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Introduction

Chronic myeloid leukemia (CML) is a hematopoietic 
stem cells disorder caused by translocation of 9th 
chromosome of ABL oncogene to 22nd chromosome of 
the adjacent BCR oncogene (Bayard et al., 1988; Daley et 
al., 1990). The specific chromosome where translocation 
occurs is known as Philadelphia chromosome which is 
present throughout the CML diseased cells (Eaves C et al., 
1993). Aberrant expression of the BCR-ABL oncogenes 
resulted in to BCR-ABL oncoprotein which is found in 
more than 98% of the CML cases (Deininger et al., 2000; 
Mauro et al., 2001). It has been reported that Imatinib acts 
as an efficient inhibitor to prevent the fusion of BCR-ABL 
oncoprotein under the target based therapy (Marley et 
al., 2000). This protein acts as a kinase enzyme which 
aberrantly enhances the addition of phosphate group to the 
SH2 domain of BCR-ABL protein substrate. It has been 
further reported that the activity of the BCR-ABL kinase 
protein is dependent upon extracellular and intracellular 
signaling processes (Clarkson et al., 1991, Xi-Shan et 
al., 2014). The expression of these enzymes regulates the 
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on/off mechanism of the cellular proliferation process in 
CML (Clarkson et al., 1991). Several studies focusing 
on the CML pathway especially targeting the tyrosine 
kinase inhibitors like Imatinib, Baustinib, Dasatenib 
etc.,were being reported earlier (Clarkson et al., 1991; 
Yuan-Xin et al., 2014). In this study, overall mechanism of 
autophosphorylation of BCR-ABL was analyzed through 
mathematical modeling and simulation to understand the 
roles of individual component in proliferation of CML.

Autophosphorylation is the post translational 
modifications process where the phosphorylation of 
the enzyme kinase is resulted by addition of phosphate 
group to specific amino acid residues (serine, threonine 
and tyrosine etc.), to activate the catalytic activity 
(Summers, 2011). This process can be further classified 
into cis-autophophorylation (when a kinase’s own active 
site catalyzes the phosphorylation reaction) and trans-
autophosphorylation (when another kinase of the same 
type provides the active site that carries out the reaction 
often during dimerization) (Smith et al., 1993). 

The onset of CML disease hampers hematopoietic 
stem cells hence resulting in to aberrant hematopoiesis 
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i.e. abnormal blood formation (Kagita et al., 2010).
The detailed study of hematopoiesis is of substantial 
importance to understand the role of autophosphorylation 
process of the CML. It has been reported that BCR-ABL 
has a unique ATP binding site SH-2 domain near to the 
substrate proteins binding region (Savage et al., 2002).The 
details about BCR-ABL autophosphorylation pathway, its 
associated receptors and their binding patterns are shown 
in Figure 1.

Various systems biology approaches have been 
reported which utilized the mathematical modeling 
techniques for identifying the regulatory mechanism of 
biochemical pathways (Obel et al., 2014; MacLean et 
al., 2015; Pokhilko et al., 2015; Vera et al., 2015). These 
mathematical models were successfully implemented 
to analyze various interactions among components 
of the particular pathways and simulate them to the 
environmental factors or external signals (Marshall-
Colon et al., 2014; Finley et al., 2014; Wu et al., 2014). 
On the other hand, it also enables to explore the system 
function at various levels and help to generate hypothesis 
about biological experiments. However, there are some 
limitations of this method, like identification of unknown 
parameters which are estimated from experimental results 
(Liepe et al., 2014; Denget al., 2014; Raue et al., 2014).

Materials and Methods

In this study, model parameters were calculated from 
experimental data obtained from autophosphorylation 
of Bcr-Abl pathway of chronic myeloid leukemia cells. 
Systems biology techniques were used to understand 

various components involved in reaction mechanism of 
Bcr-Abl pathway and to predict the behavior of individual 
reaction components (Heinrich et al., 2002; Papin et al., 
2005; Tyson et al., 2003; Pep et al., 2004; Yu-Qing Ge at 
al., 2014).It utilizes the deterministic rate laws to simulate 
various chemical and biochemical reactions (Edda et al., 
2006; Tianhai et al., 2012). The deterministic mathematical 
modeling of chemical network works on the basis of law 
of mass action and Michaelis Menten reaction kinetics. 
It has been further reported that the prior information of 
initial concentration, law of mass action etc., can enable 
the simulation of time series data to study substrate 
concentration and its temporal behavior (Edda et al., 
2006; Tianhai et al., 2012). However, simulation process 
provides in depth understanding of each components 
of the biological systems and its activities in different 
environmental conditions. The rate of change in substrate 
concentration over a given period of time can be utilized 
to find the crucial parameters involved in the reaction 
mechanism (Howard et al., 2005). Autophosphorylation 
reaction mechanism of the CML has been simulated 
through deterministic mathematical modeling. The 
candidate reaction pathways were simulated through 
ordinary differentiation equations to get the individual 
rate constant parameters. The parametric optimization 
was performed by “fminsearch” algorithm on MATLAB 
R2012a.
 The entire simulation was performed on Centos 6.5 
of Linux operating systems with 12 GB RAM, NVIDIA 
2GB graphics card and Intel(R) Core(TM) i7-3770 CPU 
@ 3.40GHz processor. 
 Our model contains autophosphorylation process of 
Bcr-Abl and representation of this process is constructed 
in Figure 2. In this process, unphosphorylated Bcr-Abl 
substrate binds to ATP to form a Bcr-Abl·ATP complex. 
This Bcr-Abl·ATP complex then binds with another Bcr-
Abl·ATP complex. Complete complex formation leads to 
cross-phosphorylate Bcr-Abl and forms phosphorylated 
form of Bcr-Abl. This activated form of Bcr-Abl is 
represented as Bcr-Abl*.
 The conventional modeling approach for signaling 
pathways involves solving individual chemical reactions 
through ordinary differential equations (ODEs). Whereas, 
individual chemical reaction can be modeled by 
decomposing the signaling pathway into elementary 
reactions. Law of mass action kinetics can be applied to 
each elementary reaction to obtain ODE’s as shown in 
Eq.1. Reactions in this pathway are represented in Eq.12 
to 15 using law of as mass-action kinetics.

  R + L     "
k1

 RL  (1)
                !k-1

 Where, [R] and [L] stand for concentration of reactant 
and ligand respectively. The rate of reaction is directly 
proportional to concentration of [R][L]. This is represented 
as

  [Rate of reaction] α [R][L] or [rate of reaction]
   = k[R][L]   (2)

Figure 1. Schematic Representation of Bcr-Abl 
Autophosphorylation Process

Figure 2. Flow Chart of Adopted Methodology
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 Hence the mathematical representations of each mass 
action kinetic reactions involved in autophosphorylation 
are as follows:
  d[R]/dt= -ka[R][L]+ kd[RL] (3)
  d[L]/dt= -ka[R][L]+ kd[RL]  (4)
  d[RL]/dt= ka[R][L]-kd[RL]  (5)

 The reason for using mass-action kinetics in 
autophosphorylation signalling pathway is because of 
the value of substrate concentration is much larger as 
compared to the enzyme concentration. Mathematical 
modelling of mass action kinetic reaction networks using 
ordinary differential equations produced polynomial 
vector fields. Concentration of each component of the 
reaction is balanced throughout the pathway modelling. 
If a component is formed at any time of reaction then it is 
consumed in some reaction so as to maintain the overall 
equilibrium of substrate concentration in the pathway. In 
general, differential equation of a particular component 
(A) is written as:
  Rate of change of [A] = Amount of [A] formed 
  – Amount of [A] consumed (6)

 Numerical simulation of model was performed by 
using MATLAB ODE solver tool box (Bogacki et al., 
1989). The standard ordinary differential equations 
(ODEs) solver i.e. ODE45 was used to construct and 
solve the differential equations based on Runge-Kutta 
approximation method. Runge–Kutta methods are 
an important family of implicit and explicit iterative 
methods, which are used in temporal discretization for 
the approximation of solutions of ordinary differential 
equations. Therefore, ODE45 was selected as the default 
solver for the proposed models with continuous states. 

  [t,x] = ode45(@function,tspan,x0) (7)

 Where @function is the vector of function handles, 
‘tspan’ a vector specifying the time span of simulation 
and ‘x0’ is the state variables of differential equations.
 fminsearch is a MATLAB function which is used to 
minimize the error function of several variables, with 
the estimated initial values of state variables. fminsearch 
function minimizes a function over several variables and 
solves nonlinear unconstrained multivariable optimization 
problems based on Nelder-Mead Sequential Simplex 
(NMSS) algorithm (Lagarias et al., 1998).
With the multiple functions are f(x1) , f(x2) ... f(xn+1) the 
Nelder Mead Algorithm is as follow:

Nelder Mead Algorithm:
 Step1: Order the n + 1 vertices to satisfy
 f(x1)≤ f(x2) ≤ ...≤ f (xn+1);
 Step 2: Compute the centroid of the n best points 
 x̄= ∑i=1

n xi/n; 
 Step3: Compute the reflection point xr
 xr = x̄+ ρ(x̄-xn+1)= (1+ρ) x̄-ρxn+1;
 Step4: Evaluate F(xr)
 fr = f(xr);
  if (f1 ≤fr < fn)
   Accept the xr

   break;
  elseif (fr < f1)
   xe = x̄+ χ(xr-x̄)= x̄+ ρχ(x̄- xn+1)= (1+ρχ) 
x̄-ρχxn+1
    if(fe < fr)
     Accept Xe
     break;
    else
     Accept Xr
     break;
    end
  else
   Contraction(xr, x̄, xn+1);
  end
 Step 5: Evaluate F at the n points
  vi= x1 + σ(xi-x1),
 i = 2,..., n+1.

 Function Contraction(xr, x̄, xn+1)
  if (fn ≤fr ≤ fn+1)
   xc = x̄ + γ(xr-x̄)= x̄+ γρ(x̄-xn+1)= (1+γρ) 
x̄-γρxn+1;
   if (fc≤fr)
    Accept Xc;
    break;
   else
    goto Step 5;
   end

  else
   xcc = x̄-γ(x̄-xn+1) = (1-γ)x̄ + γxn+1
   if (fcc < fn+1)
    Accept Xcc;
    break;
   else
    goto Step 5;
   end
  end

 NMSS is a nonlinear optimization technique, which 
is used to solve those types of numerical problems 
whose derivatives may not be known. However, NMSS 
is a heuristic search method that can converge to non-
stationary points (Powell et al., 1973).

  x = fminsearch(@function, x0) (8)

Where function is an M-file function such as

  functionf = function(x)  (9)
  f = fminsearch(@minimize,x0) (10)

Whereas, @minimize is a function containing objective 
function.
 fminsearch starts at the point x0 and returns a value x 
that is a local minimizer of the function described in @
function.
Error function used for minimizing scalar function is:

 Error = ∑(Simulatedresult–Experimentaldata)2          (11)
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Results 

To address the issue of insufficient experimental data 
of autophosphorylation process of Bcr-Abl pathway, we 
propose parameter estimation to make reliable inference 
of model parameters. Mass-action kinetic reactions 
involved in autophosphorylation process of Bcr-Abl, 
were mathematically modeled in the form of ordinary 
differential equations. Complete chemical process of 
autophosphorylation of Bcr-Abl is shown in Figure1, and 
decomposed themto elementary reactions. This reaction 
model contains four state variables and five unknown rate 
constants. It has been assumed that initial concentration of 
each component is 1 nM and experimental concentrations 
are taken from reported literature (Pep et al., 2004).

ODE models of the chemical processes are given 
below:

d[Bcr-Abl]÷dt=    -ka1[Bcr-Abl][ATP]+ kd1[Bcr-Abl.
ATP]     (12) 
d[Bcr-Abl.ATP]÷dt= ka1[Bcr-Abl][ATP]-kd1[Bcr-
Abl.ATP]-ka2[Bcr-Abl.ATP]2 + kd2[BcrAbl.
ATP•Bcr-Abl.ATP]   (13)
d[Bcr-Abl.ATP•Bcr-Abl.ATP]÷dt= ka2[Bcr-Abl.
ATP]2 -kd2[Bcr-Abl.ATP•Bcr-Abl.ATP]-kauto[Bcr-
Abl*]     (14)
d[Bcr-Abl*]÷dt=  kauto[Bcr-Abl*] (15)

Where, kai and kdi are the rate constants of forward 
and backward chemical reactions.

Experimental concentrations of the substrates 
involved in autophosphorylation process of Bcr-Abl, 
ATP, Bcr-Abl·ATP and Bcr-Abl·ATP•Bcr-Abl·ATP are 
0.2, 7, 0.12 and 0.24 nM respectively. Where ode45 
solves the differential equation models given in Eq-12 
to Eq-15 and fminsearch minimizes the error function 
and finds the optimized values of rate constants kai and 
kdi. Optimization technique is use to get the as closure as 
possible to the reported experimental value. We initiated 
the simulation by considering unit value i.e. 1 of each 
component of the reaction for a period of 3 seconds. Since 
our model consists of four state variables, we divided 
simulation time into four intervals. After selection of 
random time intervals, 0 to 3 seconds give the most closure 
value to the reported one. The results of simulation and 
values of unknown optimized rate constants ka1, kd1, ka2, 
kd2, kautoare 0.1831, 1.3898, 0.8557, 0.7021, and 0.0033 
respectively.

Plot analysis of components is as follows, [Bcr-Abl] 
concentration initially increases exponentially from 0s 
to 0.7s. After 0.7s the [Bcr-Abl] concentration gradually 
decreases as shown in Figure 3A. Concentration of [Bcr-
Abl.ATP] initially decreases and then gets stable after 
1second as shown in Figure 3B.

Discussion

This work presents an optimization approach to 
address the issue of inadequate experimental data for 
inferring unknown parameters in mathematical models 
of Autophosphorylation reactions. In this deterministic 
simulation process, mathematical modeling of chemical 
reactions involved in autophosphorylation of Bcr-Abl 
was done. Chemical reactions of the process were 
represented as mass-action kinetics by using ordinary 
differential equations (ODEs). The ODE45 solver was 
used to construct and solve first order coupled nonlinear 
differential equations for deterministic simulation and 
fminsearch to find the optimized value of unknown rate 
constants involved in these reactions. Mathematical 
modeling has been extensively used earlier for many 
biochemical reactions to make appropriate assumptions 
of rate constants. This is majorly useful for experimentally 
untested signaling pathways and helps to predict unknown 
rate constants. One of the major steps in developing 
mathematical models is to estimate unknown parameters 

Figure 3. A) Plot of [Bcr-Abl] vs Time, B) Plot of [Bcr-
Abl.ATP] vs Time

Figure 4. A) Plot of [Bcr-Abl.ATP*Bcr-Abl.ATP] vs 
Time, B) Plot of [Bcr-Abl]* vs Time

Figure 5. An Overall Representation of All Components 
Involved in Autophosphorylation 



Asian Pacific Journal of Cancer Prevention, Vol 16, 2015 5277

DOI:http://dx.doi.org/10.7314/APJCP.2015.16.13.5273
Parameters Involved in Autophosphorylation in Chronic Myeloid Leukemia: a Systems Biology Approach

of the model based on experimentally measured 
quantities. Substrate, enzyme and product behavior can 
also be determined with respect to time. In this model 
of autophosphorylation of Bcr-Abl was done protein, 
substrate concentration of [Bcr-Abl·ATP•Bcr-Abl·ATP] 
increase with respect to time till 1 second, after that it 
starts plays hardly any role in the pathway. Simulation 
of [Bcr-Abl·ATP•Bcr-Abl·ATP] will not affect the 
autophosphorylation process of Bcr-Abl protein. All 
unknown parameter at which optimization techniques 
gives minimum error were calculated as k1 (0.9097), k-1 
(1.1023), k2 (0.5196), and k3 (-0.0448).

In conclusion, this work proposes an effective 
optimization approach for estimating model parameters 
in mathematical models of autophosphorylation process. 
This method uses an fminsearch function to approximate 
the underlying solution of the autophosphorylation 
model. The fminsearch function generates observation 
data at different time interval together with the first 
order derivatives of the model reaction. All generated 
information is used to infer unknown parameters from 
the reactions involved in autophosphorylation process. An 
attempt has been made to address the issue of inadequate 
experimental data for estimating unknown parameters. 
Simulation results suggest that the proposed optimization 
method is effective and robust approach reliable parameter 
estimation. It has been further concluded that interaction 
between Bcr-Abl oncoprotein with ATP molecules is 
crucial for the proliferation of cancerous growth. Hence 
it is inferred that, Bcr-Abl could be a putative target for 
CML prevention.
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