37 138 26 40 5 37 138 26 40 5 37 138 26 40 5 37 138 26 40 5 37 138 26 40 5 37 138 26 40 26 40 5 37 138 26 40 26 40 5 37 138 26 40 26 40 26 40 26 26 40 26 26 40 26 26 26 40 26 26 26 26 26 26 26 26 26 26	00001) Total 40 27 27 68 79 11 48 339 32 671 i, df = 8	LN- Events 20 21 38 98 1 13 70 16 298	32 41 33 93 290 5 28 381 37 940	11.5% 11.6% 5.4% 13.9% 15.1% 4.3% 11.4% 16.1% 10.7% 100.0%	M.H., Random, 95% CI 0.23 (0.08, 0.62) 0.76 (0.29, 2.02) 14.86 (1.78, 123.71) 3.73 (1.91, 7.31) 2.01 (1.21, 3.33) 3.33 (0.28, 40.29) 3.88 (1.42, 10.57) 3.05 (2.18, 4.28) 5.69 (1.89, 17.09)		i+iI iII+iv Mds Ratio Md Ratio Md Ratio 1 + Ratio 2 D + + + + + 0.1 1 10 100
Testfor overall effect Z = 6. Study or Suburous Alessandro Ottaiano 2006 Crescenzo D / Aleño 2014 N Yoshtake 2008 Shadu-Ohung Wang 2010 Shadu-Ohung Wang 2010 Shadu-Ohung Wang 2010 Shadu-Ohung Wang 2010 Shadu-Ohung Wang 2010 Ting Uas 2014 Yugang Yu 2010 Total events Heteropeneth, Tau* = 0.54, G Testfor overall effect Z = 2.6	89 (P < 0.0 LN+ <u>Events</u> 11 12 26 40 5 37 138 26 344 chi ² = 36.96 5 (P = 0.00	00001) Total 40 27 68 79 11 48 339 32 671 5, df = 8 8)	LN- 20 21 21 38 1 13 70 16 298 (P < 0.00	32 41 33 93 290 5 28 381 37 940 01); P=	11.5% 11.6% 5.4% 13.9% 15.1% 4.3% 16.1% 10.7% 100.0 % = 78%	M.H. Randorn, 95% CI 0.23 (0.08, 0.62) 0.76 (0.29, 2.02) 14.86 (1.78, 123.71) 3.73 (1-91, 7.31) 2.01 (1.21, 3.33) 3.33 (0.28, 40.29) 3.86 [1.42, 10.57) 3.05 [2.18, 4.29) 5.69 (1.89, 17.09) 2.23 [1.23, 4.05]		Odds Ratio M-H, Random, 95% Cl
Testfor overall effect Z = 6. <u>Study or Subaroup</u> Alessandro Ottaino 2006 Creacenzo 7 ¹ Aleño 2014 N Yoshtake 2008 Shanc, Chung Wang 2010 Shanc, Chung Wang 2010 Shanchi Vamada 2014 Yung Gao 2013 Yung Gao 2013 Yung Gao 2013 Heteropeneix, Tau ^a = 0.54, Test for overall effect Z = 2.6 Vas	89 (P < 0.0 LN+ Events 11 12 26 49 40 5 37 138 26 344 Chi ² = 36.96 5 (P = 0.00 cular invasio	00001) Total 40 27 27 68 79 11 48 339 32 671 i, df = 8 8) 20 27 27 68 79 11 48 32 671 52 671 53 67 67 67 67 67 67 67 67 67 67	LN- 20 21 21 38 98 1 13 70 16 298 (P < 0.00 Vacular ir	32 41 33 93 290 5 28 381 37 940 (01); P =	11.5% 11.6% 5.4% 13.9% 15.1% 4.3% 10.7% 10.7% 100.0% = 78%	4.14. Random. 95% CI 0.23 (0.08, 0.62) 0.76 (0.29, 2.02) 14.86 (1.78, 123.71) 3.73 (19.17, 71) 2.01 (1.21, 333) 3.33 (0.28, 40.29) 3.88 (1.42, 10.57) 3.06 [2.18, 4.28] 5.69 (1.89, 17.09] 2.23 (1.23, 4.05] Odds Ratio		+II I+ v MH, Random, 95% CI → 2D → 2D → + → + + + + + + + + + + + + + +
Testfor overall effect Z = 6. <u>Study or Subaroup</u> Alessandro Ottaino 2006 Creacenzo 7 ¹ Aleño 2014 N Yoshtake 2008 Shanc, Chung Wang 2010 Shanc, Chung Wang 2010 Shanchi Vamada 2014 Yung Gao 2013 Yung Gao 2013 Yung Gao 2013 Heteropeneix, Tau ^a = 0.54, Test for overall effect Z = 2.6 Vas	89 (P < 0.0 LN+ <u>Events</u> 11 12 26 40 5 37 138 26 344 chi ² = 36.96 5 (P = 0.00	00001) Total 40 27 68 79 11 48 339 32 671 5, df = 8 8)	LN- 20 21 21 38 1 13 70 16 298 (P < 0.00	32 41 33 93 290 5 28 381 37 940 (01); P =	11.5% 11.6% 5.4% 13.9% 15.1% 4.3% 16.1% 10.7% 100.0 % = 78%	41.H. Random. 95% CI 0.23 (0.06, 0.62) 0.76 (0.29, 2.02) 14.86 (1.78, 1.23, 11) 3.73 (1.91, 7.31) 2.01 (1.21, 3.33) 3.33 (0.26, 40.29) 3.86 (1.42, 10.67) 3.05 (2.18, 4.28) 5.69 (1.89, 17.09) 2.23 (1.23, 4.45] Odds Ratio ti M4.H. Exect, 95% CI		Odds Ratio M-H, Random, 95% Cl
Testfor overall effect Z = 6. Study or Suburcoue Alessandro Ottaiano 2006 Crescenzo D ² Aleño 2014 N Yoshtaka 2008 Shaug-Chung Wang 2010 Shaug-Chung Wang 2010 Total eyents Nug Gao 2014 Yugag Wu 2010 Total eyents Heterogeneits: Tau ² = 0.54; Total eyents Stathor Subarou Yoshtaka 2008 Study or Subarou Stathor Subarou Yoshtaka 2007 Yoshtaka 2007 Yoshtaka 2007 Study or Subarou Yugag 2007 Subarou Subarou Yoshtaka 2007 Yoshtaka 2007	89 (P < 0.0 LN+ Events 11 12 26 49 40 5 37 138 26 344 chi ² = 36.96 5 (P = 0.00 5 (P = 0.00 cular invasie Events	00001) Total 40 27 27 68 79 11 48 339 32 671 6, df = 8 8) m(+) Total	LN- 20 21 21 38 98 1 13 70 16 (P < 0.00 Vacular in Events	32 41 33 93 290 5 28 381 37 940 101); P= 10	11.5% 11.6% 5.4% 13.9% 15.1% 15.1% 16.1% 10.7% 100.0% = 78% -) otal Weigl	H-H. Random. 95% L. 0.33 (10.08, 0.62) 0.76 (10.29, 2.02) 14.86 (1.78, 1.23, 71) 3.73 (1.81, 7.31) 2.01 (1.21, 3.33) 3.33 (10.24, 40.29) 3.86 (1.42, 10.67) 3.06 [2.18, 4.28] 5.68 (1.89, 17.09) 2.23 (1.23, 4.05] 0.054 Ratio mt. MH-Hprost, 95% L. 3.32 (10.89, 12.34)		i+iI ill+iv MH, Random, 95% CI → 2D → 2D → + → + + + + + + + + + + + + + +
Testfor overall effect Z = 6. Study or Subaroue Alessandro Ottaiano 2006 Crescenzo 7. Metrio 2014 N yoshibake 2008 Shudino 2007 Shang-Chung Wang 2010 Shinchiro Yamada 2014 Ying Gao 2014 Ying Gao 2014 Yugang Wu 2010 Total events Hebrogeneik Tau* = 0.54; Yotale zents Voreralle Effect Z = 2.6 Study or Subaroue Yugang Vu 2010	89 (P < 0.0 LN+ Events 11 12 26 49 40 5 37 138 26 344 ChP = 36.9€ 5 (P = 0.00 cular invasie Events 28	00001) Total 40 27 27 68 79 11 48 339 32 671 5, clf = 8 8) m(+) Total 32	LN- 20 21 21 38 98 1 13 70 16 298 (P < 0.00 Vacutar in <u>Events</u> 19	32 41 33 93 290 5 28 381 37 940 101); P= 10	11.5% 11.6% 5.4% 13.9% 4.3% 11.4% 16.1% 10.7% 100.0% = 78% -) tat Weight 28 22.1	H-H, Random, 95% C. 0.23 (0.08, 0.62, 0.76 (0.29, 2.02) 0.4 86 (1.78 (1.237)) 1.4 86 (1.73 (1.237)) 2.3 (1.23, 1.237) 2.3 (1.23, 1.233) 3.3 (0.24, 0.02) 3.88 (1.42, 10.57) 3.89 (1.42, 10.57) 3.05 (1.24, 4.20) 5.69 (1.89, 17.09) 2.23 (1.23, 4.05) 0.046 Ratio mt M-H, Fixed, 55% (1.38, 17.09) 3.70 (0.77, 4.14)		i+iI ill+iv MH, Random, 95% CI → 2D → 2D → + → + + + + + + + + + + + + + +
Testfor overall effect Z = 6. Study or Subarcoux Alessandro Ottaiano 2006 Crescenzo D'Aleño 2014 N Yoshihake 2008 Si-kukinaga 2007 Shang-Chung Wang 2010 Shang-Chung Wang 2010 Total (95% Ct) Total events Heterogeneity. Tau ² = 0.54, Ct Study cs Subarcoux Vas Study cs Subarcoux Vas Study cs Subarcoux Vas Study cs Subarcoux Vas Study cs Subarcoux Subarcoux Study cs Subarcoux Subarcoux Study cs Subarcoux Suba	89 (P < 0.0 LN+ Events 11 12 26 49 40 5 37 138 26 344 chi ^p = 36.96 5 (P = 0.00 cutar invasis Events 28 19	00001) Total 1 40 27 27 68 79 11 48 339 32 671 i, df = 8 8) m(+) Total 32 29 14	LN- 20 21 38 98 1 13 70 16 (P < 0.00 Vacular in Events 19 68	32 41 33 93 290 5 28 381 37 940 101); P= To To	11.5% 11.6% 5.4% 13.9% 15.1% 4.3% 11.4% 16.1% 10.7% 100.0% = 78% -) otal Weig 28 22.1 132 73.8 2 4.1	M-H, Ramotom. 95% CI. 0.23 (0.08, 0.62) 0.73 (0.09, 0.62) 14.96 (1.79, 123.71) 2.31 (0.17, 211) 2.31 (0.17, 211) 2.31 (0.17, 211) 2.33 (0.26, 40.28) 3.36 (1.42, 10.57) 3.05 (2.16, 4.28) 5.66 (1.88, 17.09) 2.23 (1.23, 4.05) MH, Fixed, 95% (1.38, 17.09) * 3.30 (0.69, 12.38) * 1.78 (0.77, 4.14) % 3.32 (0.16, 94.13)		i+iI ill+iv MH, Random, 95% CI → 2D → 2D → + → + + + + + + + + + + + + + +
Testfor overall effect Z = 6. Study or Suburous Alessandro Ottaiano 2006 Crescenzo D / Aleño 2014 N Yoshtake 2008 Shaduroja 2007 Shaduroja 2010 Shaduroja 2010 Shaduroja 2010 Shaduroja 2010 Shaduroja 2010 Tinghua Hu 2013 Yugo ao 2014 Yugo ao 2014 Yugo ao 2014 Total events Heteroparelifect T au ² = 0.54/, Testfor overall effect Z = 2.6 Study or Suburous Shaduroja 2007 Shaduroja 2007 Shaduroja 2007 Shaduroja 2007 Shaduroja 2014 Shaduroja 2014 Shaduroja 2017 Shaduroja 2017 Shaduroja 2017 Shaduroja 2017 Shaduroja 2017 Shaduroja 2017 Shaduroja 2017 Shaduroja 2017 Shaduroja 2014 Shaduroja 2017 Shaduroja 2017 Shaduroja 2017 Shaduroja 2017 Shaduroja 2017 Shaduroja 2017 Shaduroja 2017 Shaduroja 2017 Shaduroja 2014 Shaduroja 2014 Shaduroja 2017 Shaduroja 2014 Shaduroja 2014	89 (P < 0.0 LN+ <u>Events</u> 111 12 26 49 40 5 37 138 26 37 138 26 37 138 26 5 (P = 0.00 cutar invasis <u>Events</u> 28 19 6	00001) Total 40 27 27 68 79 11 48 339 32 671 i, df = 8 8) m(+) Total 22 29	LN- Events 20 21 21 38 98 13 70 16 298 (P < 0.00 Vacular in Events 19 68 0	32 41 33 93 290 5 28 381 37 940 101); P= To To	11.5% 11.6% 5.4% 13.9% 4.3% 15.1% 4.3% 10.7% 100.0% = 78% -) otal Weigit 28 22:11 22 73.8	M-H, Ramotom. 95% CI. 0.23 (0.08, 0.62) 0.73 (0.09, 0.62) 14.96 (1.79, 123.71) 2.31 (0.17, 211) 2.31 (0.17, 211) 2.31 (0.17, 211) 2.33 (0.26, 40.28) 3.36 (1.42, 10.57) 3.05 (2.16, 4.28) 5.66 (1.88, 17.09) 2.23 (1.23, 4.05) MH, Fixed, 95% (1.38, 17.09) * 3.30 (0.69, 12.38) * 1.78 (0.77, 4.14) % 3.32 (0.16, 94.13)		i+iI ill+iv MH, Random, 95% CI → 2D → 2D → + → + + + + + + + + + + + + + +
Testfor overall effect Z = 6. Study or Subarcoue Alessandro Ottaiano 2006 Crescenzo D ² Aleño 2014 N' yo bhitake 2008 Shang-Churng Wang 2010 Shang-Churng Wang 2010 Shang-Churng Wang 2010 Torg dao 2014 Yug dao 2014 Yug dao 2014 Yug dao 2014 Total events Heterogeneity: Tau ² = 0.54; Shudy or Subarcouel affect Z = 2.8 Was Study or Subarcouel affect Z = 0.54; Yoshikae 2008 Shudword Subarcouel affect Z = 0.54; Yoshikae 2008 Yoshikae 2008 Yoshikae 2008 Shudword Subarcouel affect Z = 0.54; Yoshikae 2008 Yug Alexie Ale	89 (P ≤ 0.0 LN+ Events 11 12 26 49 40 5 37 138 26 37 138 26 5 (P = 0.00 cutar invasie Events 28 19 6 53 (P = 0.70); F	00001) Total 1 40 27 27 88 79 11 48 339 32 671 339 32 671 32 29 14 75	LN- 20 21 38 98 1 13 70 16 (P < 0.00 Vacular in Events 19 68	32 41 33 93 290 5 28 381 37 940 101); P= To To	11.5% 11.6% 5.4% 13.9% 15.1% 4.3% 11.4% 16.1% 10.7% 100.0% = 78% -) otal Weig 28 22.1 132 73.8 2 4.1	M-H, Ramotom. 95% CL 0.23 (0.08, 0.62) 0.73 (0.09, 0.62) 14.66 (1.78, 12.37 (1) 3.73 (1.91, 7.31) 2.01 (1.13, 3.33) 3.80 [1.42, 10.57) 3.05 [2.18, 4.20] 5.69 [1.39, 17.09] 2.23 [1.23, 4.05] 0.0445 Ratio M.H, Fored, 95% CL 3.02 [0.94, 12.34] 3.02 [0.94, 12.34] 3.03 [0.94, 12.34] 3.04 (1.77, 141) 3.02 [0.16, 94.13]	0.01	Hell III-IV Odds Ratio MH, Random, 95% Cl
Test for overall effect Z = 6. Study or Subgroup Alessandro Ottalano 2006 Crescenzo D ¹ Allenio 2014 N Yoshikaka 2000 Shaqn-Chung Wang 2010 Shinchiro Yamada 2014 Yung Oao 2014	89 (P ≤ 0.0 LN+ Events 11 12 26 49 40 5 37 138 26 37 138 26 5 (P = 0.00 cutar invasie Events 28 19 6 53 (P = 0.70); F	00001) Total 1 40 27 27 88 79 11 48 339 32 671 339 32 671 32 29 14 75	LN- Events 20 21 21 38 98 13 70 16 298 (P < 0.00 Vacular in Events 19 68 0	32 41 33 93 290 5 28 381 37 940 101); P= To To	11.5% 11.6% 5.4% 13.9% 15.1% 4.3% 11.4% 16.1% 10.7% 100.0% = 78% -) otal Weig 28 22.1 132 73.8 2 4.1	H.H.Random.995% Close 0.23 (0.08, 0.62) 0.23 (0.08, 0.62) 0.73 (0.29, 2.02) 1.4 66 (1.74, 123.71) 3.73 (1.91, 7.31) 2.3 (1.43, 7.31) 2.01 (1.21, 3.33) 3.3 (0.24, 0.02) 3.88 (1.42, 10.57) 3.05 (2.18, 4.28) 5.60 (1.98, 12.09) 2.23 (1.23, 4.05) 2.23 (1.23, 4.05) M.H.Froed, 2015 (1.14, 3.24) 5.60 (1.24, 12.43) 1.71 (D.7, 4.14) 3.82 (0.16, 94.13) % 2.21 (1.14, 4.39) 5.82 (0.16, 94.13)	0.01	+ + - / MH, Random, 95% CI → 2D → 2D → - → - → - → - ↓ 10 100 odds Ratie

Figure 2. Forest Plots of CXCR4 Expression and the Clinicopathological Features of patients with Colorectal Cancer. A) Gender. B) Differentiation. C) TNM staging. D) Status of lymphnode. E) vascular invasion

0.55, *P*<0.00001, Figure 2C) and status of lymph node (OR=2.23, CI=1.23-4.05, *P*=0.008, Figure 2D).

In three studies, the association of CXCR4 with vascular invasion of colorectal cancer was also investigated. It was found that CXCR4 expression was different in vascular invasion and no vascular invasion of CRC (pooled OR=2.21, CI=1.11-4.39, P=0.02, Figure 2E).

The heterogeneity was observed in the analysis of CXCR4 expression with TNM stage (P=0.09; $I^2=48\%$) and status of lymph node (P<0.0001; $I^2=78\%$), so a random

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Fixed, 95% Cl	Hazard Ratio IV, Fixed, 95% Cl
Adam C.Yopp 2012	1.28	0.48	2.6%	3.60 [1.40, 9.21]	
Frank M 2009	1.31	0.54	2.1%	3.71 [1.29, 10.68]	
Ying Gao 2014	0.26	0.08	95.3%	1.30 [1.11, 1.52]	—
Total (95% CI)			100.0%	1.36 [1.17, 1.59]	•
Heterogeneity: Chi ² = Test for overall effect		0.001 0.1 1 10 1000 Favours positive Favours negative			

Figure 3. Forest Plot of Hazard Ratio for Overall Survival of Patients with Colorectal Cancer

effect model was used.

CXCR4 as a prognostic factor for colorectal cancer

Four out of twelve studies evaluated the relationship between OS and CXCR4 expression. The pooled HR for OS showed that overexpression of CXCR4 reduced OS in colorectal cancer. (HR=1.36, 95 % CI=1.17–1.59, P<0.0001, Figure 3)

Discussion

Chemokines are a family of chemoattractant proteins that are classified depending on the arrangement of amino acids adjacent to conserved cysteine residues, which can guide the migration of cells. Some chemokines are associated with angiogenesis and cellular maturation (Kucia et al., 2004). In CRC, CXCR4 expression varies by anatomic location, with rectal primary tumors more strongly expressing CXCR4 (Schimanski et al., 2005; Li et al., 2015). Tumor progression is associated with intratumoral hypoxia, hypoxia upregulated CXCR4 expression in tumor cells and that the CXCR4 receptor protein level remains high at the cell membrane (Romain et al., 2014). CXCR4 expression by primary and metastatic tumors has been shown to correlate with distant metastases and overall survival (Kim et al., 2005; Ottaiano et al., 2006).

In recent years, the tumor microenvironment has become a research hotspot, which is closely related to tumorigenesis. SDF-1 and its specific receptor, CXCR4, are now receiving attention as a mechanism of cell progression and metastasis. The expression of CXCR4 has been shown to be associated with tumorigenesis and metastasis of many types of cancers (Saur et al., 2005; Hao et al., 2007; Matsusue et al., 2009). The correlation between CXCR4 expression and colorectal cancer has also been studied by many researchers. In order to determine the precise status of prognosis and clinicopathology of CXCR4 expression in colorectal cancer, we included twelve eligible studies with 1, 913 CRC patients to perform this meta-analysis.

Our meta-analysis summarized the outcomes of total 1, 913 CRC patients from 12 individual studies, concluding that the high CXCR4 expression significantly predicted poor survival. Correlation between CXCR4 expression and differentiation, status of lymph node, and TNM staging and vascular invasion were also observed. Frank M et al. discovered that a high expression of nuclear localized CXCR4 in tumor cells is an independent predictor for poor survival for colorectal cancer patients. N Yoshitake et al. demonstrated that overexpression of CXCR4 are closely associated with LN metastasis and poor prognosis in patients with CRC.

Lu-Ning Li et al

In the studies included, only three out of twelve (Frank et al., 2009; Adam et al., 2012; Ying et al., 2014) suggested statistically significant HRs for OS of elevated CXCR4 expression, and the remaining eight studies just have shown the trend of reduced survival result. An obvious association was found. if the data from these studies were combined.

There are some limitations in this stduy. Firstly, mentioned above, the number of studies and patients included is relatively small. Secondly, the different concentrations of antibody and the variable cut of definition of CXCR4 expression used in these studies might influence the final result of this meta-analysis. Thirdly, heterogeneity was found in the main analysis. Finally, not all studies offer complete results.

In conclusion, our meta-analysis showed that high CXCR4 expression was associated with poor prognosis in colorectal cancer. As a prognostic factor, CXCR4 expression can help us make further decisions on clinical therapy management.

References

- Alessandro Ottaiano, Renato Franco, Annarita Aiello Talamanca, et al (2006). Overexpression of both CXC chemokine receptor 4 and vascular endothelial growth factor proteins predicts early distant relapse in stage ii-iii colorectal cancer patients. *Clin Cancer Res*, **12**, 2795-803.
- Balkwill F (2004). Cancer and the chemokine network. *Nat Rev Cancer*, **4**, 540-50.
- Crescenzo D'Alterio, Antonio Avallone, Fabiana Tatangelo, et al (2013). A prognostic model comprising pT stage, N status, and the chemokine receptors CXCR4 and CXCR7 powerfully predicts outcome in neoadjuvant resistant rectal cancer patients. *Int J Cancer*, **135**, 379-90.
- Frank M, Gerrit Jan, Cornelis J, et al (2009). Nuclear localization of CXCR4 determines prognosis for colorectal cancer patients. *Cancer Microenvironment*, 2, 1-7.
- Fukunaga S, Maeda K, Noda E, et al (2006). Association between expression of vascular endothelial growth factor c, chemokine receptor CXCR4 and lymph node metastasis in colorectal cancer. *Oncology*, **71**, 204-11.
- Hao L, Zhang C, Qiu Y, et al (2007). Recombination of CXCR4, VEGF, and MMP-9 predicting lymph node metastasis in human breast cancer. *Cancer Letters*, **253**, 34-42.
- Jemal A, Bray F, Center MM, et al (2011). Global cancer statistics. *CA Cancer J Clin*, **61**, 69-90.
- Joseph Kim, Hiroya Takeuchi, Stella T. Lam, et al (2005). Chemokine Receptor CXCR4 Expression in Colorectal Cancer Patients Increases the Risk for Recurrence and for Poor Survival. J Clin Oncol, 23, 2744-53.
- Kang Y, Siegel PM, Shu W, et al (2003). A multigenic program mediating breast cancer metastasis to bone. *Cancer cell*, 3, 537-49.
- Kim J, Takeuchi H, Lam ST, et al (2005). Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. *J Clin Oncol*, 23, 44-53.
- Kucia M, Jankowski K, Reca R, et al (2004). CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol, 35, 233-45.
- Li XF, Guo XG, Yang YY et al., (2015). Effect of CXCR4 and CD133 co-expression on the prognosis of patients with stage II~III colon cancer. *Asian Pac J Cancer*, **16**, 1074-76

- Luker KE and Luker GD (2006). Functions of CXCL12 and CXCR4 in breast cancer. *Cancer Lett*, **238**, 30-41.
- Matsusue R, Kubo H, Hisamori S, et al (2009). Hepatic stellate cells promote liver metastasis of colon cancer cells by the action of SDF-1/CXCR4 axis. *Ann Surg Oncol*, **16**, 2645-53.
- Ottaiano A, Franco R, Aiello Talamanca A, et al (2006). Overexpression of both CXC chemokine receptor 4 and vascular endothelial factor predicts early distant relapse in Stage II-III colorectal cancer patients. *Clin Cancer Res*, **12**, 2795-803.
- Romain B, Hachet-Haas M, Rohr S et al (2014). Hypoxia differentially regulated CXCR4 and CXCR7 signaling in colon cancer. *Mol Cancer*, **13**, 58
- Saur D, Seidler B, Schneider G (2005). CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer. *Gastroenterol*, **129**, 1237-50.
- Schimanski CC, Schwald S, Simiantonaki N, et al (2005). Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. *Clin Cancer Res*, **11**, 1743-50.
- Shinichiro Yamada, Mitsuo Shimada, Tohru Utsunomiya, et al (2014). CXC receptor 4 and stromal cell-derived factor 1 in primary tumors and liver metastases of colorectal cancer.J Surg Res, 187, 107-12.
- Shang-Chiung Wang, Jen-Kou Lin, Huann-Sheng Wang, et al (2010). Nuclear expression of CXCR4 is associated with advanced colorectal cancer. *Int J Colorectal Dis*, 25, 1185-91.
- Stetler Stevenson WG, Kleiner DE Jr (2001). Molecular biology of cancer: invasionand metastasis. In: devita vt jr, hellman s, rosenberg sa, editors. cancer: principles and practice of oncology. philadelphia, *PA: Lippincott Williams*, **2001**, 123-36.
- Tinghua Hu, Yu Yao, Shuo Yu, et al (2013). Clinicopathologic significance of CXCR4 and Nrf2 in colorectal cancer. *J Biom Res*, **27**, 283-90.
- Ying Gao, Chunyu Li, Min Nie, et al (2014). CXCR4 as a novel predictive biomarker for metastasis and poor prognosis in colorectal cancer. *Tumor Biol*, **35**, 4171-5.
- Yopp AC, Shia J, Butte JM, et al (2012). CXCR4 expression predicts patient outcome and recurrence patterns after hepatic resection for colorectal liver metastases. *Ann Surg Oncol*, **19**, 339-46.
- Yoshitake N, Fukui H, Yamagishi H, et al (2008). Expression of SDF-1 aand nuclear CXCR4 predicts lymph node metastasis in colorectal cancer. Br J Cancer, 98, 1682-89.
- Yugang Wu, Min Jin, Huanbai Xu, et al (2010). Clinicopathologic Significance of HIF-1α, CXCR4, and VEGF Expression in Colon Cancer. *Clin Developml Immunol*.