Breast Cancer Trend in Iran from 2000 to 2009 and Prediction till 2020 using a Trend Analysis Method

Bibihajar Zahmatkesh1, Afsaneh Keramat2, Nasrinossadat Alavi3, Ahmad Khosravi4, Ahmad Kousha5, Ali Ghanbari Motlagh6, Mahboobeh Darman7, Elham Partovipour8, Reza Chaman9*

Abstract

Background: Breast cancer is the most common cancer in women worldwide with a rising incidence rate in most countries. Considering the increase in life expectancy and change in lifestyle of Iranian women, this study investigated the age-adjusted trend of breast cancer incidence during 2000-2009 and predicted its incidence to 2020. Materials and Methods: The 1997 and 2006 census results were used for the projection of female population by age through the cohort-component method over the studied years. Data from the Iranian cancer registration system were used to calculate the annual incidence rate of breast cancer. The age-adjusted incidence rate was then calculated using the WHO standard population distribution. The five-year-age-specific incidence rates were also obtained for each year and future incidence was determined using the trend analysis method. Annual percentage change (APC) was calculated through the joinpoint regression method. Results: The bias adjusted incidence rate of breast cancer increased from 16.7 per 100,000 women in 2000 to 33.6 per 100,000 women in 2009. The incidence of breast cancer had a growing trend in almost all age groups above 30 years over the studied years. In this period, the age groups of 45-65 years had the highest incidence. Investigation into the joinpoint curve showed that the curve had a steep slope with an APC of 23.4% before the first joinpoint, but became milder after this. From 2005 to 2009, the APC was calculated as 2.7%, through which the incidence of breast cancer in 2020 was predicted as 63.0 per 100,000 women. Conclusions: The age-adjusted incidence rate of breast cancer continues to increase in Iranian women. It is predicted that this trend will continue until 2020. Therefore, it seems necessary to prioritize the prevention, control and care for breast cancer in Iran.

Keywords: Trend - Iran - breast - cancer - joinpoint analysis

Introduction

Breast cancer is the most common cancer among women in the developed and developing countries (Jemal et al., 2011; Benson and Jatoi, 2012; Ferlay et al., 2015) and its incidence is rising due to the increased life expectancy, urbanization, and lifestyle changes(Benson and Jatoi, 2012).

The age-adjusted incidence rates of breast cancer are on the rise in most countries, especially in those such as Japan, China, Eastern and Southeast Europe, which had a low incidence rate before (Parkin et al., 2005). In the U.S., however, the incidence of breast cancer in women did not change during 2002-2011(Kohler et al., 2015).

The incidence of breast cancer has increased over a ten-year period in the East and Southeast Asian countries (Shin et al., 2010). A constant increase has been observed in the incidence of breast cancer in the West Asian countries (Salim et al., 2009). In India, the cancer registration systems have reported an increasing ratio of breast cancer to other types of cancer during 1990-2003 (Takiar and Srivastav, 2008).

The total burden of breast cancer has been doubled during 1975 to 2000, and it is likely to be doubled again by 2030, mainly in low and middle income countries where there is a lack of resources and predictive plan for dealing with current and future conditions (Boyle, 2010). In Iran, cancer is the third leading cause of mortality after cardiovascular diseases and traffic accidents. Every year, over 30,000 Iranians die of cancer. Due to increase...
in life expectancy and elderly population, the incidence of cancer is expected to be doubled in the next two decades (Center for Disease Control and Prevention, 2010).

Cancer registration system reveals an increasing trend of breast cancer incidence (Taheeri et al., 2012; Enayatrad and Salehiniya, 2015), with the Northern and Central provinces at the top (Jafari-Koshki et al., 2014; Enayatrad and Salehiniya, 2015). Breast cancer is the most common cancer among Iranian women (IARC, 2012).

Health officials and policy makers in every country require information on the future burden of cancer to develop prevention programs, prioritize the activities properly, allocate resources, and evaluate cancer control or treatment programs (Jiang et al., 2007). In this study, the age-adjusted-specific incidence of breast cancer was investigated in Iran in a ten-year period (2000 to 2009), and its trend was projected using trend analysis to take an effective step in controlling breast cancer and improving women’s health.

Materials and Methods

The first stage: determination of the age-adjusted incidence of breast cancer in Iran

The data obtained from the cancer registration system in the center for non-communicable diseases control of Iran Ministry of Health and Medical Education were used to investigate the incidence of breast cancer between the years 2000-2009. The first and second reports of Iranian cancer registration system were published in 1986 and 2007, respectively. It should be noted that before 2007, cancer cases were registered only in the center of disease control, based on the pathological reports; whereas, from 2008, the population-based cancer registration program was implemented in 20 universities as a supplement for the pathological records. Population-based cancer registration monitors the frequency of new cancer cases (incidence) in the population in each year and collects the records from various sources (medical centers, clinicians and pathologists, and death certificates) (Center for Disease Control and Prevention, 2012).

To determine the annual incidence of breast cancer in the age groups of 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84, and ≥85 years, the 1996 and 2006 census results were first used to calculate the women’s population in the 5-year age groups through the cohort-component method. The incidence of breast cancer in each age group was then determined after eliminating the invalid data from the cancer registration data during years 2000-2009 collected by the Ministry of Health and Medical Education. Then The frequency of breast cancer has been corrected based on the percentage of national cancer registration program covering 29%, 60% and 86.7%, respectively, for the years 2000, 2003 and 2007 (Center for Disease Control and Prevention, 2012) were calculated and standardized.

The second stage: determination of the trend of age-adjusted incidence of breast cancer in Iran and its projection for the next decade
Breast Cancer Trend in Iran from 2000 to 2009 and Prediction till 2020 with a Trend Analysis Method

also corrected the frequency of breast cancer based cancer registry system cover 29%, 60% and 86.7%, respectively, for the years 2000, 2003 and 2007, the population of each age group by year, and the standard population, extracted from the WHO’s standard distribution in 2000 prepared based on the world’s average population between 2000 and 2025, were used to calculate the trend with this model. Practically, both linear and log-linear models often provide good fit for short-term data. When applied to cancer cases, negligible differences have been observed in deviance between the two models, and no more efficient model has been identified in this regard. However, although both models may perform well in data fitting, the projections provided by the models can be quite different (National Cancer Registry Ireland, 2006).

Results

Based on the available data, the incidence of breast cancer has had an increasing trend in Iran from 2000 to 2009. However, the pace of this trend has been changing in that age-adjusted incidence increased from 4.71 in 2000 to 13.17 in 2002 and then to 29.98 [per 100,000] in 2009. Crude and age-adjusted incidence rates of breast cancer during this time period by each year is shown in Table 1.

Table 1. Observed and Modeled Age-adjusted Breast Cancer Rates between 2000-2009

<table>
<thead>
<tr>
<th>Year</th>
<th>Age adjusted rate with reported cases ±Standard Error</th>
<th>Modeled cancer rate</th>
<th>Bias and Age adjusted rate ± Standard Error</th>
<th>Bias adjusted cancer rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>5.49 ± 0.17</td>
<td>4.71</td>
<td>18.91 ± 0.31</td>
<td>16.65</td>
</tr>
<tr>
<td>2001</td>
<td>6.05 ± 0.17</td>
<td>7.88</td>
<td>15.13 ± 0.27</td>
<td>20.55</td>
</tr>
<tr>
<td>2002</td>
<td>13.50 ± 0.25</td>
<td>13.17</td>
<td>27.00 ± 0.35</td>
<td>25.36</td>
</tr>
<tr>
<td>2003</td>
<td>16.96 ± 0.27</td>
<td>15.87</td>
<td>28.27 ± 0.35</td>
<td>26.88</td>
</tr>
<tr>
<td>2004</td>
<td>18.15 ± 0.28</td>
<td>19.13</td>
<td>27.21 ± 0.34</td>
<td>28.50</td>
</tr>
<tr>
<td>2005</td>
<td>23.12 ± 0.31</td>
<td>23.05</td>
<td>31.49 ± 0.36</td>
<td>30.22</td>
</tr>
<tr>
<td>2006</td>
<td>24.13 ± 0.31</td>
<td>24.62</td>
<td>30.17 ± 0.35</td>
<td>31.03</td>
</tr>
<tr>
<td>2007</td>
<td>27.46 ± 0.32</td>
<td>26.29</td>
<td>31.68 ± 0.35</td>
<td>31.85</td>
</tr>
<tr>
<td>2008</td>
<td>27.80 ± 0.32</td>
<td>28.08</td>
<td>32.06 ± 0.34</td>
<td>32.70</td>
</tr>
<tr>
<td>2009</td>
<td>29.73 ± 0.32</td>
<td>29.98</td>
<td>34.29 ± 0.35</td>
<td>33.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cancer</th>
<th>Period</th>
<th>Annual Percentage Change(APC)</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer</td>
<td>2000-2002</td>
<td>23.4</td>
<td>5.7-44.1</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>2003-2005</td>
<td>6</td>
<td>-5.4-18.8</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>2005-2009</td>
<td>2.7</td>
<td>-0.5-5.9</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>2000-2009</td>
<td>8.1</td>
<td>5.5-10.8</td>
</tr>
</tbody>
</table>
in the years 2000, 2003 and 2007, the frequency of breast cancer was corrected for each year, respectively. With this method, the age-standardized incidence rate of 16.65 in 2000 to 26.88 in 2003 and 33.58 in 2009 (Table 1).

Results in Table 2 show a steep rise in the incidence of breast cancer in Iranian women from 2000 to 2002 (23.40% APC). This trend decreased by 2.7% annually during 2005-2009 (Table 2).

Breast cancer incidence in each of the age groups (30-34, 35-40, 39-44, ..., and over 85) also continued a growing trend with fluctuation in some groups (Table 3).

An increasing trend of breast cancer incidence was observed in almost all age groups during the studied years (2000-2009). Interestingly, in 2009 compared to 2008, a declining trend was observed in the trend of breast cancer incidence in the 40-44 and over 85 years age group (Table 3).

Two point becomes clear by investigating the annual changes (%) in the age-adjusted incidence rates of breast cancer in Iran (Table 2) during 2000 to 2009. The growing trend in the breast cancer incidence with a steep slope during 2000 to 2002 can be attributed to due to the evolution of Iranian cancer registration system, which leads to the identification of higher number of patients. Therefore, the annual change (%) during 2005 to 2009, which had a mild slope (Figure 1), was used to predict the age-adjusted incidence rate of breast cancer during 2010-2020.

Figure 3 Indicates the Increasing Trend of Age-Adjusted Incidence Rate of Breast Cancer in The Coming Years (by 2020), which was Obtained Through the Linear-Log Model. As a result, the trend is reinforced as the years go by.

Discussion

Results showed that, bias-age-adjusted incidence of breast cancer follows an increasing trend (from 16.65 in 2000 to 33.58 in 2009, per 100,000 women). Similar trend was observed in almost all age groups. Previous studies also have shown an increasing ASR trend in breast cancer incidence (Yang et al., 2004; Ozmen, 2008; Shin et al., 2008; Takiar and Srivastav, 2008; Mousavi SM et al., 2009; Shir et al., 2010; Beiki et al., 2012; Taheri et al., 2012; Asadzadeh Vostakolaei et al., 2013; Fateh and Emamian, 2013; Kiadaliri, 2013; Enayatrad and Salehiniya, 2015).

In our study, the slope in the age-adjusted incidence of breast cancer was steeper between 2000 and 2002 (16.65 to 25.36 per 100,000 women); however, an almost constant and mild slope was observed in the following years (26.88 in 2003 to 33.58 per 100,000 women in 2009) (Figure 1). According to the state report of the registered cancer cases, 29% of the expected cancer cases were recorded in Iran in 2000. Upon improving the registration process in 2003, 60% of the expected cancer cases were reported in 2003, and 86.7% in 2007 (Center for Disease Control and Prevention, 2012). Improved cancer registration in Iran resulted in better identification of patients in 2002. This can justify a large part of the observed rise as well as the steep slope of the ASR trend between 2000 and 2002.

Studies in the U.S. (American cancer society, 2013; American Cancer Society, 2015), as well as the study by Daubisse-Marlic in France, have shown a declining trend in the annual incidence of breast cancer from 2003 onwards, which can be due to decreasing the administration of hormone replacement therapy (HRT) (Chlebowski et al., 2009; Daubisse-Marliac et al., 2011; American Cancer Society, 2015). This is inconsistent with our results and growing trend in the incidence of breast cancer in Iran.

In our study, the age group of 75-79 years had the highest incidence in 2000, followed by the age groups of 45-49, 60-64, and 50-54 years. In 2001, the highest incidence was observed in the age groups of 50-54 and 45-49 years. In 2002-2005 and 2007-2008, the highest incidence was observed in the age group of 50-54 years, while during 2006 the highest incidence was observed in the age group of 55-59 years in 2009, the highest incidence was observed in the age group of 60-64 years and the incidence rate declined after this age group.

The highest age-specific incidence during 2005 was observed in the age group of 50-59 years, which is consistent with the results reported by Husseini et al.

Table 3. Age-Specific Incidence Rate of Breast Cancer in Each Age Group During 2000-2009

<table>
<thead>
<tr>
<th>Age groups (year)</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-34</td>
<td>12.48</td>
<td>11.79</td>
<td>19.02</td>
<td>17.98</td>
<td>17.72</td>
<td>18.80</td>
<td>18.64</td>
<td>19.67</td>
<td>17.82</td>
<td>20.25</td>
</tr>
<tr>
<td>35-39</td>
<td>25.80</td>
<td>16.54</td>
<td>32.14</td>
<td>34.40</td>
<td>32.22</td>
<td>40.27</td>
<td>39.47</td>
<td>37.37</td>
<td>37.30</td>
<td>39.34</td>
</tr>
<tr>
<td>40-44</td>
<td>38.98</td>
<td>33.24</td>
<td>60.27</td>
<td>62.88</td>
<td>58.17</td>
<td>63.86</td>
<td>61.19</td>
<td>63.43</td>
<td>66.28</td>
<td>63.94</td>
</tr>
<tr>
<td>45-49</td>
<td>51.74</td>
<td>41.62</td>
<td>71.90</td>
<td>77.85</td>
<td>75.85</td>
<td>85.62</td>
<td>77.86</td>
<td>82.89</td>
<td>86.24</td>
<td>88.63</td>
</tr>
<tr>
<td>50-54</td>
<td>51.33</td>
<td>43.68</td>
<td>84.03</td>
<td>81.42</td>
<td>78.40</td>
<td>97.22</td>
<td>83.32</td>
<td>92.16</td>
<td>91.02</td>
<td>96.97</td>
</tr>
<tr>
<td>55-59</td>
<td>44.12</td>
<td>35.51</td>
<td>68.01</td>
<td>80.81</td>
<td>70.49</td>
<td>84.16</td>
<td>88.37</td>
<td>91.82</td>
<td>87.57</td>
<td>99.63</td>
</tr>
<tr>
<td>60-64</td>
<td>51.62</td>
<td>35.00</td>
<td>62.35</td>
<td>63.24</td>
<td>68.76</td>
<td>85.84</td>
<td>85.34</td>
<td>86.24</td>
<td>93.43</td>
<td>107.78</td>
</tr>
<tr>
<td>65-69</td>
<td>41.17</td>
<td>35.04</td>
<td>57.48</td>
<td>65.38</td>
<td>63.61</td>
<td>69.70</td>
<td>74.75</td>
<td>72.52</td>
<td>77.64</td>
<td>85.90</td>
</tr>
<tr>
<td>70-74</td>
<td>36.68</td>
<td>35.08</td>
<td>53.50</td>
<td>53.41</td>
<td>56.99</td>
<td>61.24</td>
<td>68.52</td>
<td>64.76</td>
<td>64.69</td>
<td>76.84</td>
</tr>
<tr>
<td>75-79</td>
<td>54.89</td>
<td>39.50</td>
<td>48.91</td>
<td>52.69</td>
<td>57.72</td>
<td>61.41</td>
<td>59.07</td>
<td>63.11</td>
<td>55.69</td>
<td>65.64</td>
</tr>
<tr>
<td>80-84</td>
<td>25.00</td>
<td>24.46</td>
<td>48.43</td>
<td>48.41</td>
<td>56.09</td>
<td>47.30</td>
<td>43.24</td>
<td>56.73</td>
<td>54.09</td>
<td>57.96</td>
</tr>
<tr>
<td>85≤</td>
<td>27.12</td>
<td>13.94</td>
<td>53.13</td>
<td>38.45</td>
<td>27.79</td>
<td>32.42</td>
<td>38.90</td>
<td>46.70</td>
<td>62.90</td>
<td>44.32</td>
</tr>
</tbody>
</table>
In our study, the annual percentage change (APC) in the breast cancer incidence during 2000-2002 and 2003-2005 and 2005-2009 was 23.4%, 6% and 2.7%, respectively. The rate of 2.7% APC seems reasonable considering the improvements in the cancer registration system. The APC in breast cancer incidence during 2000-2009 was 8.1% and is somewhat consistent with the results reported by Jung in Korea (APC=7.2% during 1999-2005) (Jung et al., 2009). In Qom, the APC between 2004-2008 (13.8%) was higher than that obtained in our study could be due to limited population and differences in exposure of women with risk factors in the region (Rafiemanesh et al., 2015). In East and South-East Asia, the annual increase in breast cancer ranged from 0.9% in Philippines to 7.8% in Korea in women aged 20 years and older (Shin et al., 2010). The differences between the results may be due to the difference in the duration of studies, ethnicities, and the exposure to risk factors.

Iranian women’s life expectancy has increased from 44.6 years in 1960 to 73 years in 2014 (Mofrad et al., 2010). In addition, the incidence of cancer in women 55 and older is high. Half the patients in our study were older than 50 years in 2009. Therefore, the incidence is expected to increase due to the higher incidence of cancer in older ages, more and earlier diagnosis driven by the promotion of women’s awareness and advances in diagnostic techniques.

An increased incidence of breast cancer has been observed in a ten-year period in the Southeast and Eastern Asian countries. Average annual percentage change in the incidence of breast cancer was 9.7% in Korea (with low incidence of 9.31%), 6.1% in Taiwan (with the average incidence of 52.5%), and 4.4% in Singapore (with high incidence of 82.2%). In Korea, the incidence increased significantly over 1993-2002 in all age groups, except over 70 years. Filipinos had the lowest APC in all age groups. Women aged 50-69 years had significantly higher APC in most countries, except Japan, rural areas of China, and the Philippines (Shin et al., 2010).

In the trend analysis curve (Figure 1), two point stands out in the change trend, before first point, the trend has a steep slope, whereas after that, the slope becomes milder. Therefore, the APC of breast cancer incidence during 2005-2009 was used to predict the age-adjusted incidence rate between 2010 and 2020. Thus, ASR for breast cancer in 2020 was calculated as 62.95 per 100,000 women provided that the prevalence of risk factors and annual mortality and incidence rates would continue with the same trend. This rate is lower than that reported by Asadzadeh (approximately 65 per 100000) which could be due to differences in the projection methods.

The incidence of breast cancer is increasing in the Asia Pacific (Yang et al., 2004). A dramatically-increasing trend has been observed in most regions. The possible reasons include decrease in age of menarche, increase in age of menopause, reduced number of pregnancies, increased gestational age, increased height and weight, and the diet changes (Yang et al., 2004).

Incomplete coverage of cancer registration in the period under study, especially during 2000-2003, was one of the limitations of the present study.
In conclusion, an increasing trend of breast cancer is evident in Iran. In addition, increased number of risk factors along with the demographic changes aggravates the future incidence of breast cancer. Examination of mechanisms to improve the cancer registration systems, accurate assessment of risk factors for breast cancer, development of prevention program, and control of preventable risk factors seem necessary in this regard.

Acknowledgements

This article is a part of the PhD thesis (code: 9340) supported by grant from Shahroud University of Medical Sciences Research Council. We would like to thank the vice-chancellor of education, as well as the vice-chancellor of research and technology of the University for their financial support to carry out the study.

References