Hesa-A Down-Regulates erb/b2 Oncogene Expression and Improves Outcome of Oral Carcinoma in a Rat Model

Mehran Mesgari Abbasi1,2, Masoumeh Mehdipour3, Amir Monfaredan4, Rana Jahanban-Esfahan5*

Abstract

Background: Oral carcinoma (OC) remains one of the most difficult malignancies to cure. Hesa-A is an Iranian herbal-marine compound that has shown promising anti-tumor properties against various human tumors. However, its mechanism of action remains to be addressed. The present study was conducted to evaluate the effect of two doses of Hesa-A on mRNA expression of erb/b2 as a main prognosticator tumor marker for OC in an animal model. Materials and Methods: A total of 60 rats were randomly divided into 5 groups of 12 animals each. Rats in carcinoma groups received 0, 250 and 500mg/kg body weight doses of Hesa-A 3 times a day. The other two groups were considered as treated and untreated control groups. At the end of the experiment, animals were sacrificed and tongue tissues subjected to H and E staining and real time PCR. Results: Our results showed that compared to the control group, erb\b2 was over-expressed ~ 30% in the carcinoma group. After treatment with 250mg/kg and 500mg/kg body weight of Hesa-A , erb\b2 levels dropped by 24.1% and 3.4 % respectively compared to the control carcinoma group (p<0.01, p<0.0001). Moreover, there was a significant relation between erb\b2 mRNA content and observed pathological changes in studied groups (p<0.05). Conclusions: These data provide insight into mechanism(s) by which Hesa-A may improve clinical outcome of oral carcinoma by affecting oncogene erb\b2 expression and suggest Hesa-A as an effective chemotherapeutic agent in treatment of HER+ tumors.

Keywords: Hesa-A - oral carcinoma - erb\b2 expression - clinical outcome - rat model - invasion

Introduction

Oral cavity cancers are rather common and rank eleventh among other cancers all over the world (Zwetyenga et al., 2003). Tongue cancer is the most common oral cavity neoplasm with an unfavorable prognosis and high metastatic potential (Mesgari et al., 2014). Natural chemotherapeutic agents have always been acknowledged for their vast benefits and less side effects compared to the synthetic anti-neoplastic compounds (Valiyari et al., 2013). HESA-A is an Iranian patented new immunomodulating medication with natural biological compounds (Ahmadi et al., 2010b; Abbasi et al., 2014a). Hesa-A is a mixture of herbal-marine substances and includes Penaeus latisculatus (king prawn), Carum carvi and Apium graveolens with antineoplastic properties (Ahmadi et al., 2010a). Studies on anti-neoplastic properties of Hesa-A showed promising results in patients with advanced colorectal cancer and end staged breast cancer patients with choroidal metastasis (Ahmadi et al., 2005; Ahmadi et al., 2009). Analysis of the chemical composition of HESA-A has shown that it is composed of 50% inorganic substance, 45% organic substance (aminoenthraquinone) and 5% water. The inorganic component consists of calcium carbonate, magnesium phosphate and sulfate, potassium and sodium and elements such as aluminum, cobalt, potassium, chrome, iron, zinc, bromine and strontium at high concentrations (Mehdipour et al., 2013a).

Epidermal growth factor receptor (EGFR) proto-oncogene maps to 7p13-q22, and encodes a transmembrane protein whose activation by ligands such as epidermal growth factor or transforming growth factor alpha triggers a cascade of intracellular biochemical processes involved in cellular proliferation, differentiation, migration, and anti-apoptotic pathways; it seems to play a significant role in cancer cell proliferation, survival, and mobility (Massano et al., 2006; Abbasi et al., 2014c). Its overexpression is common in many malignancies, including breast, prostate, lung, and bladder cancers, correlating with poor prognosis (Lippman and Hong, 2001). The erb\b2 gene is one of the most studied biomarkers in OSCC. The high expression of erb/b2 has been associated with a poor prognosis and the combined expression of p53, cyclin D1, and EGFR has
been correlated with an unfavorable prognosis in OSCC patients (Abusail et al., 2013). Although Hesa-A showed satisfactory results in some end staged and metastatic tumors, however, its effects still need to be tested on other aggressive tumors including oral carcinoma. Moreover, no study evaluated its effects at a molecular level to discern the possible underlying mechanism of action. Hence, in following study we evaluated the therapeutic effects of two doses of Hesa-A on erb\b2 expression as a main prognosticator for oral cancer.

Materials and Methods

Animals

Sixty adult male Sprague Dawley rats (3-3.5 month-old) with an average weight of 220 g were obtained from the Animal Lab of Tabriz University of Medical Sciences. The animals were quarantined and acclimatized to laboratory conditions for 2 weeks. During the study, each rat was housed in a metal cage, with hardwood chips for bedding in an air-conditioned room under 12-h light/12-h dark cycles at a temperature of 22±2°C. Steps for 4-NQO induced oral cancer described by Mehdipour et al and our previous works (Mehdipour et al., 2013b; Abbasi et al., 2014a).

Preparation and drug administration to rats

HESA-A powder was dissolved for an hour in normal saline solution acidified with HCl. The resultant solution was treated with NaOH to reach a final pH of 7.4. The solution was filtered and administered to rats by gavage three times a week at doses of 250 and 500 mg/kg body weights. Normal saline and 4NQO (30 ppm) were used as negative and positive controls, respectively. Sixty 12-week-old male Sprague Dawley rats, were randomly divided into 5 groups of 12 animals each. Group i and ii served as carcinoma groups that received 500 and 250mg/kg body weight doses of Hesa-A, respectively. Group (iii) served as untreated carcinoma group. Group (iv) served as the control and was fed on basic diet and tap water without 4-NQO and Group (v) served as healthy control that received 500mg/kg oral doses of Hesa-A three times a week (Table 1).

RT-Real time PCR

The Q-PCR was done according to our previous works (Esfahlan et al., 2011a; Esfahlan et al., 2011b; Esfahlan et al., 2012). Briefly, total RNA (5 µg) extracted from homogenized fine powder of removed tongue tissues were reverse transcribed to cDNA using Revert Aid first strand cDNA synthesis kit (fermentase). The resulting cDNA was diluted 1:20 fold and the PCR reaction was performed with 2.5 µl cDNA, 10pM each forward and reverse primers, 12.5 µl SYBR Green PCR Master Mix (Fermentase) in a final volume of 25 µl. The thermal profile for the real-time Q-PCR was 95°C for 10 min and followed by 45 cycles of 95°C for 15 seconds and 60°C for 1 min. Rat primers designed by Quant prime software as following : ERBB2 (NM_017003.2): TCTCCGTGACCTCAGTGTCTTC-3’ (forward), 5’-GTGTCAATGAGTACGCGCCATC-3’. The gene expression was expressed as fold change from the GAPDH level which is calculated as 2-ΔΔCt. Following, fold changes expressed as percents by this formula for easy understanding of the results:

\[
\text{Fold change (percent)} = \text{fold change} \times 100
\]

Ethics

All the ethical and the humanity considerations were performed according to the Helsinki humanity research.
declaration during the experiments and the euthanasia of the animals. All the animals’ experiments were approved by the Ethics Committee of the Tabriz University of Medical Sciences.

Data analyses
The data were analyzed using SPSS No 16. One-Way Analysis Of Variance (ANOVA) was used to compare fold change difference in groups followed by multiple comparisons with the LSD post-hoc test. Chi square test was used to evaluate relation between erb/b2 content and pathological changes. A p value <0.05 was considered significant.

Results
Histopathological changes in studied groups
After 12 weeks treatment with 4NQO, precancerous lesions in the oral cavity including hyperplasia and three types of dysplasia (mild, moderate and severe) were detectable. Almost all the rats in carcinoma group displayed hyperplasia followed by all types of dysplasia (dys). Histopathological changes in studied groups were as following:

Group I (Untreated carcinoma group) which was treated with 4NQO, (0/9) normal, 1/9 hyperplasia and 8/9 dysplasia (2/8 mild dysplasia, 3/8 moderate dysplasia and 3/8 severe dysplasia) were recognized.

In Group II (Hesa-A 250mg/kg + 4NQO): 2/11 of lesions were normal, 3/11 hyperplasia and 5/11 showed dysplasia (3/11 mild, 2/11 moderate and 0/11 severe).

In Group III (Hesa-A 500mg/kg + 4NQO): 3/10 of lesions were normal, 3/10 were hyperplasia and 3/10 showed different stages of dysplasia including 2/10 mild, 1/10 moderate and 0/10 severe dysplasia.

All cases in Group IV and V (Healthy controls) displayed a normal histology in examination (12/12 normal) (Figure 1). There was no significant difference between healthy group and healthy group which was treated with 500mg/kg body weight of Hesa-A (p>0.05). Pathological changes significantly were different between carcinoma group and Hesa-A treated carcinoma groups (P<0.01).

Effect of Hesa-A on mRNA expression of Erb\ b2 in rat tongue tissues
The results of real time PCR indicated that compared to healthy group, erb\ b2 over expressed ~ 40% in untreated carcinoma group (p<0.05) (data not shown). Moreover, quantification of erb\ b2 mRNA showed that compared to untreated carcinoma (iii), treatment of carcinoma groups (iv) and (v) with two oral doses of Hesa-A (250mg/kg and 500mg/kg per body weight) resulted in 24.1% and 3.4% decrease in erb\ b2 level, respectively that was statistically significant (P<0.05, p<0.0001). Dose 500mg/kg of Hesa-A decreased erb\ b2 mRNA ~ 5 folds more than dose 250mg/kg (p<0.01). Furthermore, erb\ b2 was not detectable in either of healthy control and healthy control that was treated with 500mg/kg of Hesa-A (P>0.05). Observed % mRNA changes in studied groups shown in Figure 2.

Relation between erb\ b2 mRNA and pathological changes in samples
Group that received 500mg/kg body weight doses of hesa-A, all 3/3 (100%) normal lesions expressed low mRNA level of erb/b2 whilst in hyperplasia lesions, 3/3 (100.0%) showed a high level of erb/b2. All cases with mild and moderate dysplasia 2/2 (100.0%) and 1/1 (100%) respectively, represent high amount of erb/b2 content (P=0.032) (Table 2).

In group that was given 250mg/kg oral doses of Hesa-A, erb/b2 was not detectable in all 2/2 (100%) of normal lesions, whilst in hyperplasia lesions, 3/3 (100.0%) showed a high level of erb/b2 level and 3/3 (100.0%) and

Table 2. Relation between erb/b2 mRNA Expression and Tumor Stage in Carcinoma Group Treated with Oral doses of 500 mg/kg Hesa-A

<table>
<thead>
<tr>
<th>Tumor stage</th>
<th>500 mg/kg HESA-A</th>
<th>ERB/B2 Expression</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>low</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>3(100.0%)</td>
<td>0(0.0%)</td>
<td>3(100.0%)</td>
</tr>
<tr>
<td>Hyperplasia</td>
<td>0(0.0%)</td>
<td>3(100.0%)</td>
<td>3(100.0%)</td>
</tr>
<tr>
<td>Mild dysplasia</td>
<td>0(0.0%)</td>
<td>2(100.0%)</td>
<td>2(100.0%)</td>
</tr>
<tr>
<td>Moderate dysplasia</td>
<td>0(0.0%)</td>
<td>1(100.0%)</td>
<td>1(100.0%)</td>
</tr>
<tr>
<td>Severe dysplasia</td>
<td>0(0.0%)</td>
<td>0(0.0%)</td>
<td>0(0.0%)</td>
</tr>
<tr>
<td>Total</td>
<td>3(33.3%)</td>
<td>6(66.7%)</td>
<td>9(100.0%)</td>
</tr>
</tbody>
</table>

Table 3. Relation between erb/b2 mRNA Expression and Tumor Stage in Carcinoma Group that Treated with Oral doses of 250 mg/kg HESA-A

<table>
<thead>
<tr>
<th>Tumor stage</th>
<th>250 mg/kg HESA-A</th>
<th>ERB/B2 Expression</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>low</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>2(100.0%)</td>
<td>0(0.0%)</td>
<td>2(100.0%)</td>
</tr>
<tr>
<td>Hyperplasia</td>
<td>0(0.0%)</td>
<td>3(100.0%)</td>
<td>3(100.0%)</td>
</tr>
<tr>
<td>Mild dysplasia</td>
<td>0(0.0%)</td>
<td>3(100.0%)</td>
<td>3(100.0%)</td>
</tr>
<tr>
<td>Moderate dysplasia</td>
<td>0(0.0%)</td>
<td>2(100.0%)</td>
<td>2(100.0%)</td>
</tr>
<tr>
<td>Severe dysplasia</td>
<td>0(0.0%)</td>
<td>0(0.0%)</td>
<td>0(0.0%)</td>
</tr>
<tr>
<td>Total</td>
<td>2 (20.0%)</td>
<td>8 (80.0%)</td>
<td>9(100.0%)</td>
</tr>
</tbody>
</table>
Overexpressed in over 80% of all HNSCC as in our study, HER2 encoded by ERBB2 gene and is important processes which promote tumor invasion and metastasis (Khademi et al., 2013). HER2 is a widely studied oncogene in Head and Neck Squamous Cells Carcinomas (Abbasi et al., 2013a). This tyrosine kinase receptor is connected to various downstream signaling targets involved in cellular proliferation, apoptosis, angiogenesis, invasion, and metastasis (Khademi et al., 2013). HER2 encoded by ERBB2 gene and is overexpressed in over 80% of all HNSCC as in our study, carcinoma group showed a 30% overexpression of this oncogene compared to the healthy groups. It is known that her-2 upregulation associate with high p53 content in oral carcinoma which in turn promotes tumor progression (Abbasi et al., 2014b). Our unpublished data indicate that treatment with 250mg/kg and 500mg/kg body weights of Hesa-A, results in 53.4% and 13.6 % mRNA level of p53 (p<0.05), which in case of her-2, Hesa-a showed more remarkable results and dose 250mg/kg and 500mg/kg body weights decreased erb/b2 oncogene content to 24.1% and 3.4 % respectively compared to untreated carcinoma group. Furthermore erb/b2 content was associated with improved clinical outcome in our study. No pathological changes observed in healthy group that was treated with 500mg/kg of Hesa-A. Altogether, anti tumor properties of Hesa-A on oral carcinoma confirms the results of previous studies which found Hesa-A as an effective and safe chemotherapeutic agent in treatment of aggressive tumors and it seems that the anti tumoral effects of this compound undertake by affecting the expression of main tumor marker genes including p53 tumor suppressor gene and erb/b2. Cooverexpression of these genes leads to important processes which promote tumor invasion and metastasis and Hesa-A with abundant antioxidant content hamper this fatal destiny governed by these two genes.

In conclusion, erb/b2 is a well known biomarker which its high expression associate with aggression and poor prognosis in many tumor types as well as in oral carcinoma. Significant decrease in level of this prognosticator factor after treatment with Hesa-A and improvement of pathological lesions of oral carcinoma implies that affecting erb/b2 pathway could be considered as a mechanism of action for potent anti tumor activities of this extract on different progressive human malignancies including oral carcinoma.

References

