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Introduction

Data collection from family history of diseases is very 
important in both clinical and research studies. Family 
history data are essential to estimate a family aggregation, 
obtain its effects on disease, discover heterogeneity, 
observe existence of multiple phenotypes in a family, 
and estimate the number of genes involved in a disorder 
(Szatmari and Jones, 1999).

Having a family history of cancer is an important risk 
factor for many cancers, including breast cancer (Ebrahimi 
et al., 2002; Holakouie-Naieni et al., 2007; Mahouri et 
al., 2007; Hassanzadeh et al., 2012; Zare et al., 2013; 
Hosseinzadeh et al., 2014; Tehranifar et al., 2015), which 
its family history is often evaluated via self-report (Veisy et 
al., 2015). However, validity of self-reported data is often 
problematic, as it is believed that the participants in the 
study tend to be underestimated, or may deny the existence 
of family history of the disease. So, people with a Family 
History of Breast Cancer (FHBC) in first-degree relatives 
are less likely to report it. Reliability of self-report 
questionnaires may be influenced by the characteristics 
of the participants. Consistency of self-reported data on 
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Abstract

	 Background: Misreporting self-reported family history may lead to biased estimations. We used Bayesian 
methods to adjust for exposure misclassification. Materials and Methods: A hospital-based case-control study 
was used to identify breast cancer risk factors among Iranian women. Three models were jointly considered; an 
outcome, an exposure and a measurement model. All models were fitted using Bayesian methods, run to achieve 
convergence. Results: Bayesian analysis in the model without misclassification showed that the odds ratios for 
the relationship between breast cancer and a family history in different prior distributions were 2.98 (95% CRI: 
2.41, 3.71), 2.57 (95% CRI: 1.95, 3.41) and 2.53 (95% CRI: 1.93, 3.31). In the misclassified model, adjusted odds 
ratios for misclassification in the different situations were 2.64 (95% CRI: 2.02, 3.47), 2.64 (95% CRI: 2.02, 
3.46), 1.60 (95% CRI: 1.07, 2.38), 1.61 (95% CRI: 1.07, 2.40), 1.57 (95% CRI: 1.05, 2.35), 1.58 (95% CRI: 1.06, 
2.34) and 1.57 (95% CRI: 1.06, 2.33). Conclusions: It was concluded that self-reported family history may be 
misclassified in different scenarios. Due to the lack of validation studies in Iran, more attention to this matter 
in future research is suggested, especially while obtaining results in accordance with sensitivity and specificity 
values. 
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family history may be affected by some features such 
as healthy adults, gender, ethnicity, and education level. 
Also, validity and/or reliability of self-reported health data 
may be affected by depression, disability and cognitive 
disorders (Marrie et al., 2008). Given these considerations 
and keeping in mind the increase in the number of studies 
determining the family history status of breast cancer, it is 
essential to identify valid and reliable measures. 
	 According to previous studies, although specificity of 
self-reported FHBC in first-degree relatives are high, but 
its sensitivity may be very low (Szatmari and Jones, 1999). 
Misclassification of exposure variables related to under-
reporting is a major problem in many studies (Prescott 
and Garthwaite, 2005) and the definition of exposure  
may alter the effects of exposure (Rothman et al., 2008; 
Keil et al., 2014). Ignoring misclassification may lead to 
bias estimations, therefore, it should be considered while 
both designing and analyzing the study (Prescott and 
Garthwaite, 2005).
	 Recently, various methods were published to correct 
potential biases in observational studies. But for several 
reasons, such as complexity of the procedures and lack of 
need for them, these methods are rarely used or reported. 
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However, these reasons may not justify disregarding 
the observed potential bias between exposure-outcome 
relationships (Gelder et al., 2014b).

Although, exposure misclassification correction using 
Frequentist methods are also possible, but Bayesian 
methods are preferable (Greenland, 2008).

In this study, we used Bayesian methods to adjust 
the exposure misclassification. Bayesian methods 
under consideration was introduced by MacLehose et 
al (MacLehose et al., 2009). We attempted to explore 
the relationship between breast cancer and its family 
history amongst first-degree relatives after adjusting for 
confounders, regardless the exposure misclassification 
and also, to compare the results with posterior odds ratios 
after adjusting for confounder variables and a range of 
exposure misclassification scenarios.

Materials and Methods

Study population
We have used a hospital-based case-control study to 

identify breast cancer risk factors amongst Iranian women. 
The findings of this study have been published in detail, 
previously (Ghiasvand et al., 2011; Ghiasvand et al., 
2012). Cases were recruited from Mottahari Breast Clinic 
of Shiraz University of Medical Sciences. This center 
collects data from about 80% of all incident breast cancer 
patients treated in main hospitals of Shiraz city. Eligible 
cases were women with an incident histopathologically 
confirmed breast cancer, diagnosed at 50 years of age 
or older. Most cases (93%) were interviewed within six 
months after diagnosis. We consider all the individuals 
with complete data in this study. Also eleven case patients 
from other provinces have been deleted from the study 
because we could not find any matched controls for 
them. Controls were frequency-matched with cases on 
five-year age groups and province of residence. Controls 
were primarily selected from healthy female visitors 
accompanying patients referred to the Faghihi hospital for 
general surgery (60%), urology (24%) and cardiovascular 
(16%) diseases. A total of 1090 controls were selected, but 
92 women (8%) refused to participate. 

For both cases and controls, face-to-face interviews 
were performed. Controls were interviewed from May 
through August 2009. Interviews were conducted by 
two trained female nurses (one for cases and one for 
controls), and the time of interviews was similar for cases 
and controls. None of the interviewers were aware of the 
study hypotheses.

Statistical analysis
Many researchers have proposed probabilistic bias 

analysis methods to consider bias (Lash and Fink, 2003; 
Fox et al., 2005; Greenland, 2005; Greenland and Lash, 
2008; Lash et al., 2009; MacLehose and Gustafson, 2012 
January). These methods serve to adjust the main effect 
estimate and propagate uncertainty surrounding the bias 
parameter, incorporating this uncertainty into the variance 
estimate of the adjusted main effect. The approach taken in 
probabilistic bias analysis is to repeatedly draw a random 
sample from the bias parameter distribution(s) and use 

those sampled parameters to adjust the effect estimate. 
The resulting distribution will be “bias-adjusted” main 
effect (Fox et al., 2005; MacLehose and Gustafson, 2012 
January).

Bayesian analysis is based on the posterior distribution, 
although samples from it can be generated using Markov 
Chain Monte Carlo (MCMC) algorithm (MacLehose and 
Gustafson, 2012 January). The Monte-Carlo sensitivity 
analysis procedure (Fox et al., 2005) is computationally 
intensive, while Bayesian analysis with MCMC algorithms 
can be implemented quickly (Chu et al., 2006).

Unlike deterministic maximum-likelihood algorithms, 
the MCMC methods are some stochastic procedures that 
repeatedly generate random samples. The process of 
generating the random samples in MCMC return to the 
role of the Markov chain, and the process of generating 
summary statistics from the generated random samples 
return to Monte Carlo integration (Hamra et al., 2013a).

Details of Bayesian method have been described in 
the following.

The exposure variable in the study is FHBC in the 
first degree relatives (fhtrue), where true family histories 
(fhreported) are unobserved values, which we’ve estimated 
in this study.

Breast Cancer is the outcome variable.
Z is a vector of possible confounders: age at menarche 

(Less than 12 years, 12-15 and more than 15 years), 
menopause status (before, after), parity (yes, no), past 
use of oral contraceptives (yes, no), age at first pregnancy 
(Less than 25 years, equal and more than 25 years and 
nulliparous) and history of breastfeeding (yes, no) and 
body mass index (BMI) (as a continuous variable).

We treated fhtrue as measured with error by fhreported and 
used information from previous research on the sensitivity 
and specificity of self-reported family history data to 
produce corrected estimates.

We conducted Bayesian uncertainty analyses 
conditional on prior hypotheses generated from published 
studies. Briefly, three models are jointly considered: an 
outcome, an exposure, and a measurement model, which 
allowed simultaneous imputation of the true family history 
exposure status and estimation of its effect on the risk of 
the breast cancer.

For our analysis, we used the directed acyclic graph 
(DAG) shown in Figure 1. 

Figure 1. Directed Acyclic Graph (DAG) for the 
relationship between self-reported family history status 
and breast cancer.  
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Figure 1. Directed Acyclic Graph (DAG) for the 
Relationship between Self-reported Family History 
Status and Breast Cancer
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The outcome model specified the probability of 
breast cancer as a function of fhtrue (arrow C) and the 
other covariates Z (arrow E), a measurement model that 
specified the probability of fhrepored as a function of fhtrue 
(arrow A) and breast cancer (arrow B), and an exposure 
model that specified the probability of fhtrue as a function 
of the covariates Z (arrow D) (MacLehose et al., 2009).

Outcome Model
The outcome model which is used in the study is 

given by
logit(Pr(BCi=1)) b

0
+b

1 
fhi

true+Z1
i θ

Where b
0
, b

1
 and θ are the unknown parameters.

In the Bayesian approach, the prior distributions are 
defined for these unknown parameters.

We used a non-informative N(0,) for the prior 
distribution of the intercept term ( ), and informative priors 
for other coefficients in the model (Table 1). Also, we 
have used non-informative priors N(0,1000) (according to 
Gelman et al. (Gelman et al., 2003) and prior distributions 
N (0,1.38) (according to Hamra et al. (Hamra et al., 2013b; 
Greenland and Mansournia, 2015)) for other regression 
coefficients in the model.

Exposure model
For the true exposure variable, we consider the 

following exposure model:
logit(Pr(fhi

true=1))=w0+Z1
iw

Where the prior distribution N(0,10 000) is used 
for intercept coefficient, and prior distributions N(0,1), 
N(0,10), and N(0,1.38) are used for other regression 
coefficients in this model (MacLehose et al., 2009).

Measurement Model
For the reported exposure, we consider the following 

measurement model:
PR(fhi

reported=1) 
= a0 fhi

true(1-BCi)+ a1 (1-fhi
true) (1-BCi)+ a2 fhi

true BCi
+ a3(1-fhi

true)BCi

In this model a0 is the sensitivity of reported family 
history (fh) among controls, a1 is the false positive rate 
(FPR) of reported family history among controls, a2 is the 
sensitivity of reported family history (fh) among cases 
and a3 is the false positive rate (FPR) of reported family 
history among cases.

The exposure and measurement models were used 
to impute values of true family history variable in a way 
similar to that used with missing data techniques. These 
imputed values were then used to estimate the associations 
between FHBC and breast cancer.

In order to estimate the effects of under-reporting 
(misclassification) in the exposure of FHBC and breast 
cancer, we implemented two models that specified a0, a1, 
a2 and a3 in the measurement model.

Similar to MacLehose et al. (2009), in model 1, 
sensitivity and specificity are equal to 1.00 (that is no 
misclassification), which lead to a standard Bayesian 
logistic regression model.

As mentioned in MacLehose et al (2009), model 

2 is based on the assumption that the sensitivities and 
false positive rates used in the measurement model are 
not exactly known. For the prior distribution of the 
sensitivity and false positive rate, a beta distribution was 
chosen with prior parameters selected to reflect a priori 
beliefs concerning reported family history. The values for 
sensitivity and false positive rate among cases and controls 
were assumed not to be correlated.

The beta distribution has two parameters; b1 and b2. For 
sensitivities, b3 is the number of women reported family 
history truly and b2 is the number of women reported 
untruly family history. For FPRs, b1 is the number of 
women reported family history but in truth not having 
family history, and b2 is the number of women reported 
no family history and in truth not having family history 
(MacLehose et al., 2009). Also, we used uniform priors 
(beta(1,1)) for the coefficients in the measurement model.

All models were fitted using the Bayesian methods, 
which were run to achieve convergence. The convergence 
was checked with the Gelman-Robin diagnostic test 
(Gelman and Rubin, 1992).

After the burn-in period, the iterations of the 
MCMC algorithm are random draws from the posterior 
distributions of interest; the mean was exponentiated to 
obtain the odds ratio of interest. We exponentiated the 
2.5th and 97.5th percentiles of the random draws to obtain 
95% Posterior Credible Intervals (CRIs)(van Gelder et 
al., 2014a). 

We used R, STATA 12.0 and OpenBUGS softwares 
for the data analysis.

Results 

In the present study, a total of 880 cases with breast 
cancer and 998 controls were included in the study.

In logistic regression analysis, odds ratio for the 
relationship between FHBC in the first degree relatives 
and breast cancer adjusted for covariates is 2.55 (95% 
CRI: 2.55 , 3.35).

In Bayesian analysis, first, we stated no misclassification 
model (model 1). Then model 1 for different values of the 
outcome model priors was run. Similar to MacLehose et 
al. (MacLehose et al., 2009), priors for outcome model 
parameters from previous studies were selected (Table 
1). In status A, the results of Bayesian analysis (Table 2) 
showed that odds ratio of the relationship between FHBC 
in the first degree relatives and breast cancer was 2.98 
(95% CRI: 2.41, 3.71). In B status, priors for outcome 
model parameters were changed and non-informative 
priors were used. After that, in order to consider Gelman 
et al. (Gelman et al., 2003) recommendation, N(0, 1000) 
prior was used. OR of the aforementioned relationship 
was 2.57 (95% CRI: 1.95, 3.41). In C status N(0, 1.38) as 
priors for outcome model parameters were used. OR of the 
relationship between FHBC in first degree relatives and 
breast cancer was 2.53 (95% CRI: 1.93, 3.31).

In misclassification model (model 2), it is essential to 
define the prior distributions for the unknown parameters 
of the outcome, exposure and measurement models.

The priors of the parameters of the outcome model 
were selected from different perspectives, including 
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previous literature and non-informative priors (N(0,1000) 
and N(0,1.38)). The priors of unknown parameters of the 
exposure model (g) defined in three scenarios, N(0,1), 
N(0,10) and N(0,1.38). Also, in the similar manner, in all 

situations, according to MacLehose et al. (MacLehose et 
al., 2009), priors for intercept of the outcome and exposure 
models were N(0, 106) and N (0, 104), respectively.

Priors of the measurement model, sensitivities and 
FPR in the case and control groups, were selected from 
Tehranifar et al and Jurek et al. (Jurek et al., 2009; 
Tehranifar et al., 2015) studies (Table 3) and beta(1,1). 
Therefore, we had 10 statuses including D, E, F, G, H, I 
and J (Table 2) and K, L and M (Table 2), that is, we could 
run 10 analyses based on Bayesian method.

In simulation with priors specification of D status, 
adjusted OR for misclassification and confounder 
variables between FHBC and breast cancer was 2.64 (95% 
CRI: 2.02, 3.47). In simulation with priors specification of 
E status, adjusted OR between FHBC and breast cancer 
was 2.64 (95% CRI: 2.02, 3.46).

In other simulations, in F and G statuses, in simulation 
with non-informative priors for outcome model, adjusted 
OR for misclassification and confounder variables were 
1.60 (95% CRI: 1.07, 2.38) and 1.61 (95% CRI: 1.07, 
2.40), respectively.

Similarly, in H, I and J situations, according to the 
priors N (0,1.38) for outcome model, the results were 
1.57(95% CRI: 1.05, 2.35), 1.58(95% CRI: 1.06, 2.34) 
and 1.57 (95% CRI: 1.06, 2.33), respectively.

In accordance with the priors in K, L and M situations 
and the uniform distributions for sensitivities and 
specificities (beta(1,1)), the results were 3.74(95% CRI: 
2.66, 5.27), 1.02(95% CRI: 0.10, 9.87) and 0.99(95% CRI: 
0.10, 9.60), respectively.

All results in all scenarios showed that all ORs were 
statistically significant. All the results, taking into account 
the assumptions were acceptable, which will be explained 
in the discussion.

Discussion

All analyses of epidemiological studies should be seen 
as part of a sensitivity analysis, because we can’t claim 
that assumptions are absolutely correct. Statisticians only 
consider inferential possibilities and do not pay attention 
to the inferences. Bias analysis focuses on the inferences 
which are not pointless and unreasonable(Greenland, 
2009). On the other hand, any article should not be 
considered as a candidate for bias analysis. When no useful 
conclusion can’t be running by conventional analysis, bias 
analysis is not necessary (Greenland, 2009).

Quantitative bias analysis prepare an estimate of the 
uncertainty caused by systematic errors and can provide 
a useful guide for further investigation (Lash et al., 2014).

In this study, we assumed that a family history of the 
disease in the first degree relatives is a candidate for bias 
due to misclassification. It is possible for a person to be 
asked whether she has a family history of breast cancer or 
not, and she does not assume the need for giving correct 
answer to this question. So they underestimate the question 
and may give inaccurate answers.

We consider the following limitations for our study. 
We assumed differential misclassification for the exposure 
variable. That is, sensitivity and specificity in the case 
and control groups are different from each other. As 

Table 1. The Outcome Model Priors Based on Previous 
Literatures
Variable name	 Prior	
	 OR*	 95% CI

Family history		
   No	 1	
   Yes	 1.94	 1.35, 2.78
Age at menarche1		
more than 15 years	 1	
Less than 12 years	 1.2	 .74, 1.95
Age at menarche2		
more than 15 years	 1	
12-15 years	 1.3	 .82, 1.99
Menopause status		
after	 1	
before	 3.15	 2.32, 4.25
Parity		
yes	 1	
no	 1.85	 1.25, 2.74
Past use of oral contraceptives
no	 1	
yes	 1.1	 .79, 1.53
Age at first pregnancy		
Less than 25 years	 1	
Equal and more than 25 years and nulliparous	 0.64	 .45, .92
History of breastfeeding		
no	 1	
yes	 0.39	 .27, .56
Body Mass Index (BMI) (continuous)	 1.01	 .99, 1.02
* OR: Odds Ratio; ** CI: Confidence Interval

Table 2. Priors for the Outcome and Exposure Models 
and Related OR (CRI 95%) for Models
status	 Outcome	 Exposure	 OR*	 95%CRI**
	 model priors	 model priors		

A	 According to Table 1	 -	 2.98	 2.41, 3.71
B	 N(0,1000)	 -	 2.57	 1.95, 3.41
C	 N(0,1.38)	 -	 2.53	 1.93, 3.31
D	 According to Table 1	 N (0,1)	 2.64	 2.02, 3.47
E	 According to Table 1	 N (0,10)	 2.64	 2.02, 3.46
F	 N (0,1000)	 N (0,1)	 1.6	 1.07, 2.38
G	 N (0,1000)	 N (0,10)	 1.61	 1.07, 2.40
H	 N (0,1.38)	 N (0,1)	 1.57	 1.05, 2.35
I	 N (0,1.38)	 N (0,1.38)	 1.58	 1.06, 2.34
J	 N (0,1.38)	 N (0,10)	 1.57	 1.06, 2.33
K	 According to Table 1	 N(0,1)	 3.74	 2.66-5.27
L	 N(0,1.38)	 N(0,10)	 1.02	 0.10-9.87
M	 N(0,1.38)	 N(0,1)	 0.99	 0.10-9.60
* OR: Odds Ratio; **CRI: Credible Interval

Table 3. The Measurement Model Priors for the Case 
and Control Groups
	 Sensitivities priors	 FPR* priors
	 b1	 b2	 b3	 b4

case	 695	 45	 76	 1302
control	 62	 25	 14	 1115
*FPR False Positive Rate
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another limitation for the study, the potential errors in 
other variables were ignored. In addition to the variables 
studied, other confounding variables may not be included 
in this study, which may affect the results. As another 
assumption, the amounts of previous literature priors 
were established for the present study. Moreover, it 
was assumed that the probability density of the external 
validation data is similar to those exists in this study. 
Because of the lack of validation data on FHBC in the 
first degree relatives in Shiraz (or in Iran as a whole), we 
used priors outside of Iran, therefore we assumed them 
as similar. A major challenge in data analysis applying 
Bayesian methods is appropriate priors determination. In 
this study, previous literature and non-informative and 
weakly informative priors were used for the coefficients 
of outcome and exposure models. Non-informative and 
weakly informative priors were selected as recommended 
by Gelman et al. (Gelman et al., 2003) and Hamra et al. 
(Hamra et al., 2013b; Greenland and Mansournia, 2015), 
respectively. Given the abovementioned assumptions and 
the accuracy of the bias model, we corrected odds ratios 
for misclassification of exposure variable on breast cancer 
data using Bayesian methods described by MacLehose et 
al (MacLehose et al., 2009).

In the model without misclassification (model 1), after 
applying the priors selected from literature as well as non-
informative and weakly informative priors (means = 0 
and variances =1000 and 1.38), FHBC in the first degree 
relatives of the cases with breast cancer were, respectively, 
2.98, 2.57 and 2.53 times more than those of the control 
group, , after adjustment for confounders. On the other 
hand, in logistic regression analysis, OR of exposure-
outcome association adjusted for confounders was 2.55 
(95% CRI: 2.55, 3.35). This finding is similar to the results 
of Bayesian analysis using non-informative and weakly 
informative priors. So, the exposure-outcome relationship 
was relatively strong. Similar results were found in the 
studies conducted by Holakouee et al (Holakouie-Naieni 
et al., 2007) (OR= 2.96, 95% Confidence Interval(CI)I: 
1.46, 5.99) and Sepandi et al (Sepandi et al., 2014) (OR= 
1.94, 95% CI: 1.35, 2.78). But the exposure-outcome 
odds ratio in Mahouri et al, study (Mahouri et al., 2007 
Nov-Dec) was 9.07 (95% CI: 4.06, 12.26). This difference 
may be due to the different settings of the studies, or it 
may be as a result of systematic errors occurred in the 
exposure measurement. However, it should be noted that 
such odds ratio (9.07, 95% CI: 4.06-12.26) is unusual for 
the association between FHBC and breast cancer.

The results of the misclassification model of exposure 
(model 2) showed some variations. If the priors of the 
outcome model were chosen from previous studies and 
the prior mean of the exposure model to be considered as 
0 and its variances as 1 and 10, respectively, then the odds 
ratios will be 2.64(95% CRI: 2.02, 3.47) and 2.64(95% 
CRI: 2.02, 3.46). Therefore, the odds ratios obtained are 
similar and lower than those found in the model 1 (2.98). 
This difference is due to the misclassification existed in 
self-reported FHBC.

In another situation, the value of 1000 is the proper 
option for the prior variance of the outcome model. If the 
prior variance of outcome model is 1000 and the prior 

variances of exposure model are 1 and 10, then, the odds 
ratios will be 1.60 (95% CRI: 1.07, 2.38) and 1.61 (95% 
CRI: 1.07, 2.40), respectively. Considering the sensitivity 
and specificity, it is remarkably lower than the odds ratio 
of model 1(2.57, 95% CRI: 1.95, 3.41) (prior variance of 
outcome model = 1000). Also, its effect remains significant 
and credible interval is narrower.

If the prior variance of outcome model is 1.38 and the 
priors variances of exposure model are equal to 1, 1.38 
and 10, then the odds ratios will be 1.57(95% CRI:1.05, 
2.35), 1.58 (95% CRI: 1.06, 2.34) and 1.57(95% CRI: 
1.06, 2.33), respectively. These ORs are almost similar. 
But comparing with the odds ratio obtained from this prior 
in model 1(OR= 2.53, 95% CRI: 1.93, 3.31), less effect 
was indicated, again. This is due to the misclassification 
existed in the exposure variable.

When uniform distribution used for sensitivity and 
specificity values, ORs in different values of weakly 
informative priors for outcome and exposure models were 
insignificant and their CRIs were too wide. This is due 
to the use of uniform prior distribution for coefficients of 
measurement model.

In order to compare the calculated odds ratios applying 
Bayesian methods found in this study to those found 
in the other studies on adjusted OR using probabilistic 
bias analysis, the study conducted by Jurek et al. (Jurek 
et al., 2009) may be adopted. In no misclassification 
model, the relationship between FHBC and the outcome 
in their study was 1.63 (95% uncertainty limits: 1.63, 
1.63), which is much less than those found in this study. 
While, in misclassification model, in different scenarios 
for sensitivity and specificity values with uniform and 
triangular distributions, adjusted OR were 2.27 (95% CI: 
1.33, 6.01), 1.77(95% CI: 1.25, 3.93), and 1.99 (95% CI: 
1.37, 4.21) (Jurek et al., 2009).

Based on the results of the present study, exposure-
outcome effects, applying the misclassification model, were 
toward the null, and the adjusted ORs for misclassification 
in different priors were 2.64, 1.60, 1.61, 1.57, and 1.58. 
Also, in all other situations, except for a situation, the 
corrected odds ratios for misclassification were less than 
the ORs derived from the model without misclassification. 
In the exception situation, OR was more than that derived 
from the model without misclassification within which the 
priors of the measurement model had uniform distributions 
and the priors of the outcome model were selected from 
previous literature and the prior variances of the exposure 
model were considered to be 1.

In the present study, in no misclassification models, 
credible intervals were wider than the uncertainty limits 
found in Jurek et al (Jurek et al., 2009) study. In their 
study, uncertainty limits width was 0.65 but in our study, 
CRI width for previous literature priors, 1000 and 1.38 
prior variances were 1.30, 1.46 and 1.41, respectively. 
This may be due to the more sample size in Jurek et al. 
(Jurek et al., 2009) study. However, in the misclassification 
model of the present study, all of CRIs were narrower 
than uncertainty limits found in Jurek et al. (Jurek et al., 
2009) study.

Finally, due to the lack of validation studies in Iran, 
more attention should be paid to this matter in future 
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research, especially to sensitivity and specificity. As 
different diagnostic tests for breast cancer do not have 
the same accuracy at different ages, it is suggested to use 
bias analysis for correcting outcome misclassification. 
Also, it is recommended to consider the other sources 
of bias in future studies, and then it could be claimed 
that the measure of association obtained are closer to the 
causal measure.
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