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Introduction

Among different types of cancers, the lymphoma are 
group of malignant diseases with the origin of lymphocytes 
(Fisher, 2005; Adamson et al., 2007). The lymphoma is 
divided into two types, the Hodgkin’s lymphoma and 
the non-Hodgkin’s lymphoma. Specific type of the non 
Hodgkin lymphoma is the Mantle Cell Lymphoma (MCL). 
The Mantle Cell Lymphoma contains 6% of all the non-
Hodgkin lymphoma and a larger fraction of deaths from 
lymphoma (Campo et al., 1999; Swerdlow and Williams, 
2002). In this type of cancer, length of survival after 
diagnosis is varied and many attempts have been done 
for prediction of survival these patients (Rosenwald et al., 
2003). Microarray technology and access to thousands of 
gene expression have been helped to predict survival of 
patients (Rust et al., 2005; Li et al., 2007). But the main 
challenge of this method is that the number of variables 
(p) is usually too much more than number of samples 
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Abstract

	 Background: Survival time of lymphoma patients can be estimated with the help of microarray technology. 
In this study, with the use of iterative Bayesian Model Averaging (BMA) method, survival time of Mantle Cell 
Lymphoma patients (MCL) was estimated and in reference to the findings, patients were divided into two high-
risk and low-risk groups. Materials and Methods: In this study, gene expression data of MCL patients were 
used in order to select a subset of genes for survival analysis with microarray data, using the iterative BMA 
method. To evaluate the performance of the method, patients were divided into high-risk and low-risk based 
on their scores. Performance prediction was investigated using the log-rank test. The bioconductor package 
“iterativeBMAsurv” was applied with R statistical software for classification and survival analysis. Results: In 
this study, 25 genes associated with survival for MCL patients were identified across 132 selected models. The 
maximum likelihood estimate coefficients of the selected genes and the posterior probabilities of the selected 
models were obtained from training data. Using this method, patients could be separated into high-risk and 
low-risk groups with high significance (p<0.001). Conclusions: The iterative BMA algorithm has high precision 
and ability for survival analysis. This method is capable of identifying a few predictive variables associated with 
survival, among many variables in a set of microarray data. Therefore, it can be used as a low-cost diagnostic 
tool in clinical research. 
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(n) (p>>n). In this case, identifying the strongest gene 
variables determinant of patients survival is very difficult 
(Li et al., 2007). 

On the other hand, the model-building process for 
survival analysis based on the gene expression, involves 
the comparison many competing models. In this method, 
a single model is choosing each time and a statistical 
inference is accomplished based on that. But, uncertainty 
of single model selection causes overall uncertainty of the 
desired quantity estimation and considerable reduction 
of fitting model (Kass and Raftery, 1993). One of the 
solutions that is presented to this problem, is using the 
iterative Bayesian Model Averaging. 

The iterative Bayesian Model Averaging method, 
estimates and reports the effect of multiple models, by 
computation the weighted average of their posterior 
distributions instead of selecting a single model and to 
perform the statistical inference based on that (Annest 
et al., 2009). In present study, iterative Bayesian Model 
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Averaging method, using the survival of the Mantle Cell 
Lymphoma patients is estimated and based on that, the 
patients were divided into two groups: high-risk and 
low-risk.
Materials and Methods

In this study, dataset related to 92 the Mantle Cell 
Lymphoma patients (MCL) has been used. Patients were 
included 72 (78%) males and 19 (22%) females. Their 
median age at diagnosis time was 61.5 years (range age 
of 38 to 92.5 years). Follow up continued to death time for 
all patients. For each patient, the 8810 genes, the survival 
time and censoring status have been measured. Survival 
time was different from 0.228 to 168.636. Median survival 
was 2 years and 7 months. Among 92 patients under 
investigation, 28 patients (30.4%) have been censored. 
This dataset published by Rosenwald et al and is available 
at http://llmpp.nih.gov/MCL (Rosenwald et al., 2003).

In order to, the fitting survival analysis model and 
its evaluation, overall dataset was considered as “train 
sample” and of their set 31 sampels randomly was selected 
as “test sample”. The iterative Bayesian Model Averaging 
method performed on train sample. Obtained estimations 
were used for the assessment method in the test sample.

The strength of BMA method is to be able to estimate 
model uncertainty. Calculation model uncertainty is the 
part of Baysian model analysis that largely has been 
ignored by traditional stepwise selection methods. BMA 
solves this problem with selection a subset of all possible 
models and the statistical inference based on the weighted 
average of posterior distribution of models (Annest et al., 
2009). In this method, Uniform distribution is considering 
as the prior distribution. The core of the BMA algorithm 
is described in Equation (1) (Raftery, 1995). Let Ψ and 
TD indicate desired quantity and train data, respectively. 
Let S={M1, M2, …, Mn} represent the subset of selected 
models that enter in the analysis.

We have:

pr(ψ|TD)=∑i S pr(ψ|TD, Mi) pr (Mi|TD)                               (1)

Three objects must be considered before Equation (1) 
could be used:

i). Obtaining the subset S of models that enter in the 
analysis, ii). Estimation the value of pr(ψ|TD, Mi), iii). 
Estimation the value of pr(Mi|TD).

One of BMA’s problems is number of models which 
potentially can be discovered by the algorithm, especially 
when working with microarray data. Two algorithms 
“leaps and bounds” and “Occam’s window” are being 
used for solving this problem and discarding non-helpful 
models (Annest et al., 2009).

The leaps and bounds algorithm regards the best 
expected researcher number of the models (nbest) and 
based on that the top nbest models estimates with every 
number of variables (maximum 25 variables) (Furnival 
and Wilson, 1974). With using the Occam’s window 
algorithm every model which its posterior distribution of 
the best model is less than the cut point determined by 
the researcher could be removed (Madigan and Raftery, 
1994). It proposes to remove the models with a probability 

of less than 5% as likely as the strongest model (Annest 
et al., 2009). Thus the remaining models constitute the 
set S in Equation (1).

Estimation second object and accurate calculation of 
predictive distribution pr (ψ|TD, Mi) requires integration 
of the vector of regression parameters θi, however 
integration is impossible for the most censored survival 
models, therefore maximum likelihood estimation (MLE) 
is used as an approximation:

pr(ψ|TD, Mi) ≈pr (ψ|θi, TD, Mi)                                              (2)

For estimation third object and calculation of the 
posterior probability of model Mi given the training data, 
involves an Integral. But, for this reason that is impossible 
to assess exact value third object, the Bayesian information 
criterion (BIC) can be used as approximation estimation:

log[pr(TD|Mi)]=log[pr(TD|θi, Mi)]-(Ki
2
) logn+O(1)     (3)

In Equation (3), n indicates the number of samples 
recorded in the dataset, ki is number of the regression 
parameters in model Mi and O (1) is the error term.

In addition to the computation posterior probability 
of the models that enter in BMA analysis, the posterior 
probability can be obtained for each of variables (genes) 
that enter in the analysis.

This information is useful in facilitating biological 
discussion and it helps to identify suitable predictor 
variables.

Let the (bi≠0) shows that the regression parameter for 
gene Xi exists in the vector of regression parametersθi. In 
this case, posterior probability which gene Xi is a suitable 
predictor variable, is written as bellow:

pr(bi≠0|TD) = ∑Ms where gene is relevant pr(Ms|TD)               (4)

Posterior probability of gene Xi is sum Posterior 
probabilities of all models in subset S that contain gene 
Xi (Annest et al., 2009).

Use of Iterative BMA method is unsuitable for 
microarray data. Because microarray dataset contains 
thousands of genes, while the implementation of leaps 
and bounds algorithm is slow when there are more 
than 45 variables (Annest et al., 2009). Performing a 
preprocessing step is proposed for dimension reduction 
and ranking genes (Annest et al., 2009). In present study, 
the univariate Cox proportional hazard model was used 
in preprocessing step. With parameters estimation of 
univariate Cox proportional hazard model, genes are 
sorted on the basis of their log likelihood in descending 
order. Then ranked genes from 1 to 1000 are selected that 
were more associated with survival. For selecting model, 
we fitted all possible models with at most m variables for 
the ranked genes from 1 to m (m≤25). We selected 50 
(nbest=50) models with the best fit among them on the 
basis of leaps and bounds algorithm. For reducing set of 
selected models, we used the Occam’s window algorithm 
and we removed the models with a posterior probability of 
less than the threshold (less than 5% posterior probability 
the strongest model). Then, we calculated the posterior 
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probability of m genes by using the selected models and 
we eliminated genes with the low posterior probability. 
We replaced deleted genes with next genes in the terms of 
rank. These steps continually repeated until through 1000 
genes processed. Finally, the top models are obtained with 
maximum 25 genes in each model.

To evaluate the performance of iterative BMA method, 
risk scores of test group separated into two risk groups. 
The overall risk score for a patient is considered weighted 
average of the risk scores calculated for each model Mi 

in the set S. The equation is as bellow: 

∑i s(xj
v θ̂i) pr(Mi|TD)                                               (5)

Note that maximum likelihood estimation of the 
predictive coefficients and the posterior probability of 
the models is obtained from training dataset and the 
expression score of each gene into model for a patient (xj

v) 
achieved of test dataset. Finally, we determined cutpoint 

Table 1. Selected Genes by the Iterative BMA, Their Corresponding Posterior Probabilities, Log Likelihood 
Ranking and Description of Genes

No. Selected 
genes

Posterior 
probability

Univariate Cox 
ranking Gene description

1 PSMA7 0.945 20 |AF022815||Hs.233952|Proteasome (prosome, macropain) subunit, 
alpha type, 7

2 ALDOB 1 88 |X02747|*H72098|Hs.530274|Aldolase B, fructose-bisphosphate
3 GLIPR1 1 213 |X91911|*AA807145|Hs.205558|GLI pathogenesis-related 1 (glioma)

4 ANPEP 0.806 357 |M22324|*T73440|Hs.1239|Alanyl (membrane) aminopeptidase 
(aminopeptidase N, aminopeptidase M, micros

5 STAT4 1 473 |L78440|*H42789|Hs.80642|Signal transducer and activator of 
transcription 4

6 IGJ 0.973 488 |NM_144646|*AA714365|Hs.381568|Immunoglobulin J polypeptide, 
linker protein for immunoglobulin alpha

7 TCF12 0.519 501 |M65209||Hs.511504|Transcription factor 12 (HTF4, helix-loop-helix 
transcription factors 4)

8 MAP2K3 0.858 834 |D87116|*H08749|Hs.514012|Mitogen-activated protein kinase 
kinase 3

9 UBE2A 0.021 883 |M74524|*AA804394|Hs.379466|Ubiquitin-conjugating enzyme E2A 
(RAD6 homolog)

10
Ubiquitin-

conjugating 
enzyme

0.643 925 |AI436620|*AI436620|Hs.385986|Ubiquitin-conjugating enzyme 
E2B (RAD6 homolog)

11 MAPK3 0.367 937 |X60188|*AA826939|Hs.861|Mitogen-activated protein kinase 3

12 HLA-E 0.019 940 |X56841|~H42063|Hs.381008|Major histocompatibility complex, 
class I, E

13 MGC27165 0.373 942 |BX640847|~H45437|Hs.497723|Hypothetical protein MGC27165

14 Transcribed 
locus 0.406 950 |AI440068|AI440068|Hs.165153|Transcribed locus

15 TRIM26 0.039 962 |BC021115|~AA421953|Hs.485041|Tripartite motif-containing 26

16 CD63 0.04 973 |NM_001780|*AA430369|Hs.445570|CD63 antigen (melanoma 1 
antigen)

17 MGC61571 0.084 983 |BX648671||Hs.437336|Hypothetical protein MGC61571
18 KIAA0033 0.985 986 |D26067||Hs.501865|KIAA0033 protein

19 IGLL1 0.049 989 |M27749|*W73790|Hs.348935|Immunoglobulin lambda-like poly-
peptide 1

20 V01555 0.901 990 |V01555|||

21
Ubiquitin-

conjugating 
enzyme

0.181 992 |NM_016336|*AA488853|Hs.163776|Ubiquitin-conjugating enzyme 
E2, J1 (UBC6 homolog

22 M33374 0.964 996 |M33374|*H46693||

23 CLAM2 0.364 997 |D45887|*AA761097|Hs.468442|Calmodulin 2 (phosphorylase 
kinase, delta)

24 ADORA2A 0.008 999 |M97370||Hs.197029|Adenosine A2a receptor
25 HOXD9 0 1000 |NM_014213||Hs.236646|Homeo box D9
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to identify high-risk group from low-risk group by using 
the risk score of patients in the train group. In present 
study, cutpoint acquired 60%. In other words, low-risk 
group contains 60% of the low boundary of the risk scores 
and high-risk group contains 40% of the high boundary 
of the risk scores. 

Also, predictive efficiency of two groups of patients 
has been assessed by Kaplan-Meier survival curve and 
log- rank test. For data analysis in confidence level 
95%, the bioconductor package iterativeBM in R12.2.0 
environment has been used. This package is available at 
http://www.bioconductor.org/.

Results 

In this study, we performed iterative Bayesian 
model averaging method for dataset of the Mantle Cell 
Lymphoma patients. The 132 Competitive models were 
selected based on the posterior probabilities and the 
cutpoint 60%. Number of variables in each model was 
changing from 9 to 16 and the average number of variables 
was 12.68 genes per model. The posterior probabilities 
and univariate log likelihood ranking related to the 25 
selected genes have been shown in Table 1. Among the 
25 genes, HOXD9 gene with zero posterior probability 
has not been selected. Result of this table is showing that 
Among the 25 selected genes by BMA algorithm, 7 genes 
(28%) have rank above 502. Except 7 mention genes, the 
others selected genes have poor univariate ranks, so that, 

the highest ranking obtained from Cox proportional hazard 
model among them is 834 through 1000. In addition, 
the average ranking of the three genes with posterior 
probability 1 was 258.

The test group was consisted 31 patients. Iterative 
BMA method assigned 13 patients to high-risk category 
and 18 patients to low-risk category. Among 31 patients, 9 
patients had been censored. One patient placed in high-risk 
group, from the 9 censored patients, While 12 patients of 
the uncensored group assigned to high-risk group. Table 
2 shows the number of patients in each group.

To evaluate results, the Kaplan-Meier survival curves 
and the log- rank test were used. Figure 1 shows the 
Kaplan-Meier survival analysis curve. The based on 
this figure, there is consistently difference between the 
survival curves of two groups which survival length of 
people of high-risk group is very lower than people of 
low-risk group. Also, for the test sample, based on log-
rank test, value of chi-Square obtained 21.1 (P<0.001) 
that indicates the strength of iterative BMA method for 

Figure 1. Kaplan-Meier Survival Analysis Curve

Table 3. The Cox Model Estimated Parameters and P-values

No. Variable (gene) β SE Wald df p-value e(β)
1 PSMA7 2.31 0.9 6.62 1 0.01 10.02
2 ALDOB -1.74 0.38 20.65 1 0 0.18
3 GLIPR1 -2.58 0.58 20.04 1 0 0.08
4 ANPEP 1.5 0.76 3.85 1 0.05 4.47
5 STAT4 -1.56 0.39 16.03 1 0 0.21
6 IGJ 0.78 0.22 12.75 1 0 2.18
7 TCF12 1.74 0.75 5.36 1 0.02 5.72
8 MAP2K3 -1.8 0.5 12.83 1 0 0.17
9 Ubiquitin-conjugating enzyme -1.58 0.55 8.34 1 0 0.21
10 MAPK3 2.09 0.8 6.8 1 0.01 8.05
11 Transcribed locus -0.87 0.43 4.17 1 0.04 0.42
12 TRIM26 1.2 0.61 3.81 1 0.05 3.32
13 KIAA0033 -1.48 0.47 9.81 1 0 0.23
14 V01555 0.41 0.13 9.33 1 0 1.51
15 M33374 -2.02 0.74 7.39 1 0.01 0.13
16 CLAM2 1.52 0.69 4.9 1 0.03 4.57

Table 2. Censored and Uncensored Samples, in Each 
Risk Group
Group	 Censored	 Uncensored	 Total

High risk	 1	 12	 13
Low risk	 8	 10	 18
Total	 9	 22	 31
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distinguishing the two risk groups from each other. For 
25 genes simultaneously, the based on Cox proportional 
hazard model, 16 genes were significant (P<0.001). Table 
3 shows estimation of the Cox proportional hazard model 
parameters and the level of significant for 16 genes.

Discussion

In present study, the iterative BMA method has 
been applied for using in survival analysis with high 
dimensional microarray data. Using this method numbers 
of 8810 genes have been reduced to 25 genes and 132 top 
survival models have been selected. Selected models were 
rather simple and including 9 to 16 genes. Also, Posterior 
probabilities of the selected genes were calculated by 
the iterative BMA. Values of the posterior probability 
of chosen genes was indicating overall contribution 
that gene into the patient risk score across all selected 
models. Finally, patients were separated into two risk 
groups: low-risk group and high-risk group, with very 
high significantly. The results of this study showed that 
iterative BMA method is able to separate risk groups with 
very high significantly. The Kaplan-Meier survival curves 
and the log-rank test implied the high power of iterative 
BMA method to predictive survival.

Algorithm BMA, in preprocessing step, Cox 
proportional hazard model fits for each genes and genes 
orders based on their log likelihood in descending order. 
Therefore, there are among selected variables comparison 
possibility of log likelihood values of top genes. The gene 
U19769 (not inclusion in selected genes) has first rank 
with log likelihood equal -214.57. The log likelihood 
for genes PSMA7 with ranking of 20 and HOXD9 with 
ranking of 1000, are respectively -218.41 and -288.29. So, 
genes with the poor ranking of log likelihood of univariate 
Cox often are selected by the iterative BMA algorithm 
and in the terms of goodness of fit are comparable with 
the top ranking genes. This is because that log likelihood 
scope of univariate Cox proportional hazard model is 
not extensive across the top 1000 genes. Thus, it is not 
surprising that selected genes by BMA that in the terms 
of log likelihood have poor ranking, achieve substantial 
predictive power when included in combinations. Previous 
studies have reported similar results. Hu et al, showed 
that gene PSMA7 is expressing in high level in the 
colorectal cancer sites and lymph node and liver metastatic 
sites while gene expression is not high in the normal 
colorectal tissue (Hu et al., 2008). Wan et al. (2004), Liu 
et al. (2007), Midorikawa et al. (2002), Li et al. (2004) 
respectively report that expression of genes M33374, 
ALDOB, KIAA0033 and V01555 are associated with 
Hepatocellular Carcinoma. Also, Muller et al, showed 
that GLIPR1 associates with prostate cancer (Muller et 
al., 2010). Chang et al. (2009) in their study, reported 
role of STAT4-deficient in the impaired development of 
human Th1 cells for posttransplantation patients (Chang 
et al., 2009). Park et al. (2008) detected existence the 
aberrant methylation for gene MAP2K3 in at least one 
lung adenocarcinoma cell lines (Park et al., 2008). Ma et 
al. (2009) report connection IGJ gene with breast cancer 
(Ma et al., 2009).

Although, the achieved results in this study were 
hopeful, the iterative BMA method has some limitations 
and can be extended further. Such as, determining the 
optimum number of risk groups and proposing statistical 
methods, for the assessment of different calculation 
methods. It is suggested that validation the chosen genes 
obtained of the iterativeBMA method collaborate with 
genetic and clinical studies.

Iterative BMA algorithm has the high accurate and 
strength for survival analysis. This method is able to 
identify a few numbers of predictive variables among 
many variables (genes) in a microarray dataset. So, it 
can be used as a low-cost diagnostic tool in clinical 
researches. This multivariate technique computes the 
model uncertainty through the averaging over the 
posterior probabilities of the strongest competitive models. 
Multivariate feature iterative BMA with the ability to 
calculate the model uncertainty makes this method as 
an interesting pattern for extraction predictive genes of 
high-dimensional biological data.
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