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Introduction

Fascin-1 (FSCN1) is an actin-bundling protein that 
induces cell membrane protrusions and increases cell 
motility (Hashimoto 2011; Tan et al., 2013). FSCN1 
mainly accumulates in cellular structures containing 
actin bundles, including filopodia and stress fibers, 
causing F-actin to aggregate side-by-side into bundles 
(Adams 2004), but is usually absent or present at low 
levels in normal epithelial cells. Accumulated evidence 
shows fascin is overexpressed in several human 
epithelial cancers, such as gastric, colonic, skin, breast, 
and urothelial cancers (Tan et al., 2013). Overexpression 
of fascin in these tumors usually correlates with high-
grade, extensive invasion, distant metastasis, or poor 
prognosis, serving as a biomarker for various aggressive 
carcinomas.

In our previous studies, we demonstrated that fascin 
becomes overexpressed in the malignant transformation of 
normal esophageal squamous cells to cancer cells (Rong et 
al., 2004), and upregulation of fascin is markedly correlated 
with cell proliferation and lymph node metastasis, 
suggesting fascin could be a potential novel biomarker 
for esophageal squamous cell carcinoma (ESCC) (Zhang 
et al., 2006). shRNA-mediated knockdown of fascin in 
ESCC cells decreases cell proliferation, cell invasiveness 
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Abstract

 Fascin-1 (FSCN1) is an actin-bundling protein that induces cell membrane protrusions, increases cell motility, 
and is overexpressed in various human epithelial cancers, including esophageal squamous cell carcinoma (ESCC). 
We analyzed various protein-protein interactions (PPI) of differentially-expressed genes (DEGs), in fascin 
knockdown ESCC cells, to explore the role of fascin overexpression. The node-degree distributions indicated these 
PPI sub-networks to be characterized as scale-free. Subcellular localization analysis revealed DEGs to interact 
with other proteins directly or indirectly, distributed in multiple layers of extracellular membrane-cytoskeleton/
cytoplasm-nucleus. The functional annotation map revealed hundreds of significant gene ontology (GO) terms, 
especially those associated with cytoskeleton organization of FSCN1. The Random Walk with Restart algorithm 
was applied to identify the prioritizations of these DEGs when considering their relationship with FSCN1. These 
analyses based on PPI network have greatly expanded our comprehension of the mRNA expression profile 
following fascin knockdown to future examine the roles and mechanisms of fascin action.
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and tumor growth in vivo, suggesting fascin plays crucial 
roles in regulating neoplastic progression. Affymetrix 
GeneChip Human genome U133 plus 2.0 arrays has been 
applied to analyze the mRNA expression profile in ESCC 
cells stably expressing fascin shRNA (Xie et al., 2010). 

Of the various different types of molecular interactions 
in living cells, protein–protein interactions (PPI) plays 
a crucial role in determining the multi-functionality 
of a single protein and mediating enormous biological 
processes. Virtually all proteins achieve their specific 
functions in biological contexts through cascades 
of interactions. PPI network based analyses have 
been developed quickly in recent years with various 
applications, including protein function prediction, 
interaction prediction, identification of disease candidate 
genes, gene regulation (Peng et al., 2014; Zhang et al., 
Deng et al., 2015; 2014; Srihari et al., 2015). 

The biological information of mRNA expression 
profile generated from fascin knockdown has not been 
fully mining and described in our previous reports (Xie 
et al., 2010). Analyses must be pushed to make sense out 
of mRNA expression profiles, beyond the merely listing 
of affected genes in a traditional way. In this study, we 
analyzed the mRNA expression profile following fascin 
knockdown using the knowledge of protein-protein 
interaction networks.
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Materials and Methods

The differentially-expressed genes
GSE11373, the mRNA expression profile of fascin 

RNAi in ESCC EC109 cell line, is available from NCBI 
GEO database (http://www.ncbi.nlm.nih.gov/geo/). The 
expression data was subjected normalization and log 
transformation treatment, then the differentially-expressed 
genes (DEGs) were obtained by fold-change analysis.

PPI network construction
The latest human protein-protein interactions dataset 

is downloaded from HPRD (http://www.hprd.org/), which 
were collected from a manual search of the experimentally 
verified literatures (Goel et al., 2012). The current HPRD 
FLAT file contains 9617 unique proteins and 39140 edges 
(interactions). The HPRD dataset has been widely applied 
in human PPI network research because of its reliability 
(Liu et al., 2013; Wu et al., 2014). For visualization and 
analysis of PPI networks, open-source Cytoscape software 
was applied. In Cytoscape, PPI networks are represented 
as graphs in which the nodes are the proteins and the 
edges present as their interactions (Smoot et al., 2011). 
For visualization in the context of biological networks, 
the different node attribute files and visual style files were 
established and imported into Cytoscape.

We constructed various PPI sub-networks by mapping 
DEGs to the HPRD parent PPI network. First, the down-
regulated DEGs, up-regulated DEGs and total DEGs were 
mapped and extracted to their respective sub-network. 
To detect and extract the first level interactions between 
DEGs and their neighboring proteins, we used Cytoscape 
menus of “Select first neighbors of selected nodes” and 
“New network->from selected nodes, all edges”. Second, 
fascin protein FSCN1 was used as the query node to 
extract interactions for the axis of FSCN1 g neighbors 
proteins g DEGs g neighbors proteins, constructing an 
FSCN1-central PPI network. Third, a sub-network was 
created by selecting nodes with all edges by Cytoscape 
after all DEGs were mapped to the HPRD PPI network to 
detect the internal interactions between DEGs. To avoid 
miscalculations of PPI network topological parameters, 
duplicates, single nodes and self-interactions of these 
sub-networks were also removed.

Network topological parameter analyses
The network topological parameters were analyzed 

using NetworkAnalyzer. NetworkAnalyzer is a java 
plugin for Cytoscape, efficiently computes a large 
number of topological network parameters for directed 
and undirected networks, such as distributions of node 
degrees, neighborhood connectivities, average clustering 
coefficients, topological coefficients, shortest path 
lengths, and shared neighbors of two nodes (Assenov et 
al., 2008). In this study, the power law of node degree 
distribution, one of most important network topological 
characteristics, was analyzed and carried out as we 
described previously (Wu et al., 2013). Briefly, the edges 
in all networks were treated as undirected. The degree 
of a protein was the number of its directly connecting 
neighbours in the network. Node degree distribution P 

(k) is defined as the number of nodes with a degree k 
for k=0, 1, 2, …. By fitting a line on the node degree 
distribution data, the pattern of their dependencies can be 
visualized. NetworkAnalyzer considers only data points 
with positive coordinate values for fitting the line where 
the power law curve of the form y = βxa. The R2 value 
is a statistical measure of the linearity of the curve fit and 
used to quantify the fit to the power line. When the fit is 
good, the R2 value is very close to 1.

Subcellular layout of PPI sub-network
The subcellular localization information of each 

protein in the total DEG PPI sub-network was retrieved 
from the Swiss-Uniprot database by a custom R program 
and was imported into Cytoscape as a node attribute. Then, 
the Cerebral (http://www.pathogenomics.ca/cerebral/) was 
applied to re-distribute the protein nodes according to their 
subcellular localization. Given an interaction network and 
subcellular localization annotation, Cerebral automatically 
generates a view of the network in the style of traditional 
pathway diagrams, providing an intuitive interface for the 
exploration of a biological pathway or system (Barsky et 
al., 2007). The assembled layered PPI network was divided 
into 10 layers according to their subcellular locations in 
this study: Secreted, Membrane, Cytoskeleton/Cytoplasm, 
Cytoplasm, Membrane/Nucleus, Membrane/Cytoplasm/
Nucleus, Cytoplasm/Nucleus, Cytoskeleton/Cytoplasm/
Nucleus, Nucleus and Downstream effectors (proteins 
with unknown subcellular location). Since protein 
translocation into nucleus could play an important role 
in gene expression regulation, proteins with multiple 
locations, especially in the nucleus, were classified in 
more detail when we curated the subcellular localization 
information of the DEGs (Zuleger et al., 2012). 

The igraph R program was applied to find the shortest 
path between FSCN1 and FOS in the total DEG PPI 
sub-network. The shortest path algorithm is able to find 
the shortest connection between two nodes in the graph 
(Csardi and Nepusz, 2006). The protein members of these 
paths were also displayed according to their subcellular 
localization.

Generation of the functional annotation map
To determine whether interacting proteins in the 

network were clustered according to their Gene Ontology 
(GO) functional annotation, we integrated the GO 
annotation into the PPI networks by mining for over-
represented GO “Biological Process” terms for proteins 
using the ClueGO (http://www.ici.upmc.fr/cluego/), 
which allows the decoding and visualization of functional 
annotation of grouped GO terms in the form of networks 
(Bindea et al., 2009). 

Random Walk with Restart to prioritize DEGs
Random Walk with Restart (RWR) is a ranking 

algorithm (Köhler et al., 2008). The RWR on graphs is 
defined as an iterative walker that starts on either a seed 
node or a set of seed nodes, and moves to its immediate 
neighbors randomly at each step. Finally, all the nodes 
in the graph are ranked by the probability of the random 
walker reaching this node. Let p0 be the initial probability 
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vector and ps be a vector in which the i-th element holds 
the probability of finding the random walker at node i at 
step s. The probability vector at step s + 1 can be given 
by the following formula:

pt+1 = (1- r) Wpt + rp0

where r is the restart probability, W is the column-
normalized adjacency matrix of the network graph, and 
pt is a vector of size equal to the number of nodes in the 
graph where the i-th element holds the probability of being 
at node i at time step t. The initial probability vector p0 was 
constructed such that equal probabilities were assigned to 
the nodes representing members of the disease, with the 
sum of the probabilities equal to 1.

In this study, RWR was carried out by a custom 
R program in the total DEG PPI sub-network with 
fascin protein FSCN1 being set as the seed node. The 
probabilities of DEGs were regarded as node attribute 
and displayed by Cytoscape.

Results 

PPI sub-network of DEGs
In total, 276 differentially-expressed genes (DEGs) 

were obtained using a two-fold change as the threshold. 193 
genes were upregulated and 83 genes were downregulated 
in EC109 cells following FSCN1 knockdown. In order 
to understand how the DEGs could alter cell behavior, 
we analyzed their interactions with other proteins. Three 
PPI sub-networks were constructed by mapping the 
downregulated, upregulated and total DEGs to the HPRD 
parent PPI network. The downregulated DEG PPI sub-
network contained 286 nodes and 649 edges (interactions), 
including 42 downregulated DEGs (Figure 1A). The 
upregulated DEG PPI sub-network contained 784 nodes 
and 2711 edges, including 94 upregulated DEGs (Figure 
1B). The total DEG PPI sub-network was comprised of 
1015 nodes and 3837 edges, including 137 DEGs (Figure 
1C). These three sub-networks indicated that knockdown 
of fascin greatly altered the PPI network in ESCC, as 
hundreds of DEGs interact with thousands of proteins to 
enlarge the biological consequences of fascin knockdown. 
To focus on fascin protein FSCN1, the sub-network 
based on the axis of FSCN1 g neighbours g DEGs 
g neighbours was also built to detect the relationship 
between FSCN1 and the nearest DEG proteins. This axis 
sub-network was comprised of 32 nodes and 34 edges, 
including 8 DEGs: downregulated FSCN1, NEXN, 
TAGLN and PLD1, and upregulated SCIN, SLC1A1, 
PPM1A and NDRG1 (Figure 1D). Moreover, DEG-DEG 
interactions were acquired (Figure 1E). This sub-network 
contained 16 nodes (7 downregulated and 9 upregulated) 
and 10 edges, forming two four-DEG interactions and 
four two-DEG interactions.

Network topological properties
Because of  i ts  dis t inguishing topological 

characteristics, biological networks (e.g. PPI network) 
should be significantly different from random networks 
(Maslov and Sneppen, 2002; Zhu et al., 2007). As shown 
in Figure 2, the distributions of node degree approximately 
followed power law distributions, with an R2=0.866, 

0.907 and 0.864 for the downregulated, upregulated and 
total DEG sub-networks, respectively. This indicates the 
three PPI sub-networks were scale-free, which is one of 
most important characteristics of true complex biological 
networks (Barabasi and Oltvai, 2004). These results also 
suggest that a relatively few protein nodes act as hubs to 
link with a large number of other protein nodes. Other 
topological parameters of these sub-networks, such as 
clustering coefficient, network centralization and network 
density, were showed in Table 1.

Protein layers of the total DEGs PPI sub-networks
The appropriate subcellular localization and protein 

translocations are crucial because it provides the 
physiological context for their function, such as complex 
formation, protein modification and signal transduction. 
The proteins in the total DEG sub-network were divided 
into 10 layers according to their subcellular localization 
(Figure 3A). FSCN1 localizes to the cytoskeleton/
cytoplasm, especially in filopodia in various types of 
cancer cells (Lieleg et al., 2011; Zanet et al., 2012). 
Similarly, FSCN1-interacting proteins are mostly located 
in the cytoskeleton, or in the cytoplasm (e.g. DNAJB9, 
ACTC1, ACTA1, RAB1A), or in the membrane (e.g. 
NGFR and PRKCA). However, two interacting proteins 
CTNNB1 and PRKCD have the ability to translocate 
into the nucleus (Figure 3B). Two FSCN1 neighboring 
proteins (PPM1A and NDRG1) and their interacting 
proteins can translocate into nucleus (Figure 3C). These 
results show FSCN1 interacts with proteins directly or 
indirectly with various subcellular localizations, e.g. 
membrane, cytoskeleton, cytoplasm and nucleus. Then, 
the knockdown of fascin by RNAi might disturb the PPI 

Figure 1. Sub-network generation by mapping DEGs 
to the HPRD PPI network. A-C) PPI sub-networks of 
downregulated, upregulated and total DEGs, respectively. D) 
FSCN1-central PPI sub-network. E) Internal interactions of 
DEGs. Nodes are labeled with different colors to indicate the 
types of proteins represented. Green and red nodes represent 
proteins encoded by down- and up-regulated genes, respectively. 
Blue nodes represent interacting proteins that are not significantly 
differentially expressed
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FSCN1 affects the signal cascades of extracellular g 
membrane g cytoskeleton/cytoplasm g nucleus.

To future illustrate the strength of this kind analysis, 
we applied the shortest path algorithm to find the possible 
shortest path from FSCN1 to FOS, and identify the linking 
proteins between FSCN1 and FOS. We found 12 shortest 
paths from FSCN1 to FOS (Table 2) with all the lengths 
were 3. We also distributed these proteins members in the 
paths according to their sub-cellular localizations (Figure 
3D). Since most of the cell signals are transducted from 

Figure 3. Layouts Illustrating Protein Subcellular 
Location for the PPI Sub-Network. A) The total DEG 
PPI network. B) FSCN1 and its interacting proteins. C) FSCN1-
central PPI sub-network

Figure 4. Functional Annotation of the total DEG PPI 
Sub-Network. A functional annotation map was generated 
in which proteins of the sub-network resulted in nodes 
corresponding to their associated enriched GO “biological 
process” terms. Edges connecting GO terms indicate that some 
of their respective proteins share the same enriched GO terms. 
Similar GO terms are labeled with the same color

Figure 2. Power Law of Node Degree Distribution 
for the PPI Sub-Networks. A) Degree distribution of the 
downregulated DEG PPI sub-network. B) Degree distribution of 
the upregulated DEG PPI sub-network. C) Degree distribution 
of the total DEG PPI sub-network

Table 1. Topological Parameters of Three DEGs PPI Sub-Network
PPI sub-network y=βxa R2 Correlation Clustering Network Network
    coefficient centralization density

Downregulated DEGs y=156.62x-1.517 0.866 0.808 0.219 0.108 0.016
Upregulated DEGs y=403.85x-1.468 0.907 0.919 0.176 0.19 0.009
Total DEGs y=586.04x-1.534 0.864 0.878 0.162 0.146 0.007

Table 2. The possible Shortest Paths from FSCN1 to 
FOS
No. The protein members of shortest paths

1 FSCN1 g PRKCA g LMNA g FOS
2 FSCN1 g PRKCA g EEF1D g FOS
3 FSCN1 g CTNNB1 g NFKB1 g FOS
4 FSCN1 g CTNNB1 g MITF g FOS
5 FSCN1 g CTNNB1g SMAD3 g FOS
6 FSCN1 g CTNNB1 g BCL3 g FOS
7 FSCN1 g CTNNB1 g CSNK2A1g FOS
8 FSCN1 g CTNNB1 g HNF1A g FOS
9 FSCN1 g PRKCD g RUNX2 g FOS
10 FSCN1 g PRKCD g MAPK1 g FOS
11 FSCN1 g NGFR g MAPK1 g FOS
12 FSCN1 g PRKCD g STAT1 g FOS

network directly or indirectly in multiple subcellular 
localization layers, causing altered DEG expression, 
eventually changing cell proliferation, cell morphology, 
invasion and metastasis, as we confirmed in previous 
report (Xie et al., 2010). These results indicated that 
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cytoplasm to nucleus, we presume the four following 
shortest paths had the maximum likelihood: a) FSCN1 g 
CTNNB1 g SMAD3 g FOS; b) FSCN1 g CTNNB1 g 
CSNK2A1 g FOS; c) FSCN1 g PRKCD g MAPK1 g 
FOS; d) FSCN1 g PRKCD g STAT1 g FOS.

Annotation of the total DEGs PPI sub-network
It is important to understand which aspects of 

cellular behavior are perturbed by the DEGs through the 
interactions in the PPI network. The over-represented 
GO “Biological Process” terms of the total DEGsnPPI 
sub-network were analyzed. Based on the interactome of 
the total DEG PPI sub-network, a functional annotation 
map was generated where members of the sub-network 
ended up in nodes corresponding to their enriched GO 
terms, and where edges connecting GO terms indicated 
that some of their respective proteins share the same 
enriched GO terms (Figure 4). Not surprisingly, several 
GO terms associated with cytoskeleton organization 
of FSCN1 protein were found, such as “cell surface 
receptor signaling pathway”, “transmembrane receptor 
protein tyrosine kinase signaling pathway”, “cell junction 
organization”, “regulation of transmembrane transport” 
and “cell mobility”. These results suggested that the 
PPI, sub-network disturbed by the knockdown of fascin, 
involved various biological processes which closely 

related to the functions of FSCN1, providing new insights 
into the functions of FSCN1.

DEG prioritization
Since knockdown of fascin perturbed expression 

of hundreds of genes, we ranked the DEGs by their 
importance in the context of FSCN1. In this study, RWR 
was done by a custom R program, for the total DEG 
PPI sub-network, with FSCN1 set as the seed node. The 
probability scores of all protein members were regarded 
as a node attribute and displayed by Cytoscape. The more 
significant the node, the bigger it appears (Figure 5A). For 
a better illustration, the DEGs were extracted from the 
modified PPI sub-network (Figure 5B). Since some of the 
DEGs were scored closely, and re-arranged after the scores 
were log10-transformed and classified by the ranges, for 
example, FSCN1 is classified as A, DEGs within score 
-2.0~-2.99 are classified as B, DEGs within -3.0~-3.99 
are classified as C, and so on. (Figure 5C). We found the 
proteins neighboring FSCN1 (SCIN, TAGLN, NEXN, 
PPM1A, PRKD1, NDRG1, ATXN1, PLD1, SLC1A1) 
were classified into the first class of closeness to FSCN1, 
consistent with the FSCN1-central sub-network and the 
idea of the RWR algorithm. SCIN ranked the first closed 
DEGs to FSCN1. Except for these neighboring proteins, 
these results provided the priorities for other DEGs when 
considering their relationship with FSCN1.

Discussion

We developed a systems approach by linking fascin 
knockdown-mediated differential gene expression with 
publicly available PPI data to build sub-networks that 
delineate the cellular roles of fascin. First, three sub-
networks for downregulated, upregulated and total DEGs 
are comprised of thousands of protein nodes, indicating 
FSCN1 influences other proteins directly or indirectly, and 
its knockdown perturbs the PPI network to cause global 
alterations in ESCC. Second, this analysis provides full 
screen of FSCN1-binding proteins and their neighboring 
proteins. It should be noted that the PPI node degree 
distributions of these three sub-networks follow a power 
law, a necessary condition for networks to be scale-free, 
rather than random. This indicates that fascin might be a 
key node such that changes in fascin levels will globally 
alter cell behavior in ESCC.

This kind of PPI sub-network analysis is comparable to 
“in silico pull-down” of molecules by iterative expansion, 
providing clues to detect protein complex formation. 
Moreover, our approach easily discovers multiple 
interactions between DEGs compared to a literature 
search, such as one group of HK2, PRMD1, PTGDS and 
ATXN1, and another group of COL7A1, DCN, COL4A3 
and THBS1. This FSCN1-central sub-network indicates 
the poteintial functions of their neighboring proteins. Since 
FSCN1 is an acting-binding protein, plays important roles 
in carcinoma cell invasion and metastasis, many of its 
neighboring proteins relate to actin or the cytoskeleton, 
and have similar functions. For example, NEXN encodes 
a filamentous actin-binding protein that mediates motility 
of HeLa cells (Wang et al., 2005). TAGLN encodes a 

Figure 5. Prioritization Analysis of DEGs in the PPI 
Sub-Network. A) A Random Walk with Restart algorithm was 
used to score all proteins in the PPI network for their network 
proximity to the seed node FSCN1. Based on the scores, the 
size of each node in the PPI sub-network was designed in a 
gradient. B) The DEGs were extracted from (A) to show their 
size. C) DEGs were re-arranged according their closeness to 
FSCN1 protein
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transformation and shape change-sensitive actin cross-
linking/gelling protein, and is upregulated in gastric 
carcinoma-associated fibroblasts to promote gastric cancer 
cell migration and invasion (Yu et al., 2013). PLD1 has 
been extensively implicated in the regulation of the actin 
cytoskeleton in a number of physiological processes, such 
as membrane trafficking, cell migration and adhesion 
(Rudge and Wakelam, 2009). Upon inhibition of PLD1 by 
quercetin, the invasion and proliferation of glioma cells 
are subsequently inhibited (Park et al., 2011). Therefore, 
our method is capable of identifying important fascin-
associated proteins.

The PPI sub-network might provide clues to identify 
unknown molecular mechanisms. We previously showed 
that knockdown of fascin decreases the expression of both 
CYR61 and CTGF, transcriptional targets of Smad2/3 
(Bartholin et al., 2007; Chung et al., 2010), through 
decreased levels of TGF-beta-activated phospho-Smad2/3 
(Xie et al., 2010). However, the molecular mechanisms 
linking fascin to decreased phospho-Smad2/3 levels 
remain unknown. We show here that PPM1A, a key 
regulator of TGF-beta pathway, is an FSCN1 neighboring 
protein. PPM1A dephosphorylates TGF-beta-activated 
Smad2/3 (Lin et al., 2006), and regulates the nuclear 
export of Smad2/3 through targeting the nuclear exporter 
RanBP3 (Dai et al., 2011) to decrease transcription of the 
CYR61 and CTGF genes. Therefore, the signal cascade 
linking fascin to CYR61 and CTGF expression is fascin 
($) - PPM1A1 (#) - RanBP3 (-p) - Smad2/3 (-p) - CYR61 
and CTGF ($). Here, upregulation of PPM1A is a key 
contributor to the biological consequences of fascin 
knockdown. Though fascin is a cytoskeleton-related 
protein, its knockdown can cause broad changes in gene 
expression profiles.

Subcellular localization of proteins is important for 
providing clues about protein function and the intricate 
pathways that regulate cellular activities at the subcellular 
level. In this study, we incorporate subcellular localization 
information into total DEG PPI sub-network, generating 
more biologically intuitive pathway-like layouts of 
a network. We presume that signaling is transduced 
by consecutive PPI sequences, since the composition 
and biological role of proteins vary with subcellular 
localization. For example, proteins located in the plasma 
membrane are primarily involved in cell adhesion, the 
cytoskeleton and cell signaling, whereas in the nucleus, 
proteins are mainly involved in transcription and ribosomal 
assembly. FSCN1 directly interacts with proteins, such as 
CTNNB1 (β-Catenin) and PRKCD, that have the ability 
to translocate into the nucleus. β-Catenin is an important 
component of protein complexes that constitute adherens 
junctions, regulating cell growth and adhesion between 
cells. β-Catenin anchors the actin cytoskeleton, but can 
translocate into the nucleus to regulate transcription of 
its target genes in cooperation with transcription factors 
of the LEF-1 family (Fagotto, 2013). Interestingly, the 
downregulated DEG CYR61 is also a transcriptional 
target of β-catenin, consistent with a previous report (Si 
et al., 2006). Another FSCN1 interacting protein with the 
ability to translocate into nucleus is PRKCD, a member 
of the PKC subfamily that plays a role in growth control, 

differentiation and apoptosis. PRKCD translocates into 
nucleus by various stimuli, such as IL6 and insulin 
(Horovitz-Fried et al., 2008; Wallerstedt et al., 2010). 
Our association of fascin with hundreds of proteins 
capable of translocating into the nucleus indicates that 
the knockdown of fascin should have a large impact on 
the ESCC gene expression profile. According to their 
subcellular localizations, most of these paths obey the 
principle of from extracellular to cytoplasm, till nucleus. 
With a number of proteins could translocate into nucleus, 
it is convinced that the knockdown of fascin caused great 
impact on the ESCC gene expression profile.

Choosing DEGs for subsequent functional experiments 
is still a huge challenge for the researchers after microarray 
analysis. We prioritized DEGs by using FSCN1 as the 
seed node, in an RWR algorithm, to identify DEGs 
immediately downstream of FSCN1. These result 
provided the priorities of other DEGs when considering 
their relationship with FSCN1and important clues for 
experiments to identify the DEGs.

In summary, the analyses based on PPI networks 
have greatly expanded our understanding of the mRNA 
expression profile following fascin knockdown. The 
PPI network is able to implicate gene function under a 
variety of conditions, especially when the genes lack all 
other functional annotations or are sparsely annotated. 
In addition, the PPI network can be used for gene 
prioritization irrespective of whether or not the genes have 
other functional annotations.
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