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Introduction

Epithelial-mesenchymal transition (EMT) is now 
widely accepted as the ability of epithelial cells to undergo 
mesenchymal transitions during embryogenesis, wound 
healing and malignant tumor progression (De Craene 
and Berx, 2013). EMT is characterized by breakdown 
of cell junctions and loss of epithelial phenotypes, thus 
contributing to cancer progression and endowing cancer 
cells with higher ability of migration, invasion and 
metastasis (Thiery et al., 2009, Liu et al., 2015). Cell 
adhesion and polarity in epithelia depends on the formation 
of adherens junctions. E-cadherin is a key determinant 
during EMT process, providing the physical structure for 
both cell-cell attachment and the recruitment of signaling 
complexes (Yu et al., 2014). Several transcription factors 
have been said to drive EMT, for example, Snail, Slug, 
ZEB1, ZEB2, E47, and Twist (Haslehurst et al., 2012). 
EMT can be prompted by various growth factors. Those 
growth factors include transforming growth factor β 
(TGF-β) (Serrano-Martinez et al., 2012), hepatocyte 
growth factor (HGF) (Farrell et al., 2014), members of 
the epidermal growth factor (EGF) family (Lo et al., 
2007), insulin-like growth factor (IGF) (Li et al., 2014), 
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Abstract

	 The zinc finger transcription factor EGR1 has a role in controlling synaptic plasticity, wound repair, female 
reproductive capacity, inflammation, growth control, apoptosis and tumor progression. Recent studies mainly 
focused on its role in growth control and apoptosis, however, little is known about its role in epithelial-mesenchymal 
transition (EMT). Here, we aim to explore whether EGR 1 is involved in TGF-β1-induced EMT in non-small-
cell lung cancer cells. Transforming growth factor (TGF)-β1 was utilized to induce EMT in this study. Western 
blotting, RT-PCR, and transwell chambers were used to identify phenotype changes. Western blotting was also 
used to observe changes of the expression of EGR 1. The lentivirus-mediated EGR 1 vector was used to increase 
EGR1 expression. We investigated the change of migration to evaluate the effect of EGR 1 on non-small-cell 
lung cancer cells migration by transwell chambers. After stimulating with TGF-β1, almost all A549 cells and 
Luca 1 cells (Non-small-cell lung cancer primary cells) changed to mesenchymal phenotype and acquired more 
migration capabilities. These cells also had lower EGR 1 protein expression. Overexpression of EGR 1 gene with 
EGR 1 vector could decrease tumor cell migration capabilities significantly after adding TGF-β1. These data 
showed an important role of EGR 1 in the EMT of non-small-cell lung cancer cells, as well as migration. 
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and fibroblast growth factor (FGF) (Acevedo et al., 2007). 
Tr a n s f o r m i n g  g r o w t h  f a c t o r - β  ( T G F - β ) 

is a multifunctional cytokine, which regulates cell 
differentiation, proliferation, motility and apoptosis 
(McLeod et al., 1990, Portella et al., 1998). TGF-β 
expression has been studied in various cancers types, 
including prostate, breast, lung, colorectal, pancreatic, 
liver, skin cancers, and gliomas (Padua and Massague, 
2009). TGF-β has been shown to stimulate angiogenesis 
(Sanchez-Elsner et al., 2001), evade immune (Gorelik 
and Flavell, 2001) and epithelial-mesenchymal transition 
(EMT) (Zhu et al., 2013) in the tumor progression.

The zinc finger transcription factor EGR 1 (Sukhatme 
et al., 1988), also known as zif268, NGFI-A, Krox24, and 
TIS8, is induced by many environmental signals including 
growth factors, hormones, and Hypoxia. Numerous 
biological roles have been attributed to EGR1, ranging 
from controlling synaptic plasticity, wound repair, female 
reproductive capacity, inflammation, coagulation growth 
control, and apoptosis (Thiel et al., 2010). In the present 
study, we found TGF-β1 can inhibit EGR 1 expression of 
non-small-cell lung cancer cells. EGR 1 overexpression 
will reduce lung cancer cells migration ability caused by 
TGF-β1.
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Materials and Methods

Cell culture and drug treatment
The primary tumor cells used in this study (designed 

Luca 1) were categorized as stage IV serious NSCLC that 
is a disease with poor prognosis (Yan et al., 2013; Lu et 
al., 2013; Liu et al., 2013). The human NSCLC cell line 
A549 was purchased from the American Type Culture 
Collection (ATCC) (Manassas, VA, USA). All cells were 
cultured in RPMI-1640 medium (Gibco, USA) containing 
10% fetal bovine serum (FBS, Gibco, USA). The cells 
were maintained at 37°C in 5% CO2 atmosphere. To induce 
A549-EMT cells, transforming growth factor (TGF)-β1 
(5ng/ml) (PeproTech, USA) was added to the medium, 
then, the cells were cultured for 72 hr.

Construction and transfection of lentiviral vectors with 
EGR 1 overexpression

To further to investigate the function of EGR1, the 
EGR1 overexpression lentiviral vector (Lenti-EGR 
1) was constructed (Shanghai GeneChem Co., Ltd., 
Shanghai, China). A GFP lentiviral vector was used as 
negative control (NC). All lentiviral vectors expressed 
GFP, which enabled us to select stably transfection cells. 
The day before transfection, A549 cells and Luca1 cells 
were seeded in 24-well plates at a density of 50 000 cells 
per well respectively. The lentiviruses were transfected 
according to the manufacturer’s instruction with MOI 
=30, and stably transfection cells were selected by flow 
cytometry. 

SDS-PAGE and Western blot
To examine the protein level of EGR 1, E-cadherin, 

Slug and Snail, cells were collected and lysed on ice 
for 10 min in RIPA Lysis Buffer (Beyotime, Jiangsu, 
China) with protease inhibitor phenylmethanesulfonyl 
fluoride (PMSF, Beyotime, Jiangsu, China). 20μg of 
total protein from each sample was separated on 10% 
polyacrylamide gels (Beyotime, Jiangsu, China). After 
electrophoresis, separated proteins were transferred onto 
polyvinyllidenediflouride (PVDF) membranes (Roche 
Applied Science). Membranes were then blocked for 1 hr 
at room temperature with 5% BSA in TBST. The PVDF 
membranes were, respectively, incubated over night with 
the rabbit polyclonal anti-EGR-1 (dilution 1:1 000; Cell 
Signaling Technology, Boston, USA), rabbit monoclonal 
anti-E-cadherin, anti-Slug, anti-Snail (dilution 1:500; 
Santa Cruz Biotechnology, CA), and mouse monoclonal 
anti-GAPDH (dilution 1:1, 000; Beyotime, Jiangsu, 
China). After washing with TBST, membranes were 
probed with goat anti-rabbit IgG (dilution 1:5, 000) or 
goat anti-mouse IgG (dilution 1:5, 000) conjugated with 
HRP for 1 hr at room temperature. Labeled bands were 
detected by BeyoECL Plus (Beyotime, Jiangsu, China). 
Results expressed relative to GAPDH band density used 
as a loading control.

Real-time PCR
Total RNA was isolated using TRIZOL Reagent 

(Invitrogen, CA) according to the manufacturer’s 
instructions. For complementary DNA (cDNA) synthesis, 

1μg of total RNA was reverse transcribed using a 
TaKaRa PCR Kit (TaKaRa, Tokyo, Japan) and carried 
out in triplicate with an ABI 7500 Prism Sequence 
Detection System (Applied Biosystems, Foster City, 
CA). The reaction conditions were as follows: 95℃ for 
30 seconds, followed by 40 cycles of: 95℃for 5 seconds, 
60℃ for 34 seconds. For normalization of all RT-PCR 
data, GAPDH expression was used as a reference gene. 
Primers used in real-time PCR were as follows: EGR 1 
sense 5’-CAGCACCTTCAACCCTCAG-3’, antisense 
5’-CACAAGGTGTTGCCACTGTT- 3’; E-cadherin 
sense 5’-GAGTGCCAACTGGACCATTCAGTA-3’, 
antisense 5’-AGTCACCCACCTCTAAGGCCATC-3’; 
Slug sense 5’-AGATGAGCATTGGCAGCGAG-3’, 
antisense 5’-CAGGAGAAAATGCCTTTGGA-3’; 
Snail sense 5’-TCGGAAGCCTAACTACAGCGA-3’, 
antisense 5’-AGATGAGCATTGGCAGCGAG-3’; 
GAPDH sense 5’-GGTCTCCTCTGACTTCAACA-3’, 
antisense 5’-AGCCAAATTCGTTGTCATAC- 3’.Relative 
transcript abundance of E-cadherin, Slug, Snail, were 
expressed in ΔCt values (ΔCt = Ct target -Ct reference). 
Relative fold changes in transcript levels compared 
to basal levels was calculated as 2-ΔΔCt (ΔΔCt =ΔCt 
treatment-ΔCt basal). 

Cell migration assay
In migration assay, 3×104cells were suspended in a 

200µl serum-free medium and then seeded in the upper 
chambers of a transwell plate (8.0µm, Millipore, Billerica, 
MA), while the lower chambers were filled with RPMI-
1640 containing 15% FBS. The plates were incubated for 
24 hours at 37℃ in 5% CO2. Cells that did not migrate 
through the pores were removed by a cotton swab. Cells 
on the lower surface of the membrane were examined 
and counted under a microscope. Each experiment was 
repeated at least three times.

Results 

TGF-β1 induces Epithelial-to-mesenchymal transition of 
A549 and Luca 1 cells in vitro

A549 cells and Luca 1 cells cultured in the absence 
of TGF-β1 maintained the classic cobblestone epithelial 
morphology and growth pattern, but after treatment of 
5 ng/mL TGF-β1 for 72 hr, the cells showed a more 
fibroblast-like morphology (Figure 1A). Following 
stimulation by TGF-β1 (5ng/ml) for 72 hr, we tested three 
typical molecular markers for A549 cells and Luca 1 cells 
through RT-PCR and western blotting. The RT-PCR results 
showed in two pairs of NSCLC cell lines (A549 and Luca 
1) treated with or without TGF-β1, E-cadherin expression 
level was effectively reduced to 10±4 % in A549 cells and 
15±3% in Luca 1 cells treated with TGF-β1 compared 
with untreated group. Slug expression level was increased 
to almost 4-folds in A549 cells and almost 4.1-fold in 
Luca 1cells in TGF-β1-treated group compared with the 
untreated group. Snail also increased almost 1.6-fold in 
A549-EMT cells and almost 4.2-fold in Luca 1-EMT cells 
by untreated group respectively (Figure 1B). Western 
blotting results showed that E-cadherin was markedly 
down-regulated, and the markers, Slug and Snail, were 
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markedly up-regulated compared to the untreated A549 
parental cells. Luca 1 cells also showed similar results 
(Figure 1C). 

Migration and invasion capabilities of A549 cells and 
Luca 1 cells were enhanced after stimulation by TGF-β1 

Studies have demonstrated that tumor cells show 
enhanced migration and invasion capabilities following 
EMT. In this study, we compared the migration capability 
of A549 cells and Luca 1 cells before and after exposure to 
TGF-β1 by transwell chambers. After exposure to TGF-β1 
(5ng/ml) for 72 hr, 3× 104 cells (A549, A549-EMT, 
Luca1, Luca1-EMT) were suspended in a 200µl serum-
free medium and then seeded in the upper chambers of a 
transwell plate. As shown in Figure 2, we found that the 
A549-EMT cells (399 ±18) exhibited increased migration 

in comparison with A549 NC (200±13) (P<0.05)and Luca 
1-EMT cells (296±16) also showed increased migration 
in comparison with Luca 1 NC cells (142±17) (P<0.05). 
The results show that the A549-EMT cells have a greater 
capacity to migrate after exposure to TGF-β1 than the 
A549 parental cells. Luca1-EMTcells also show greater 
migration capacity than Luca1 parental cells. Suggesting 
that exposure to TGF-β1 can enhance the migration 
capability of Non-small-cell lung cancer cells.

Figure 3. The Expression of EGR 1 Protein in A549 
Cells and Luca1 Cells after Stimulation by TGF-β1.
(A) RT-PCR showed that in two pairs of lung cancer cell lines 
(A549 and Luca1) treated with or without TGF-b1, the EGR 1 
expression was down-regulated. (B) The  protein level of EGR 
1 was down-regulated. **P<0.01 by t-test
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Figure 2. Enhanced Migration Capabilities of A549 
Cells and Luca 1 Cells after Stimulation by TGF-β1 
(5 ng/ml) for 72 h. There was highly cell migratory ability 
in A549 cells and Luca 1 cells after treating with TGF-β1. Data 
in histogram represents mean±SEM from three independent 
experiments; **P<0.01 by t-test
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Figure 1. EMT Phenotype Changes on Exposure to 
TGF-β1 (5 ng/ml) for 72hr. (A) Morphologic changes in 
A549 cells and Luca1 cells treated with TGF-β1. (B) The mRNA 
level of E-cadherin was down-regulated, and the mRNA level of 
Slug and Snail was up-regulated both in two pairs of lung cancer 
cell lines (A549 and Luca1). (C) Western blotting assay showed 
the E-cadherin expression was down-regulated, and Snail and 
Slug expression was up-regulated in two pairs of lung cancer cell 
lines (A549 and Luca1).Data in histogram represent mean±SEM 
from three independent experiments; **P<0.01 by t-test
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Cells had lower expression of the EGR-1 protein after 
TGF-β1 induction

To further to investigate how TGF-β1 induces A549 
cell EMT, we focused on the effects of the EGR 1 in 
this transition, as EGR 1 might have some connection 
with EMT that then leads to tumor migration and the 
development of metastases. We detected EGR 1 RNA 
expression by RT-PCR and EGR 1 protein expression by 
Western blotting at 3 hr after adding TGF-β1.The results 
showed, compared to normal A549 cells, EGR1 protein 
expression was markedly down-regulated in the A549-
EMT (Figure 3 A, B). Luca1-EMT cells also showed the 
similar result than normal Luca1 cells (Figure 3 A, B). 
These results show TGF-β1 can inhibit EGR 1expression.

Addition of EGR 1 expression could decrease tumor cell 
migration capability 

To further to ascertain the role of EGR 1, a lentivirus-
based delivery system was utilized to transfer EGR 
1 vector into A549 cells and Luca 1 cells. To test the 
efficiency of the EGR 1 vector, EGR 1 expression level 
was tested by RT- PCR and Western blotting assays. 
Western blot results showed the EGR 1 expression was 
evidently increased by EGR 1 vector compared with the 
NC in both A549 group and Luca 1 group (Figure 4B). 

Similar trend was found in mRNA level (Figure 4A). 
We have shown that increasing EGR 1 expression of 

A549 cells and Luca 1 cells. Then we used transwell-
migration assay to detect if EGR 1overexpression could 
affect the EMT. Transwell-migration assays showed that 
the number of cells in the high power lens of each field of 
vision in EGR 1-A549-EMT cells (284±6) was less than 
which in A549-EMT (NC) cells (399±10) (Figure 4C). The 
number of cells was only 202±10 in EGR 1-Luca 1-EMT 
cells, which were significantly less than that observed 
in the negative EGR 1 group in Luca 1 group (307±20) 
(P<0.05) (Figure 4C). These results suggest that following 
over expression of EGR 1 in A549-EMT cells and Luca 
1-EMT cells, cell behavior can change markedly. All 
these results suggest that EGR1 is associated with EMT, 
and can decrease metastatic capabilities of non-small-cell 
lung cancer cells.

Discussion

The developmental program of epithelial to 
mesenchymal transition (EMT) can be activated in tumor 
cells by TGF-β. EMT leads to loss of cell adhesion and 
increases motility of cells EMT can be detected by down 
regulation of epithelial makers such as E-cadherin and gain 
of mesenchymal makers such as vimentin and fibronectin. 
A large number of gene expressions are changed during 
this process. In our study, we found inhibition expression 
of EGR 1 during the EMT, and showed a rapid process. 

The transcription factor Egr-1 is an immediate-
early response gene that is rapidly induced by various 
growth factors, cytokines, DNA-damaging agents and 
so on. In a report by Mingui FU (Fu et al., 2003), it was 
shown that TGF-β rapidly and transiently induced early 
growth response factor-1 (Egr-1) expression through the 
mitogenactivated protein kinase extracellular signal-
regulated kinase kinase 1 (MEK1)/ERK-mediated 
pathway in the development of vascular diseases. 

The function of EGR1 in tumor growth, development 
and apoptosis has been extensively investigated. The role 
of Egr-1 in tumor development might depend to a large 
extent on the tissue type. Egr-1 can function as a tumor 
suppressor in certain types of cancer. HUANG et al. 
(1997) found loss of Egr-1 expression correlates with the 
development of breast cancer. Huihua et al. (2014) showed 
that EGR1 arrested cell mobility, inhibited migration, and 
induced apoptosis in in non-small-cell lung carcinoma 
(NSCLC). Moon et al. (2007) found EGCG was strong 
inducer of EGR-1 expression and mediated EGR-1 
nuclear translocation via ERK signaling pathway in A549 
pulmonary epithelial cells. Induced EGR-1 then stimulated 
the induction of mPGES-1 gene expression and this effect 
mechanistically can be linked to the pharmacological or 
toxicological actions after human exposure to green tea 
catechins. In contrast, Egr-1 is highly expressed and plays 
an essential role in tumor growth and survival in prostate 
cancer (Virolle et al., 2003). In the study of VERONIQUE 
BARON et al. (2003), they found treatment with Egr-1 
antisense oligonucleotides delayed the occurrence of 
prostate tumors in TRAMP mice. Soon Young Shin (Shin 
et al., 2010) found stable silencing of Egr-1 by siRNA 

Figure 4. Weakened Migration Capabilities of A549-
EMT Cells and Luca 1-EMT cells after Overexpression 
of EGR 1 Expression. (A) The mRNA level of EGR 1 in two 
pairs of in two pairs of lung cancer cell lines (A549 and Luca1) 
was up-regulated after adding of Lenti-EGR 1. (B) Western 
blotting results showed the protein level of EGR 1 was up-
regulated after transfection Lenti-EGR 1. (C) There was less cell 
migratory ability in A549-EMT cells and Luca 1-EMT cells after 
EGR 1 up-regulation. Data in histogram represent mean±SEM 
from three independent experiments;*P<0.05, **P<0.01 by t-test
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strongly attenuated the invasiveness of HeLa cervix 
carcinoma cells.

Egr-1 also showed a different function during EMT. 
Sun et al. (2014) found hypoxia treatment enhanced 
the mRNA and protein levels of Egr-1 in HK-2 cells, 
which was accompanied by a reduced expression of the 
epithelial marker E-cadherin and an enhanced expression 
of the mesenchymal marker Fsp-1. Down-regulation 
of Egr-1 with siRNA reversed hypoxia-induced EMT. 
EGR1 was previously described to be down-regulated 
in many breast carcinoma tissues (LIU et al., 2007), 
while it was upregulated together with SNAI1 and FOS 
in the highly invasive inflammatory breast carcinoma 
(Parra et al., 2013). Vetter et al. (2009) found EGR1 
exhibited a transient, biphasic expression behavior which 
was confirmed by real-time PCR. EGR1started to be 
upregulated 4h after SNAI1 induction, and was repressed 
after 24h.
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