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Introduction

High-energy photons generated by a medical linear 
accelerators are used in radiation therapy. With an 
increasing energy of these radiations, the penetration 
power of photons and secondary electrons will be 
increased and as a result the point of maximum dose 
(d_max) is placed in more depth (Apipunyasopon et al., 
2013).Depending on the amount of energy, dose build up 
region occurs for x-rays megavoltage in the first depths 
of the entrance surface of phantom or skin. Dose build up 
region are a causes the skin sparing effect in megavoltage 
beams and makes them suitable for delivering the lethal 
dose to deep tumors as well as reaching the lowest dose 
in the surface layers of the skin (Butson et al., 1997; 
Ravikumar and Ravichandran, 2000). On the other hand, 
low-energy photons and electron contamination causes 
an increase in the dose of skin, and loss or decrease in 
the skin sparing effect in the treatment with megavoltage 
beams (Ravikumar and Ravichandran, 2000).

Accumulated dose at the boundary between the air and 

1Deprtment of Medical Physisc, School of Medicine, 2Department of clinical Oncology, Golestan Hospital, Ahavaz Jundishapur 
University of Medical sciences, Ahvaz, Iran  *For correspondence: abdalvandneda@yahoo.com

Abstract

 Background: In radiation therapy, estimation of surface doses is clinically important. This study aimed to 
obtain an analytical relationship to determine the skin surface dose, kerma and the depth of maximum dose, 
with energies of 6 and 18 megavoltage (MV). Materials and Methods: To obtain the dose on the surface of skin, 
using the relationship between dose and kerma and solving differential equations governing the two quantities, 
a general relationship of dose changes relative to the depth was obtained. By dosimetry all the standard square 
fields of 5cm×5cm to 40cm×40cm, an equation similar to response to differential equations of the dose and kerma 
were fitted on the measurements for any field size and energy. Applying two conditions: a) equality of the area 
under dose distribution and kerma changes in versus depth in 6 and 18 MV, b) equality of the kerma and dose at 
x=dmax and using these results, coefficients of the obtained analytical relationship were determined. By putting the 
depth of zero in the relation, amount of PDD and kerma on the surface of the skin, could be obtained. Results: 
Using the MATLAB software, an exponential binomial function with R-Square >0.9953 was determined for 
any field size and depth in two energy modes 6 and 18MV, the surface PDD and kerma was obtained and both 
of them increase due to the increase of the field, but they reduce due to increased energy and from the obtained 
relation, depth of maximum dose can be determined. Conclusions: Using this analytical formula, one can find 
the skin surface dose, kerma and thickness of the buildup region. 
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the patient’s skin, which is known as the surface dose, is 
not clinically negligible and can be a limiting factor in 
dose delivery to deep tumors. As a result, determining 
the exact amount of surface dose for assessment of skin 
damage is essential in the planning of a proper radiation 
therapy technique (Devic et al., 2006). On the other hand, 
dosimetry of buildup region is important to determine 
the bolus thickness needed to increase the surface dose 
(Klein et al., 2003). 

From a physical point of view, the surface dose is the 
energy deposited within a very small mass of tissue at the 
surface of phantom, but there is no dosimeter with such 
a sensitive volume and surface dose measured by the 
dosimeters indicates dose measured at the their effective 
point of measure (Devic et al., 2006). In clinical conditions, 
the curves of PDD are obtained in a water phantom 
mainly using a computerized scanning system. But due 
to the high uncertainty of dose calculation in the first few 
millimeters beneath the surface of the water using this 
method, high-precision measurement cannot be obtained 
(Ishmael Parsai et al., 2008). A variety of dosimeters, such 
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as the radiochromic films (Bilge et al., 2009), parallel 
plates chambers (Tannous et al., 1981), TLD (Charles 
and Khan, 1978; Lin et al., 2001), diodes (Jornet et al., 
2000) and MOSFET (Scalchi et al., 2005) can be used. 
Surface dose measurements are often compared with 
extrapolation chambers (Nilsson and Montelius, 1986; 
Cora and Francescon, 1995). These measurements are 
time-consuming because these chambers by extrapolating 
different points, measure dose several times to obtain 
the skin surface dose. While extrapolation chambers are 
appropriate in experimental conditions, but in the clinical 
applications that we require skin or surface dose for each 
patient, they would be impractical (Devic et al., 2006). 
So we need an analytical relationship between dose and 
kerma to get the surface dose so that errors caused by the 
use of dosimeters are avoided.

The absorbed dose that is depended on photon fluence 
of the total volume under radiation, and not merely the 
photon fluence at the point, is composed of two primary 
and secondary components. The initial dose, is dose 
deposited by electrons generated by photons in each the 
point that already have not had the in teraction in volume 
under radiation and the secondary dose comes from the 
interaction of electrons by photons that already have had 
at least one interaction (Loevinger, 1981).

Kerma is the sum of initial kinetic energies of electrons 
released per unit mass by photon beams and because its 
radiant part escapes from the absorbed dose region, the 
absorbed dose is related to the collision part of kerma and 
in this regard, three states arise: 

Near the entrance surface, where the photon beam 
diameter appreciably is less than the maximum electron 
range in the medium and the electron equilibrium does 
not happen, the ratio of the dose to the collision part of 
kerma (β) will be less than 1. At a depth of greater than 
the maximum electron range and assuming that the photon 
attenuation is negligible in the desired area, there will be 
an equilibrium of charged particles and β would equal to 
one; finally, at a depth greater than the maximum electron 
range, which is called transient electronic equilibrium, due 
to the combined effect of the photon beams attenuation 
and mainly forward moving of secondary electrons, β will 
be greater than one (Loevinger, 1981).

From a mathematical point of view, kerma and 
absorbed dose curves are similar to transient equilibrium 
in radioactive nuclei, and here the kerma curve is similar 
to the parent activity that decays with the time, and dose 
curve is similar to the daughter’s activity, the difference 
is that unlike the daughter’s activity that is initially zero, 
The amount of surface dose always greater than zero due to 
the incident and/or back scattered charged particles(Attix, 
2008).

The aim of this study was to obtain an analytical 
relationship to measure the dose and percentage depth 
dose (PDD) for all fields and all depths, including zero 
depth (surface of the skin) with regard to the differential 
equations that govern the quantities of dose and kerma and 
parameterize the relationship using standards radiation 
fields (the square fields) at all therapeutic depths and 
6 and 18 MVphoton energies of Siemens Primus Plus 
linear accelerator in Golestan Hospital, Ahvaz, Iran. This 

relationship can contain information about the distribution 
of dose throughout the treatment volume that one of them 
is the skin surface dose parameter.

Materials and Methods

A. Theory
Due to the collision of megavoltage photons with 

equivalent body phantom, the electrons from surface 
layer of phantom are emitted by absorbing the radiation 
photon energy that this causes ionization in the phantom; 
therefore, the phantom surface absorbs the amount of 
photon energy and a number from substrates return to the 
back and deposit their energy at the surface (surface dose). 
The calculation of the dose can be performed with the help 
of physical analysis and mathematics of the interaction 
between photons with the phantoms. Free electrons from 
the surface layer of phantom with roughly equivalent 
energy to photons become a factor of new interactions in 
the next layer of the phantom. The energy available for 
electrons (kerma) becomes a factor for a new absorbed 
dose in phantom and so the process can continue. Thus, 
the amount of kerma constantly decrease and the amount 
of absorbed dose is added until the electronic equilibrium 
are met, namely almost the amount of kerma and the dose 
becomes almost equal (β=1).The law governing these 
interactions is exponential attenuation law and one can 
write as the following;

dK
dc

=-μkK  g  K(c)=K(0) e-μk  c ,                           (1)

where K is the kinetic energy of the electrons and μk 
is the attenuation coefficient of this energy.On the other 
hand, the law governing the dose or the absorbed photon 
energy and convertit to dose, according to the exponential 
attenuation law, is as follows:

dK
dc

=-μp D+γK(c) ,                                                (2)

where D is absorbed dose and μp is its attenuation 
coefficient and γ is the rate of convert it the kerma 
toabsorbeddose. Replacing thevalue of K(x) in theEq.
(2), it gives :

dK
dc

 + μp D=γK(0) e -μ
k

 c ,                                    (3)

This is a first-order linear differential equation as the 
form of dK

dc
 + R(x) y = Q(x) and the answer to this equation 

is as the following:

y(x) = e -∫ Rdx [C+∫ Q(x) e ∫ Rdx dx] ,

where C is an integral constant and byusing physical 
condition is determined. Then the answer of Eq. (3) 
becomes:

D(x) = Ce -μp c - γK(0)
μk-μp

 e -μk c.                              (4)

Because at the dmax depth, dose should be maximum, so
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dK
dc   c x=dmax = 0 

@
 .                                              (5)

By applying the condition (5) the constant of C is 
determined and with replacing of it Eq.(4) for each field 
size l one can find:

D (x,l) = γ (l).K (0) e -μk (l) dmax(l) μk (l) e
μp (l). (dmax (l)-x) - μp (l) e μk (l). (dmax (l)-x)

(μk (l)-μp (l)
,    (6.a)

K (x,l) = K (0,l) e-μk (l) x.    (6.b)

By puttingx= dmax in the Eq.(6.a), D (x = dmax) is 
obtained. So:

D (x= dmax)= γ(l). K(0)
μp (l)

 e-μk (l).dmax (l)),                     (7)

and because of PDD (x,l) = D (x,l)
D (x = dmax) :

PDD (x,l) = (μk (l) e μp (l).(dmax (l)-x)-μp (l) eμk (l).(dmax (l)-x)

(μk (l) -μp (l)
                 (8)

B. Dosimetry and measurement
In this research, we used the Omni-accept pro 6.5 

software, 0.13cc Scanditronix ioniziation chamber and 
Blue phantom (50×50×50cm3). In all standard fields from 
5×5cm2 to 40×40cm2 and to a depth of 25cm, the PDD 
value was measured as follows.

A dosimeter as a monitor was installed on the 
moveable phantom arm and an other dosimeter as a 
reference dosimeter was installed on the linear accelerator. 
Siemens Primus Plus. The MCU500E machine was used 
as a computer interface to control the movements of 
aphantomarmandreading of the output dosimeter readings. 
The ratio of the readings of two dosimeter was recorded 
by the electrometer at any point and then the amoun of 
frecorded in any depth was divided into the value recorded 
at x=dmax in each field that PDD in any depth was obtained.

With the help of software of MATLAB 2010a, the best 
fitting on the PDD data in each field according to the depth 
is achieved. The results of the fitting will be equivalent to 
Eq. (8) that from this equivalence, values of its coefficients 
were determined.

Using the assumption that the amount of kerma and 
absorbed dose at a dmax depth will be equal (β=1), the γ 
amount will be obtained as follows:

K (x=dmax) =D (x= dmax)   g   γ=μp.                       (9)

Due to the fact that the area under the kerma and dose 
changes curve should be the same, one can define a spatial 
displacement coefficient(u) to correct  the experimental 
data compliance;

SK = SD   g   ∫ K.dx = ∫ D.dx   g   u(l) = dmax (l)- 
lnμk-lnμp

μk-μp
   (10)

Therefore, constant values achieved from a 
measurement, must be shiftted with a namount of u(l).  
The value of K(0) that for each field is dependent on the 
amount of the prescribed dose at the desired depth of x is 
determined by using Eq. (6.a) as the following:

K(0)= K(0) = 100
PDD(x)   eμK.dmax.                       (11)

Then using µk and K(0), at any desired depth for each 
field, kerma value can be determined.

Results 

As a result of fitting of PDD of each field with 
MATLAB software, a binomial exponential function 
with R-square>0.9953 for energies of 6 and 18MV will 
be in the form of PDD (x)=Ae^(-bx)-Ce^(-dx) that it 
is well-matched the analytical Eq. (8). In each of the 
coefficients of A, b, C, d and d for the energies of 6 and 
18MVseparately, depending on the field size, we matched 
a polynomial function of 4th degree, with R-square> 0.9907 
and by applying the displacement of u, the results will be 
as follows:

A(l) = (μk (l).e μk (l).dmax (l)

(μk (l) - μp (l)
                                   (12.a)

b(l) = μp (l)    (12.b)

C(l)= 
(μp (l). e

μk (l). dmax (l) 
μk (l)-μp (l) )

                                  (12.c)

d(l) = μk (l)                                                        (12.d)

for 6 MV (13.a)

g 
(A(l)=(-9.646×10-6 )l4+(9.464×10-4)l3-(2.932×10-2)l2+(2.172×10-1)l+114.3 
b(l)=(5.841×10-9)l4-(8.676×10-7)l3+(5.319×10-5)l2-(1.67×10-3)l+6.591×10-2

C(l)=(2.202×10-5)l4-(2.068×10-3)l3+(6.345×10-2) l2-(5.574×10-1)l+82.99
d(l)=(9.103×10-7)l4-(8.408×10-5)l3+(2.599×10-3)l2-(2.593×10-2)l+1.669

for 18 MV (13.b)

g 
A(l)= (-3.282×10-5) l4+(2.948×10-3) l3-(8.09×10-2) l2+(4.843×10-1)l+119.6 
b(l)=(4.753×10-9) l4-(6.767×10-7) l3+(3.81×10-5) l2-(1.07×10-3) l+4.943×10-2

C(l)= (4.902×10-5) l4-(4.395×10-3) l3+(1.178×10-1) l2-5.689×10-1) l-100.8
d(l)= (1.226×10-6) l4-(1.113×10-4) l3+(3.003×10-3) l2-(1.409×10-2) l+9.202×10-1

By replacementthe coefficients obtainedfrom Eq.(13) 
and puttingx(Depth)= 0 inEq.(8), the amount ofPDDin 
the surface of the skin for each field lcan be obtainedas 
follows;

PDD (0,l) = A (l) -C(l)                                         (14)

Its results for energies of 6 and 18 MV are shown as 
in Table1.

Table 1. Percentage of surface depth dose based on the 
field size in energies of 6 and 18 MV Siemens primus 
Plus in Golestan Hospital, Ahvaz
Energy(MV) Side of Fields(cm)

 6 18
 30.35 19.15 5
 30.34 20.36 10
 30.75 21.79 15
 31.19 23.45 20
 31.46 23.45 25
 31.57 23.5 30
 31.71 23.3 35
 32.21 23.28 40
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At a dose of 100cGy prescribed to a depth of 10cm, 
the kerma amount in the skin was obtained according to 
Eq. (11) the results are shown in Table 2.

Derivative of Eq. (8) compared to the depth, dmax is 
obtained as follows:

∂PDD
∂x  = 0   g   dmax (l) = 

ln(Al.bl )-ln(Cl.dl)
bl-dl 

         (15)

And with substituting the coefficients of relation of 
13, for energies of 6 and 18 MV, depth of maximum dose 
was obtained according to Table 3. 

Discussion

According to Table.1, by increasing the field size, the 
percentage of surface dose increases that this could be 
caused by an increase of the amount of scattering in the 
larger fields and on the other hand with increased energy, 
the percentage of surface dose will be reduced due to the 
reduced backscattered. According to the present findings, 
amount of kerma on the surface of the skin, as usual, will 
be increased due to the increase of the field, and will be 
reduced due to increased energy.

All depths reported in this study, including dmax have 
the accuracy within the range of ±3mm (the radius of 
ionization chamber) and the shifting parameter u assured 
the accuracy of fitting process and normalization of PDD 
quantity for all fields to a unique dmax in each energy, as 
seen in Table 3, in low energies, changes of dmax with field 

size is not very noticeable.
Using Kodak X-Omat radiographic films with  an 

effective depth of measurement of 0.38mm, Butson 
obtained surface percentage dose in the energy 6 MV 
of Varian accelerator 2100 C of fields of 10×10 up to 
30×30cm2 after extrapolation at depth of zero in fields from 
15% to 38% (Butson et al., 2004). But in this study using 
the Eq.(15), PDD value was obtained at the depth of zero 
in the same fields 30.34% to 31.57% that the percentage 
of surface dose achieved have been within the range of 
the results of the study conducted by Butson. 

Parsai calculated the surface PDD at 6 and 10 MV 
linear acceleratorVarian 2300 energies of fields of 5×5cm2 
to25×25cm2 with the use of extrapolation chamber, 
parallel plate chamber, a cylindrical chamber and a Monte 
Carlo simulation. For the field of 10×10cm2 energyof 6 
MV, PDD surface, in different dosimeter are above16.04, 
16.14, 48, 34.6%, respectively (Ishmael et al., 2008). But 
in this research, in-depth zero and same field size in energy 
6 MV, PDD amount equal to 30.34%.

Using Micro-MOSFET at the surface of a phantom 
in energy 6 MV Varian 21EX Accelerator and field size 
of 10×10cm2, Xiang found that the PDD value is 41.2%, 
and at a depth of 1 mm is 42% (Xiang et al., 2007). But in 
this study, the PDD value at the surface of phantom was 
30.34% and at depth of 1 mm was 42.12%.

Limitation of application tools in determining the dose 
at one point reveals the importance of the above relation 
by the dimensions of chambers or other tools. In this study, 
with respect to obtaining a quite analytical relationship 
based on physical principles, with parameters, surface 
skin dose can be determined. Similarly, the amount of 
kerma, which is the source and the generator of dose, can 
be achieved at each point of the irradiated volume. On the 
other hand, other parameters such as the buildup region 
thickness and its variations to the existing variables were 
obtained from the relationship.
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