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Introduction

Ovarian cancers (OC) is the sixth most common 
malignance in the worldwide, and represent the fourth 
leading cause of gynecological cancer death (Jemal et 
al., 2008), this is mainly more than 70% of patients are 
diagnosed in advanced stages, and the five year survival 
is less to 50% (Jemal et al., 2008). OC is classified 
according to the ovarian tissue of origin, the epithelial 
ovarian cancer (EOC) is the most common (Cannistra, 
2004). EOC is further classified into serous, cell clear, 
mucinous and endometrioid types, with serous type being 
the most common. In Mexico the incidence is of 10.1 cases 
per 100,000 women (Globocan, 2012). Several factors 
are involved in prognosis of OC such as: early detection, 
age, tumor stage, and familiar history of ovarian/breast 
cancer, among others.

The identification of molecular signature has improved 
our understanding of  the molecular mechanism associated 
with ovarian cancer pathogenesis has identified molecular 
markers useful for diagnosis, prognosis and even as target 
for treatment (Chen et al., 2015). Recent data indicates 
that certain deregulated genes are associated whit tumor 
progression (Liu et al., 2015). 

Unregulated proliferation, migration, invasion, and 
treatment resistance characterize the ovarian cancer cell 
as well as point mutation in BRCA1/2, copy number 
amplification, over/under gene expression, genetics 
and epigenetic modification of DNA among others. The 
Omics studies have improved the approaches in cancer 
research; they provide large-scale genomics analyses 
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of imbalances, gene expression, and proteomics profile. 
Our laboratory results, using high density microarrays, 
showed gene expression and alternative splicing profiles 
in non-malignant, malignant ovarian tumors and ovarian 
cell lines (Juarez-Mendez et al., 2013). However, it is not 
clear the molecular interaction of deregulates genes in OC. 

Systems biology approach provides extraordinary 
tools to examine high complexity interaction of large 
gene expression data. Additionally, experimental evidence 
of proteins and RNA expression provided exceptionally 
information to search for molecular involved in prognosis, 
diagnosis and treatment of cancer. In this study we 
performed data-mining using high-density microarray and 
System biology using MetaCoreTM, Thomson Reuters 
to identify the most significant deregulated signaling 
pathways in non-malignant, malignant and ovarian cell 
lines.

Materials and Methods

Microarray gene expression
In this study we used microarray that included non-

malignant ovarian tumors (NMOT, N=2), malignant 
ovarian tumors (MOT, N=4), ovarian cell lines (OCL, 
N=4) and healthy ovarian tissue (HOT, N=4) according 
to our previous report (Juarez-Mendez et al., 2013). 
Microarray data analyses were performed using Partek 
Genomics Suite v6.6 software (Partk Incorporated, 
Saint Louis, MO). In brief, microarray data was 
summarized using Median Polis, quantile normalization, 
the background noise correction was archived using RMA 
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and finally the data was log2 transformed. The microarray 
were compared as follows: NMOT vs HOT,  MOT vs HOT 
and OCL vs HOT. The differential expressed genes were 
selected using cutoff fold change > 2 and < -2 and False 

Discovery Ratio (FDR) > 0.05.

Systems biology
The significant deregulated genes obtained by 

Table 1. Gene Ontology Enrichment

Category Process pValue FDR Category Ontology
NMOT Arsenite metabolism and transport 2.53E-03 9.43E-02 NMOT Pathway 

maps
NMOT Immune response_Oncostatin M signaling via 

JAK-Stat in mouse cells
2.52E-02 9.43E-02 NMOT Pathway 

maps
NMOT Immune response_Oncostatin M signaling via 

JAK-Stat in human cells
2.98E-02 9.43E-02 NMOT Pathway 

maps
NMOT Nicotine signaling 2.93E-02 9.43E-02 NMOT Pathway 

maps
NMOT Development_Thrombopoetin signaling via 

JAK-STAT pathway
3.07E-02 9.43E-02 NMOT Pathway 

maps
MOT Cell cycle_Chromosome condensation in pro-

metaphase
1.60E-11 5.83E-09 MOT Pathway 

maps
MOT Cell cycle_The metaphase checkpoint 1.57E-11 5.83E-09 MOT Pathway 

maps
MOT Cell cycle_Role of APC in cell cycle regulation 7.54E-09 1.86E-06 MOT Pathway 

maps
MOT Cell cycle_Spindle assemble and chromosome 

separation
1.14E-08 2.10E-06 MOT Pathway 

maps
MOT Cell cycle_Initiation of mitosis 6.72E-08 9.96E-06 MOT Pathway 

maps
OCL Cell cycle_The metaphase checkpoint 2.30E-19 1.83E-16 OCL Pathway 

maps
OCL Cell cycle_Role of APC in cell cycle 3.82E-18 1.52E-15 OCL Pathway 

maps
OCL Cell cycle_Chromosome condensation in pro-

metaphase
1.84E-17 4.87E-15 OCL Pathway 

maps
OCL Cell cycle_Spindle assembly and chromosome 

separation
1.02E-13 2.02E-11 OCL Pathway 

maps
OCL Cell cycle_Initiation of mitosis 9.92E-09 1.57E-06 OCL Pathway 

maps
NMOT Development_Blood vessel morphogenesis 3.32E-04 1.29E-02 NMOT Process 

Networks
NMOT Chemotaxis 6.19E-03 1.21E-01 NMOT Process 

Networks
NMOT Reproduction_GnRH signaling pothway 1.05E-02 1.37E-01 NMOT Process 

Networks
NMOT Reproduction_Gonadotropin regulation 1.71E-02 1.58E-01 NMOT Process 

Networks
NMOT Neurophysiological process_Transmission of 

nerve impulse
2.02E-02 1.58E-01 NMOT Process 

Networks
MOT Cell cycle_G2-M 2.15E-15 3.43E-13 MOT Process 

Networks
MOT Cell cycle_Mitosis 2.65E-13 2.11E-11 MOT Process 

Networks
MOT Cytoskeleton_Spindle microtubules 4.70E-10 2.49E-08 MOT Process 

Networks
MOT Development_Blood vassel 1.84E-05 7.31E-04 MOT Process 

Networks
MOT Cell cycle_Core 2.34E-05 7.44E-04 MOT Process 

Networks
OCL Cell cycle_Core 4.77E-24 7.54E-22 OCL Process 

Networks
OCL Cell cycle_Mitosis 3.56E-20 2.82E-18 OCL Process 

Networks
OCL Cytoskeleton_Spindle microtubules 1.42E-17 7.5’1e-16 OCL Process 

Networks
OCL Cell cycle_G2-M 3.42E-17 1.35E-15 OCL Process 

Networks
OCL Cell cycle_S phase 3.44E-16 1.09E-14 OCL Process 

Networks
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means of microarray gene expression were loaded in the 
Metacore portal; the significant data were labeled using ID 
gene and fold change. The ontology were analyzed using 
Enrichment analysis workflow, p-values were calculated 
according to dataset activated (p< 0.05).

Results 

Gene Expression
In order to identify deregulated genes associated to 

NMOT, MOT and OCL, we performed microarray analysis 
using a normal tissue (HOT) as a base line reference. The 

comparative microarray analysis showed differential 
expressed genes as follows: NMOT (N = 28), MOT (N 
= 1329) and OCL (N = 1664) Figure 1. Interestingly, in 
MOT and OCL we identified that ~60% genes were down 
regulated, unlike to NMOT in wich ~14% were down 
regulated. Our results showed an apparent progression of 

Table 2. Significant network NMOT-associated

Name GO Process P-Value zScore and gScore Seed
FGF4, C1QTNF5, 
ITGA11, SP1, FGFR2

regulation of homotypic cell-cell adhesion 1.15E-26 62.55 8
regulation of cell-cell adhesion 4.44E-26
regulation of cell activation 1.16E-23
regulation of cell adhesion 1.45E-22
positive regulation of T cell activation 5.99E-22

EG-VEGF, ALAS2, 
HTR2A, SP1, MC4R

G-protein coupled receptor signaling pathway 2.63E-43 61.92 8
G-protein coupled receptor signaling pathway, 
coupled to cyclic nucleotide second messenger

8.88E-34

positive regulation of cytosolic calcium ion 
concentration 

1.32E-33

cytosolic calcium ion homeostasis 1.68E-31
cell surface receptor signaling pathway 3.26E-31

BDKRB1, ATF-2, PI3K 
cat class IA (p110-alpha), 
STAT5, Cyclin D2

Fc-epsilon receptor signaling pathway 9.20E-20 31.21 4
response to stress 1.85E-18
response to oxygen-containing compound 2.03E-18
regulation of cell death 3.39E-18
response to abiotic stimulus 4.60E-18

E-selectin, Prokineticin 2, 
SMAD3, CXCR4, FosB

positive regulation of cellular metabolic process 1.05E-33 30.9 4
positive regulation of macromolecule metabolic 
process

7.13E-33

response to external stimulus 6.30E-32
positive regulation of cellular component movement 2.64E-31
cellular response to organic substance 4.55E-31

SP1, Alpha-2B adrenergic 
receptor, HTR4, Alpha-
1D adrenergic receptor, 
GABA-A receptor 
alpha-4 subunit

G-protein coupled receptor signaling pathway 1.14E-48 24.13 3
synaptic transmission 1.55E-47
cell-cell signaling 1.48E-43
gamma-aminobutyric acid signaling pathway 1.88E-40
chloride transmembrane transport 7.71E-39

Figure 1. Hierarchical clustering. The hat map depics gene 
expression profile in non-malignant, malignant and ovarian cell 
lines. On the left side the heat map depicts gene expression profile 
of NMOT against HOT, in the middle MOT against HOT and 
on the right side OCL against HOT. The graphic was generated 
using Partek Genomics Suite v6.6.

Figure 2. Correlations for expressed genes in ovarian 
tumors. The Venn diagram depicts the correlation of gene 
expression profile in NMOT, MOT and OCL against HOT. Five 
genes were correlated among NMOT, MOT and OCL cases, 
while 725 expressed genes were correlated between MOT and 
OCL.
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NMOT to MOT. In order to identify common deregulated 
genes in NMOT, MOT and OCL, we performed a Venn 
diagram Figure 2. The gene expression correlation was as 
a follows: NMOT only N= 22, MOT only N= 598, OCL 
only N= 937, NMOT+ MOT N= 1, NMOT+ OCL N= 0, 
MOT+OCL N= 725 and NMOT+MOT+OCL N= 5.

On the other hand, the up and down regulated genes 
were mapped by chromosomal. The deregulated genes 
NMOT-associated were mapped to only 14 chromosomes: 

Table 3. Significant network MOT-associated

Name GO Process P-Value zScore and gScore Seed
ATP2C2, UCK2, 
CRISPLD2, OLFML3, 
KIAA0240

translational elongation 1.76E-29 40.91 25
translation 3.59E-23
cellular protein metabolic process 5.34E-11
protein metabolic process 1.72E-09
gene expression 6.64E-08

CDK1 (p34), Chk1, ATR, 
Claspin, Cyclin B

cell cycle checkpoint 1.57E-18 29.8 23
DNA damage checkpoint 4.17E-18
DNA integrity checkpoint 1.03E-17
negative regulation of cell cycle 2.87E-17
negative regulation of mitotic cell cycle 8.29E-17

CMKLR1, LTBP3, CSPG4 
(NG2), Prokineticin 2, 
XYLT1

activation of adenylate cyclase activity 1.53E-18 27.14 21
regulation of adenylate cyclase activity 2.85E-18
regulation of cAMP biosynthetic process 4.19E-18
positive regulation of cAMP biosynthetic process 5.76E-18
positive regulation of adenylate cyclase activity 6.66E-18

Importin (karyopherin)-
alpha, CSE1L, Fe65, micro-
RNA 15a, Myopodin

establishment of localization in cell 8.23E-13 26.67 20
protein localization to nucleus 7.41E-12
protein import into nucleus 1.10E-11
protein targeting to nucleus 1.10E-11
single-organism nuclear import 1.10E-11

CDO1, TTYH2, 
HIST1H2BL, PI52B, 
APH-1

cellular response to glucagon stimulus 4.13E-60 24.48 19
response to glucagon 4.17E-59
energy reserve metabolic process 5.59E-44
energy derivation by oxidation of organic compounds 8.81E-36
generation of precursor metabolites and energy 1.20E-33

Figure 3. Percent and distribution of deregulated genes 
in the human genome. Gene expression profile associated to 
NMOT, MOT and OCL. NMOT showed more up regulated genes 
distributed in 14 chromosomes, while, MOT and OCL more than 
50% of differential expressed genes were down regulated. The 
most representative difference between MOT and OCL was Y 
chromosome. MOT showed up regulation in contrast to OCL 
wich showed down regulation.

up regulated (1, 4, 5, 6, 7, 8, 11, 13, 14, 15, 19, 22, and 
X) and down regulated (1, 9 and 11). In addition, MOT 
and OCL showed equal distribution of deregulated genes. 
Interestingly, MOT showed suppression in chromosome 
Y while in OCL was up-regulated Figure 3.

Enrichment of deregulated genes
The cell has a high level of complexity in molecular 

interaction. In order to identify the gene ontology 
associated to NMOT, MOT and OCL, we performed a 
systems biology analysis using MetaCoreTM, Thomson 
Reuters. The deregulated genes were loaded in MetaCore 
portal, after that, we performed an enrichment analysis. 
The expressed genes were ontology-based classified the 
top five are ranked in Table 1.

The enrichment analysis in NMOT showed processes 
associated to immune response, inflammation, vessel 
morphogenesis and chemotaxis among others. On the 
other hand, we observed in MOT and OCL several 
processes associated to cell cycle such as: chromosome 
condensation, metaphase checkpoint, mitosis initiation, 
spindle assembly, G2-M and S Phase among others Table 
1. 

Several marks give the malignant phenotype in 
cancer cell such as: cell proliferation, angiogenesis, 
and self-survival. The transcriptome analysis in ovarian 
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cancer and ovarian cell lines showed that cell cycle is the 
most significant cellular process deregulated. In order 
to integrate signaling pathways of deregulated genes in 
NMOT, MOT and OCL, we built a network based on gene 
expression profile.

Network reconstruction
The reconstructed network was performed using a 

curate data by means of MetaCoreTM, Thomson Reuters 

system biology (SB) approach. The SB analysis reveal 15 
significant networks associated to NMOT. We selected the 
top five based on significant and number of seed Table 2. 
The seed were deregulated genes observed in microarray. 

According to number of seed, we used the top network, 
including: FGF4, C1QTNF5, ITGA11, SP1 and FGFR2. 
Additionally, eight genes were significant and included in 
regulation of cell-cell process Figure 4. 

On the other hand, 30 signaling pathways were 

Figure 4. Significant pathway associated with NMOT. The circle red indicates up regulation. Eight up regulated genes were 
integrated in signaling pathways, involved in cell-cell adhesion.

Table 4. Significant network OCL-associated

Name GO Process P-Value zScore and 
gScore Seed

MRPS28, MURC, FAM54A, 
GBGT1, POP1 (RNase P/

MRP subunit)

mitochondrial translational initiation 6.75E-14 29.04 25
mitochondrial translational elongation 8.30E-14
mitochondrial translational termination 9.19E-14
mitochondrial translation 4.80E-13
translational termination 5.63E-11

JAK2, SNRPD1 (SMD1), 
SNRP116, SLC25A6, 

DOCK10

establishment of protein localization to organelle 4.74E-14 26.94 24
protein targeting 5.30E-13
intracellular protein transport 5.52E-13
mitochondrion organization 6.40E-12
protein localization to organelle 1.13E-11

HIST2H2AC, RNMT, 
SLC13A3, TRIP13, Wfikkn2

antigen processing and presentation of exogenous peptide 
antigen

2.08E-16 26.35 23

immunoglobulin production involved in immunoglobulin 
mediated immune response

3.14E-16

antigen processing and presentation of exogenous antigen 3.57E-16
antigen processing and presentation of peptide antigen 1.53E-15
antigen processing and presentation of exogenous peptide 
antigen via MHC class II 

6.28E-15

ALY, CIAPIN1, PICT-1, 
RFC4, PUR1

micturition 3.82E-14 25.78 23
positive regulation of catecholamine secretion 2.62E-13
positive regulation of amine transport 1.23E-12
positive regulation of dopamine secretion 1.37E-12
behavioral response to nicotine 2.05E-12

SEH1L, CAT-3, RFC3, 
HIST3H2A, POLR3K

protein targeting to mitochondrion 1.33E-13 25.45 22
establishment of protein localization to mitochondrion 2.35E-13
protein localization to mitochondrion 4.95E-13
synaptic transmission 1.42E-12
neuropeptide signaling pathway 4.19E-10
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identified in MOT. The top five are shown in the table 
3. We focused in the most significant related genes, 
including 25 deregulated genes such as: ATP2C2, UCK2, 
CRISPLD2, OLFML3 and KIAA0240 among others. 
The target gene in this signaling pathway is the estrogen 
receptor protein ESR1; 16 genes were down regulated 
and nine up regulated. The GO processes were associated 
to cell cycle process, including: translation, elongation, 
gene expression and cell cycle checkpoint, among others. 
After that, we build the network of the most significant 
and related genes deregulated Figure 5.

Finally, we analyzed 1664 deregulated genes OCL-

associated and 30 networks were identified; the top five 
networks are shown in the Table 4. The most significant 
network contains 25 seed including: MRPS28, MURC, 
FAM54A, GBGT1 among others. The most significant 
ontology was associated to mitochondrial process 
including: initiation, elongation and translation. The 
significant network is shown in Figure 6.

Discussion

A great challenge in cancer research is the understanding 
of such a complex trait as well as the identification of 

Figure 6. The significant signaling pathway c-Myc proto-oncogene was associated with OCL. 13 (blue circle) and 11 
(red circle) components of c-Myc signaling pathway were down and up regulated, respectively. Deregulated genes were associated 
significantly with mitochondrial processes.

Figure 5. Estrogen receptor 1 is the most significant pathway in MOT. The circle blue and red indicate down and up 
regulate, respectively. Intensity colors of circle indicate level expression. 15 and nine components of ERS1 signaling pathway were 
down and up regulate, respectively. ERS1 expression profile is involved in cell cycle, metabolisms and gene expression regulation 
showed in Table 3.
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molecular markers that could help to predict treatment 
response, better classification of tumors and the 
identification of druggable targets. The microarray gene 
expression is an extraordinary tool that provides a wealth 
of data about differentially expressed genes. In cancer, 
several cellular processes are involved such as: cell cycle, 
proliferation, apoptosis evasion, inflammation, migration 
and metastasis, among others (Hanahan and Weinberg, 
2000; Hanahan and Weinberg, 2011).

In Mexico, the OC is the third most common 
gynecological cancer (Globocan, 2012). The diagnosis is 
at advanced stages and the prognosis is poor. In the recent 
year, several comprehensive tools have been developed to 
understand the complex molecular interaction in human 
disease, including cancer. Our results using microarray 
gene expression revealed a tissue-associated profile. The 
lowest differences were observed in NMOT (N=28) Figure 
1-2. Moreover, eight genes were the most significant and 
integrated to specific signaling pathways and they are 
related to cancer: FGF4 in breast (Saint-Ruf et al., 1990; 
Schmitt et al., 1996), colorectal (Ikeda et al., 2008), 
melanoma (Adelaide et al., 1988), stomach (Ikeda et al., 
2008) and ovarian cancer (Schmitt et al., 1996; Mayr et al., 
2006); ITGA11 in kidney (Dalgliesh et al., 2010), laryngeal 
(Stransky et al., 2011) and lung (Young et al., 2009); MHC 
class ll alpha chain in non-small cell lung carcinoma (Ohri 
et al., 2009); HLA-DQA1 in hepatocellular carcinoma 
(Donaldson et al., 2001), renal cell carcinoma (Ellerhorst 
et al., 2003), melanoma(D’Alessandro et al., 1987; Nagore 
et al., 2002; Ugurel et al., 2004); C1QTNF5 is associated 
to adrenocortical carcinoma (Fonseca et al., 2012), 
endometrial and lung neoplasms.

On the other hand, alpha(q)-specific peptide GPCRs, 
alpha(q)-specific amine GPCRs and serotonin receptor 
were associated to schizophrenia. Our results could be 
suggesting that non-malignant ovarian tumor, share 
elements with malignant ovarian tumors. However, theses 
molecules are not integrated in cancer signaling pathways.

The estrogen receptor protein was the most significant 
signaling pathway deregulated in malignant ovarian 
tumors. The down-regulated genes were associated 
to metabolism (PPM1K, LTA4H, GPR133, PDE8B, 
ABCA8), signaling (GPR133, FLRT2, Tbc1d9), tumor 
suppressor (KIAA0240), expression regulation (RBMS3) 
and transport (ABCA8). The potential target could be 
Tbc1d9: this gene is regulated by HNF3 (FoxA1 and 
FoxA2) or FOXM1 mediated ESR1. FoxA1, FoxA2 and 
FOXM1 were over expressed 2.145, 2.092 and 7.416 fold 
change, respectively. HNF3 has been reported in several 
types of cancer including: breast (Albergaria et al., 2009; 
Davidson et al., 2011; Davidson et al., 2012; Varadi et al., 
2012) (Shah et al., 2012), non small cell lung carcinoma 
(Sakaeda et al., 2013), neuroblastoma (Shimizu et al., 
2002), pancreatic (Song et al., 2010), prostate (Barbieri 
et al., 2012; Grasso et al., 2012; Imamura et al., 2012) and 
small cell lung carcinoma (Sakaeda et al., 2013).

The over expressed genes included in the most 
significant signaling pathway were GALNT4, TMEM139, 
RalGEF2, ATAD4, UCK2, TIMM8B, ATP2C2, they have 
been associated with several cancers such as: melanoma 
(Berger et al., 2012), breast, skin (Durinck et al., 2011; 

Shah et al., 2012), prostate (Grasso et al., 2012), larynx 
(Stransky et al., 2011), lung, (Durinck et al., 2011), 
pancreas, glioblastoma (Parsons et al., 2008), leukemia 
(Quesada et al., 2012), medulloblastoma (Robinson et al., 
2012), and ovarian cancer (Jones et al., 2012).

Several models are used to investigate the molecular 
basis of the phenomena in cancer research; we included 
cancer cell lines to investigate in vitro cancer. Our results 
showed a differential gene expression profile, as expected 
(Figure 1-3). Additionally, we identified 730 genes with 
correlation between MOT and OCL, 599 and 934 were 
exclusively for MOT and OCL, respectively. These data 
indicate large differences between the two models of 
cancer we used.

In addition, OCL the most significant signaling pathway 
was associated with mitochondrial processes, high-level 
expression could lead to deregulated metabolism caused 
by means of in vitro culture. Thirteen genes were down 
regulated including: APOL2, APOL3, SLC43A1, GBGT1, 
RBMS3, AMPD2, SLC25A26, MOBKL2B, SIAT4C, 
AMD3, Faftlin, TXLNB, MYCT1. Moreover, they have 
been associated with several cancers such as: prostate 
(Johanneson et al., 2010; Barbieri et al., 2012; Grasso 
et al., 2012), hepatocellular carcinoma (Guichard et 
al., 2012), mouth (Stransky et al., 2011), kidney (Pena-
Llopis et al., 2012), larynx (Stransky et al., 2011), skin 
(Durinck et al., 2011), lung (Ogawa et al., 1997) and 
medulloblastoma (Pugh et al., 2012) among others.

On the other hand, 11 transcripts were up regulated 
in the most significant signaling pathway of OCL, 
including: Noxin, IPPK, FAM54A, MURC, MRPS28, 
CENPO, RRS1, FKSG14, POP1, RPP20, HIST1H2BG, 
its expression has been altered in several types of cancer 
such as: melanoma (Berger et al., 2012), nervous system 
neoplasms (Molenaar et al., 2012), leukemia (Zhang et 
al., 2012), prostate (Grasso et al., 2012), stomach (Cui et 
al., 2011; Hong et al., 2011), skin (Durinck et al., 2011) 
mouth neoplasm (Stransky et al., 2011), lung (Peifer et 
al., 2012), endometrial (Kuhn et al., 2012), laryngeal 
(Stransky et al., 2011), among others. 

In conclusion, the great challenges in cancer are the 
early detection prognosis and treatment. Using microarray 
gene expression and systems biology approaches we 
could identify the most significant signaling pathways in 
non-malignant, malignant and ovarian cancer cell lines. 
The significant genes identified in non-malignant and 
malignant ovarian tumors could be useful as potential 
markers of disease. 
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