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Introduction

Chronic myeloid leukemia (CML) is the utmost 
widely studied human malignancy, first discovered by 
two pathologists Drs. Rudolf Virchow and John Hughes 
Bennett, in 1845 (Nowell, 1960; Deininger, 2000). It 
accounts for ~20% of all leukemias with annual incidence 
of 1.6 cases per 100,000 adults, with a male-to-female ratio 
of 1.4/1.3 and median age of approximately 45- 55 years 
(Cortes, 2004; Rohrabacher, 2009). Pathogenetically, it 
is a clonal myeloproliferative hematopoietic stem cell 
disorder characterized by excessive accumulation of clonal 
myeloid precursor cells in primitive hematopoietic tissues. 

It was the first genetically analyzed human malignancy 
in which a consistent Chromosomal translocation t(9;22) 
accounted which created Bcr-Abl fusion gene (Gishizky 
et al., 1993; Nowell and Hungerford, 1960; Kantarjian et 
al., 2006; Quintas and Cortes, 2009; Cortes et al., 2012). 
The generated hybrid Bcr-Abl fusion gene display very 
strong and constitutive tyrosine kinase activity leading to 
activation of downstream signaling pathway. 

As Bcr-Abl is causative of disease progression, 
considered as an attractive target for inhibition of CML 
(Sawyers, 1999; Hehlmann et al., 2007; Chen et al., 2010; 
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Abstract

	 Chronic myeloid leukaemia (CML) is a clonal myeloproliferative hematopoietic stem cell disorder. Deregulated 
BCR-ABL fusion tyrosine kinase activity is the main cause of CML disease pathogenesis, making BCR-ABL an 
ideal target for inhibition. Current tyrosine kinase inhibitors (TKIs) designed to inhibit BCR-ABL oncoprotein 
activity, have completely transformed the prognosis of CML. Interruption of TKI treatment leads to minimal 
residual disease reside (MRD), thought to reside in TKI-insensitive leukaemia stem cells which remain a potential 
reservoir for disease relapse. This highlights the need to develop new therapeutic strategies for CML either as 
small molecule master TKIs or phytopharmaceuticals derived from nature to achieve chronic molecular remission. 
This review outlines the past, present and future therapeutic approaches for CML including coverage of relevant 
mechanisms, whether ABL dependent or independent, and epigenetic factors responsible for developing resistance 
against TKIs. Appearance of mutant clones along the course of therapy either pre-existing or induced due to 
therapy is still a challenge for the clinician. A proposed in-vitro model of generating colony forming units from 
CML stem cells derived from diagnostic samples seems to be achievable in the era of high throughput technology 
which can take care of single cell genomic profiling. 
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Goldman, 2010; Zhu et al., 2014). However, substantial 
heterogenic observation reported throughout the trend of 
the diseases. Clinically, a multistep diseases advances in 
three distinct series of cascade from indolent chronic phase 
(CP) to inevitable intermediate accelerated phase (AP) to 
fatal blastic phase (BP) (Faderl et.al., 1999; Calabretta and 
Perrott, 2004). Advent of TKI has changed the paradigm 
of understanding the intricate mechanism of CML biology. 
Contemporary efforts are emphasizing on adjusting dose 
and design better compound than TKIs to escape the 
mutational problems. 

However, striking disputes to manage disease is unable 
to eradicate persistence minimal residual disease (MRD) 
despite of Bcr-Abl inhibition. The underlying cause of 
disease persistence is unidentified and it is uncertain 
whether mechanisms central to leukemia stem cell 
survival are dependent or independent of Bcr-Abl activity. 
Thorough understanding of the mechanism of resistance 
is an essential step towards managing the disease. In 
this article we have summarized the rationale of FDA 
approved TKIs, their limitations, success and possible 
future combinatorial and new strategies and identification 
of new targets to eradicate persistent Ph+ CML cells from 
a biological perspective.
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Evolution of CML Therapy

Conventional Chemotherapeutic treatment Options: a 
Pre-Imatinib Era

In 19th century CML was primarily managed with 
many arsenic agents such as Fowler’s solutions & 
splenic radiation till 1950s (Galton, 1953; Goldman, 
2010). In 1953 these therapeutic strategies were replace 
by introduction of Conventional chemotherapies such 
as busulfan (1954), Hydroxyurea (1970), interferon-
alpha (1980). A major disadvantage of these therapeutic 
strategies is to only limit the progression of myeloid tissue 
thus couldn’t prevent the disease progression and onset to 
the transformation of blastic crisis was observed within 
5-6 years. However, many patients frquently encountered 
with increased marrow and hepato toxicity. Thus, allogenic 
hematopoitic stem cell transplantation (HSCT) is the 
only curative option in majority of patients. However, 
allo -HSCT is not affordable and not appropriate due to 
scarcity of HLA matched donor availability and risk of 
developing chronic graft-versus-host-disease (cGVHD) 
in lower match (Galton, 1953; Biggs, 1993; Kantarjian 
et al., 2002; Kantarjian et al., 2003). 

Discovery of TKIs as Front Line Therapy: 
Era of Targeted Therapy

Imatinib
Intricate molecular mechanisms of Bcr-Abl fusion 

paved way to researchers to direct towards developing 
compound which specifically target and blocked ABL 
tyrosine kinase activity. In the late 1980, utilizing an 
innovative and high throughput screening techniques, 
a scientist at Ciba- Geigy (Now Novartis, Basel, 
Switzerland), discovered lead compound, first class of 
tyrosine kinase inhibitor 2-phenylaminopyrimidine, 
known as (ST1-571) or GlivecTM (Buchdunger et al., 
2000; Heinrich et al., 2000; Deininger et al., 2005). 
Compound was primarily introduced as PDGFR inhibitor 
but found to be potent ABL kinase inhibitor due to its 
capability to directly competing ATP binding sites of 
kinase domain (KD) (Figure 1A). It also has promising 
effect on other tyrosine kinases e.g. c-kit, ARG (Druker et 

al., 1996; Deininger et al., 1997; Okuda et al., 2001). Due 
to its tremendous efficacy in Phase I & II clinical trials 
with more than 90% complete hematological response 
(CHR) and 30-40% complete cytogenetic responses 
(CCyr), received FDA approval in 2001 for BCR-ABL 
Ph+ CML patients (Talpaz et al., 2002). In Phase III 
large randomized ‘IRIS’ (International Randomized 
study of Interferon v ST1571 ) trial, efficacy of Imatinib 
evaluated against standard IFN +low dose Cytarabine in 
newly diagnosed CP patients. However, long term 8 years 
follow up represented some drawbacks. Only 55% patients 
remained on Imatinib arm of study, representing therapy 
failure, due to discontinuation and toxicity in remarkable 
proportion of patients (Hughes et al., 2010;O’Brien et 
al., 2003). Though, exceptionally advantageous effect of 
Imatinib, primary and secondary resistance are always 
major cause of concern, in advanced phase and relapse 
cases (Hochhaus et al., 2002; Mello and Chuah, 2007). 
In such scenario shifting to second generation TKI is the 
only preferred alternative which may achieve response 
or improved clinical outcomes. Numerous clinical data 
(DASSION, ENESTnd, BELA) proven efficacy of second 
generation TKIs versus Imatinib as first line treatment in 
CML patients. 

Second & Third Generation TKIs
Dasatinib & Bosutinib -dual ABL-SRC kinase 

inhibitor approved by FDA in 2007 & 2012, respectively 
as a front line therapy for Imatinib resistance patients 
(Lombardo et al., 2004; Tokarski et al., 2006; Puttini et al., 
2006; Gambacorti et al., 2007). It is structurally unrelated 
to Imatinib and able to bind both active and intermediate 
confirmation of abl kinase domain, respectively. Nilotinib 
- a structural analogue approved by FDA in 2007 able to 
bind in inactive form of kinase domain (Shah et al., 2004; 
O’Hare et al., 2005; Weisberg et al., 2005). In in vitro 
conditions Dasatinib (325 fold) Nilotinib- (20-30 fold) and 
Bosutinib (>200 fold) shown more potency and efficacy 
than Imatinib with wild type Bcr-Abl with IC50 of 0.8µM 
& 0.25 µM & 13nM, respectively (Talpaz et al., 2006; 
Hochhaus et al., 2008; Cortes et al., 2011). STARTs trials 
confirms superiority of Dasatinib over Imatinib in CP, AP 
& BC phase patients (Cortes et al., 2008; Shah et al., 2008; 
Apperley et al., 2009; Saglio et al., 2010). 

A four arm randomized Phase III dose optimization 
trial affirm scheduled dose of Dasatinib in Imatinib 
intolerance CP, AP & BC patients are 100mg, 70 mg and 
140 mg once daily, respectively. (Kantarjian et al., 2010). 
Another, Phase III DASSION and ENESTnd studies 
were directed to assess efficacy and comparison of the 
use of Dasatinib & Nilotinib v 400mg of Imatinib in 
newly diagnosed CML-CP patients. It was demonstrated 
that Dasatinib & nilotinib are far superior in terms of 
achieving faster CCyR, MMR and lower progression 
rates than 400mg of Imatinib (Kantarjian et al., 2009; 
Kantarjian et al., 2011) A multinational phase III ‘BELA’ 
trial addressed to demonstrate the efficacy & response of 
Bosutinib as upfront therapy than Imatinib in untreated 
CML CP patients (Cortes et al., 2012; Gambacorti et 
al., 2014). Though 2nd generation TKIs have improve 
the quality of life and lower the disease progression 

Figure 1. BCR-ABL Mechanisms. A) Binding of ATP to 
bcr-abl oncoprotein Phosphorylate tyrosine residue of substrate 
protein leading to progression of CML. B) Competitive binding 
of TKIs/natural compound to ATP binding pocket of kinase 
domain prevents phosphorylation of substrate protein leads to 
inhibition of CML
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and also shows significant inhibition against number 
of kinase domain mutations however, occurrence of 
most lethal mutation “T315I” is major cause of concern 
(Kantarjian et al., 2006; Puttini et al., 2006; Gambacorti 
et al., 2007; Giles et al., 2008). Apart from this patients 
continually encountered with some hematological and 
non-hematological toxicity during the course of study. 
Third generation A True pan Bcr-Abl inhibitor Ponatinib 
specifically designed to inhibit fatal mutation T315I. Phase 
I & II early phase study of ponatinib was design to treat 
resistance cases with documented mutation story of T315I 
and F317L mutations. A complete cytogenetic response 
was observed in pretreated patients and including those 
with T315I positive CML (O’Hare et al., 2009; Cortes et 
al., 2012; Cortes et al., 2013).

Disease Persistence & Resistance

However, biggest obstacle of targeted therapies are that 
residual diseases arise with different mechanisms leading 
to disease persistence and resistance. Several Bcr-Abl 
dependent and independent mechanisms may contributes 
to resistance includes over expression of Bcr-Abl gene 
amplification, Sequestration of Imatinib by plasma 
protein binding (alpha-1 AGP), over expression of ABC 
transporter (P-gp), decreased intracellular organic-cation 
transporter (hOCT1), clonal evolutions, activation of Bcr-
Abl downstream signaling pathway, quiescent stem cells 
and pathway activation. However, role of other nuclear 
and post transcriptional events e.g. aberrant expression of 
microRNA and epigenetic modification are still unknown 
mechanisms as they may potential contributors to CML 
stem cell survival after long term TK therapy. 

Bcr-Abl Dependent Mechanisms:

Kinase Domain Mutations (KDM)
Potentially the most frequent clinically relevant 

mechanisms that change Imatinib sensitivity are mutations 
within the ABL kinase that hampered the conformational 
change of kinase domain either directly interfere with 
Imatinib binding or establishing a distinct conformation 
to which Imatinib is unable to bind in its inactive form. 
More than 100 different point mutations involving 
different amino acid substitution have been reported 
in different loops of kinase domain (Figure 2). Of the 
reported subsets G250E, Y253H, E255K/V, V299L, 
T315I, F317L/I, F359V/I/C, H396R, E450G/V, E459K) 
are unaffected to all TKIs (Branford et al., 2006; Soverini 
et al., 2005; Soverini et al., 2006; Gorre et al., 2001; 
Redaelli et al.,2009). 

However, certain compound mutations are lethal 
because of their ability to confer cross-resistance to 
all available TKIs, in contrast to mutations in different 
clones that are individually susceptible to one or more 
TKIs. Although more than one or multiple Bcr-Abl1 
mutations have been reported in many studies but it is 
still unidentified which fraction of these signify compound 
mutation (Jamshid et al., 2013). But 3rd generation TKIs 
capably effective to circumvent most of mutations along 
with lethal “T315I” mutations but remains susceptible 

to certain compound mutations. It is still an open debate 
whether KDM represent the primary cause of resistance 
or whether they may simply be an indicator of underlying 
cytogenetic or genomic instability?

Bcr-Abl Gene Amplification
Association of Bcr-Abl gene amplification with 

Bcr-Abl kinase activity was reported by Le Coutre, 
Mahon and colleagues. They first in-vitro experimentally 
confirmed the elevated Abl kinase activity is due to genetic 
duplication of Bcr-Abl gene in resistance cells (Mahon et 
al., 2000). Nevertheless, Gorre et al. (2001) successfully 
demonstrated association of kinase activity & genetic 
duplication of the Bcr- Abl gene in Imatinib resistance 
CML patients. This may be advocated that quiescent 
imatinib insensitive CD34+ cells acquired with residual 
subclones and point mutations expressing high amount of 
Bcr-Abl level. These resistant mutant subclones develop 
mutations much faster in of Bcr- Abl overexpressing cells. 
Yet a majority of the patients fail to clinically demonstrate 
abl amplification as a primary mode of treatment failure 
(le Coutre et al., 2000; Gorre et al., 2001). 

Bcr-Abl Independent Mechanisms

Several drug efflux and influx mediators are involved 
in the mechanisms of resistance to Imatinib. Imatinib as 
well as other tyrosine kinase inhibitors are substrate of 
well described Pgp efflux transporter. The role of ABCB1 
(Pgp) as a possible mechanism of resistance to Imatinib 
has been suggested but its role is still unclear and its 
overexpression has not been reported directly in patients 
with resistance to Imatinib ( Illmer et al., 2004; Galimberti 
et al., 2005) Uptake transporter hOCT1has also been 
proposed as an important factor regulating intracellular 
Imatinib availability and anticipated its role in Imatinib 
resistance but its expression correlation to patient’s 
survival is still unknown (White et al., 2008; White et al., 
2010). Several studies have reported variability of Imatinib 
concentrations between patients treated with similar 
doses of drug. Gambacorti-Passerini and colleagues 
hypothesized that excessive binding of Imatinib to AGP 
could interfere with its therapeutic effect (Jorgensen et 
al., 2002; Gambacorti et al., 2000; le Coutre et al., 2002) 
Jorgensen et al. (2002) were not able to demonstrate 
binding of Imatinib to AGP Thus, the role of AGP binding 

Figure 2. Relative Frequency of Kinase Domain 
Mutations in Different Regions.  Different loops are 
indicated as P-loops or ATP binding site (P), Imatinib binding 
site (B), catalytic site (C), activation loop (A). (Adapted from 
book T.P. Hughes et al., 2014. “Handbook of Chronic Myeloid 
Leukemia”)
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in Imatinib resistance remained controversial and AGP as 
cause of Imatinib resistance is now generally accepted as 
an unlikely mechanism. 

Epigenetics

The underlying epigenetic changes of DNA methylation 
in CML is not fully implicited. Aberrant DNA methylation 
of multiple genes characterizes at advanced stages of 
CML and the disease when resistant to Imatinib. The 
methylation status of promotor region of several tumor-
suppressor gene’s (TSGs), with result ranging from 
rare or no hypermethylation (e.g., SFRP1, RASSF1A) 
to hypermethylation at progression (e.g., CALCA, 
CDKN2B, EBF2, ESR, HIC1, TFAP2A, ATG16L2 and 
PDLIM4, DAPK, ER) has been associated with poor 
response to Imatinib treatment and progression to CML 
(Lubbert et al., 2000, Katerina et al., 2013).	

However, these studies conducted on random choice of 
genes surveyed and experimented in other malignancies. 
It has been observed that out of all frequently methylated 
genes, mainly four genes PDLIM4, TFAP2A, TFAP2E and 
EBF2 have showed a significant increase in methylation 
in CML-Blast Crisis as compared to CML chronic phase. 
Most frequently methylated ABL1 proximal promoter 
hypermethylation was observed in CP BM derived 
colonies as compared to normal BM. However, in advance 
stage it shows allele specific de novo methylation in 
progenitor colonies. Though promising role of ABL1 
hyper methylation and its significance is still creating 
many discrepancy in CML (Sun et al., 2001).

MicroRNAs

MiRNAs are dynamic regulatory molecules could 
functions as either tumor suppressors or oncogenes, may 
represent as potential drug target and biomarker in CML 
disease progression. Unfortunately, no information is 
available regarding their involvement in the response to 
chemotherapy and resistance mechanisms thus, they could 
not act as complete biomarker spectrum (Marina and 
Harvey, 2011). In CML, several microRNAs have been 
deregulated were rapidly restored under Imatinib therapy. 

Out of all miR-150 and miR- 17-92 cluster are well 
characterized in CML whereas, contribution of other 
miRNAs in disease progression is still controversial. 
Many miRNAs also been predicted through bioinformatics 
analysis including s (miR-19a, miR- 19b, miR-17, miR-20, 
miR-92a, miR-106a, miR-221, miR- 222, miR-126, miR-
146a, miR-181a, miR-181b, let7c, miR- 155). Predicted 
miRNA may be useful for identification of exact target 
contributed in CML survival. 

However, many high throughput studies identified 
differential expression of many microRNAs e.g miR-129,.
miR-191, mir -199, mir- 520, and mir328, miR-103, miR-
150, miR-451, miR-144 as possible predictors for clinical 
resistance at different phases of CML (Flamant et al., 
2010; San et al., 2009; Hershkovitz et al., 2012; Katerina, 
2012). However, mir-203 directly regulate bcr-abl activity. 
Overall, these findings represent that use of single miRNA 
may be ineffective, combinatorial miRNA expression 

profiles and identification of exact target or other strategies 
are needed to improve diagnosis, monitoring disease 
progression, and drug response. 

High Throughput Era

Advent of targeted therapies has transformed the 
clinical management and prognostic settings of CML. 
However, disease still unveils a noticeable clinical and 
biological heterogenecity. Thus, exact characterization 
and prediction of response to tyrosine kinase inhibitor 
therapy are still warranted. However, BCR-ABL1 
mutation analysis is advocated to facilitate choice of 
suitable treatment in Ph+ CML who are resistance to 
TKI therapy. Still, detection of low level compound 
& polyclonal mutations at appropriate stage anticipate 
critical guidance for subsequent therapy selection. 
Inappropriate therapeutic strategy may lead to treatment 
failure with clonal expansion of the resistant mutant. 
There are range of conventional and sequencing based 
techniques are currently available for identification and 
quantification of mutations in kinase domain. Though, 
direct sequencing and other methods have several potential 
disadvantages due to relatively low sensitivity, difficulty 
to precisely quantitate the mutated subclone and the lack 
of informatively regarding the clonal composition when 
multiple mutations are present. 

Next-generation sequencing (NGS) affords a higher 
level of sensitivity (1-5%) to sight clinically relevant 
ABL1 mutations that are not currently observed by 
sanger sequencing (Angelo et al., 2013; Kastner et 
al., 2014). So in near future, conventional sequencing 
technique will probably be replaced by NGS, which 
has high-throughput, high-sensitivity and quantitative 
amplicon deep sequencing among its applications. Apart 
from mutation spectrum numerous microarray based 
gene expression profiling and proteomics studies have 
disclosed genes which may be over or under expressed in 
imatinib-resistant cells. Many of these encodes proteins 
involved in many adhesion/cytoskeleton, DNA repair 
and signal transduction and/ or transcriptional regulatory 
mechanisms which could unravel disease progression 
independently of BCR-ABL kinase activity. 

However, there is as yet no conclusive functional 
evidence that any of these candidate proteins identified 
by profiling studies are in actually responsible for clinical 
resistance in CML patients. This type of profiling may be 
more useful in identifying patterns of gene expression that 
may be predictive of poor response (primary resistance) 
to imatinib. (Pizzatti et al., 2006; Fontana et al., 2007; 
Colavita et al., 2010).

Quiescence CML Stem Cells

Although the development of point mutations is 
generally accepted to be the most common feature 
associated with acquired resistance to Imatinib, question 
arises as to why Imatinib does not eradicate all leukemic 
cells even in the best responses. So, lastly attention has 
been focused on CML stem cells that remains resistant to 
TKIs by virtue of its quiescent or dormant state (Bing et 
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al., 2010; Jiang et al., 2005).  
Understanding how CML stem cells escape the 

effects of TKIs is crucial for disease eradication. TKIs 
are available to control mature progeny of CML cells but 
do not to completely eradicate disease, as the CML stem 
cells evade the treatment. However, many in vitro and in 
vivo studies explain that these cells survive in spite of 
nearly complete inhibition of BCR-ABL kinase activity 
by the TKIs, suggesting that their primary resistance is 
BCR-ABL kinase-independent and possibly a pool of 
highly resistance population repopulate leukemic clone 
even in best molecular responses (La et al., 2003; Copland 
et al., 2006). 

Several groups have tested various hypotheses, but 
the mechanism of resistance remains elusive and being 
intensively investigated in search of genes and protein 
expressed independently of bcr-abl activity. So it is 
obvious that stemness of Bcr-Abl-expressing stem cells 
are maintained by a complex molecular network involving 
Bcr-Abl and its interaction with other downstream 
signaling pathways includes Wnt/β-catenin, Alox-5, 
Jak/STAT, Pten pathways etc. These pathways would be 
specifically involved in the survival regulation of LSCs but 
not normal stem cell counterparts. Thus, identification and 
inhibition of key bcr-abl downstream signaling molecules/
pathways will offer effective therapeutic strategies aiming 
to eradicate leukemic stem cells (LSCs) (Donato et al., 
2003; Hu et al., 2006). 

Beyond Tyrosine Kinase Inhibitors

Though the prominent success of imatinib against 
bcr-abl, resistance due to lethal “T315I” mutation is 
major challenge. Many agents that do not function as 
kinase inhibitors are also tested in BCR/ABL-dependent 
leukemia therapy and various most promising strategies 
are in development to circumvent problem. These agents 
includes non- ATP competitive inhibitors, “switch pocket” 
inhibitors, protein kinase inhibitors, allosteric inhibitors, 
proteasome inhibitors & HSP90 inhibitors. Dual bcr-
abl/Lyn kinase and aurora kinase inhibitor are also well 
promising strategies (Nimmanapalli et al., 2001; Yu et 
al., 2003; Nimmanapalli et al., 2003; Fiskus et al., 2006; 
Cheetham et al., 2007; Gorre et al., 2010; Zhang et al., 
2010; Chan et al., 2011). Other strategies being studied 
include a synergistic combination of TKIs with HDAC 
inhibitors, RAC GTPases inhibitors and plant alkaloid 
inhibitors are also warrant attention (Table 1). 

Natural Compounds as an Anticancer Agent

In CML, recurrence, resistance and side-effects due 
to chemotherapeutic agents reduce the clinical efficacy 
of therapeutic regime. Thus, there is constant need to 
develop a combination or synergistic anticancer therapy 
that can reduce the adverse effects and also increase the 
therapeutic efficacy of anti-cancer agents. Anti-cancer 
agents discovered from natural products always remain as 
an important source of new drug leads and new chemical 
entities in treatment of cancer due to their unprecedented 
and unpredictable properties. Several anticancer agents 
derived from plants and their derivatives have been proven 
to be effective for cancer prevention and therapeutics 
including taxol, vinblastine, vincristine, the camptothecin 
derivatives, topotecan and irinotecan, and etoposide 
(Lucas et al., 2010; Pan et al., 2012). Several groups 
have evidenced the anti-cancer and protective effect of 
many plant derived compounds in CML treatment. A 
Cephalotaxus alkaloids, Homoharringtonine, effectively 
induced apoptosis in CML hematopoietic progenitor 
cells either alone or in combination with IFN-α and 
cytosine arabinoside (Ara-c) in Imatinib resistance and 
non- responder patients (Visani et al., 1997). 

In addition, many plant derived myelosupressive 
inhibitors Gossypol, Gallic acid, alpha-bisabolol, 
emodin, reseveratrol, silibinin, curcumin and Omacetaxin 
respectively, appeared to synergize the effect of TKI while 
inducing apoptosis at different concentration in CML cell 
lines or Bcr-Abl Ph+ resistance CML stem cells (Ahmed et 
al., 2001; Meng et al., 2007; Yang et al., 2007; Puissant et 
al., 2008; Markus and Maciej, 2008; Bonifacio et al., 2012; 
Chandramohan et al., 2012; Can et al., 2012; Geylani et 
al., 2012). Recently, Wu et al. (2003) reported that C817, 
a novel derivative of curcumin suppressed the growth of 
both Imatinib sensitive and resistance CML cell including 
wild-type K562, K562/G01, 32D-T315I, 32D-Q252H, 
and 32D-Y253F cells at low IC50 values. Furthermore, 
significant inhibition of CFU and LTC-ICs implicates that 
C817 could eradiate human myeloid leukemia progenitor/
stem cells (Wu et al., 2008). Moreover, Rakshit et al. also 

Table 1. Non- Tyrosine kinase inhibitors effective 
against “T315I” mutations

No Compound Name Inhibitors 
1. XL228 Protein Kinase

2. Rebastinib (DCC-
2036) Allosteric

3. GNF-2 Allosteric

4.   Bafetinib (INNO-406) Bcr-Abl/Lyn 
Kinase

5. Flavopiridol CDK
6. VX- 680, MK-0457 Aurora kinase

7. PHA-739358, XL228, 
AT9283 Aurora kinase

8. Geldanamycin 
analougue 17-AAG HSP90

9. HHT + imatinib Plant alkaloid

10. Omacetaxin Plant alkaloid 
derivative

11. SAHA+ Nilotinib HDAC

12. PP2A Activators 
FTY720

13. Bortezomib Proteosome

14. 
Azacitidine, 

Decitabine+Imatinib 
Fazarabine, DHAC

DNMT
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reported role of ROS in chlorogenic acid induced cell death 
in CML cell line as well as primary CML cells. Zhang et al. 
(2008) demonstrated that beta-phenylethyl isothiocyanate 
(PEITC) exerted the cytotoxic effect in Glivec-resistant 
CML cells by regulating redox signaling. 	

Collectively, all these data represented the potentiality 
of natural compound in synergy with TKI in CML 
treatment and strengthen the hope of applying these 
combination in clinical setting for better management 
of Ph+ CML patients (Figure 1B). Publication from our 
group on enhancement cytotoxic effect of cytatrabine in 
synergism with hesperidin & silibinin in AML favours 
this claim (Desai et al., 2015).

Concluding Remarks

The race of TKI is unending due to biological variability 
of disease and emerging technological advancement in 
novel mutation detection by next generation sequencing. 
Each mutation detected may not be clinically actionable, 
therefore these mutants need to be evaluated using 
sequence and structure based tools including molecular 
dynamic simulation prior to establishing its role in disease 
pathogenesis. Search for newer small molecule inhibitor 
against new drug target establishing using high throughput 
technologies is continuous process supported by medicinal 
chemist and synthetic chemist. The Proposed model 
depicts an in -vitro approach to established drug resistant 
model for identification of new drug target and screening 
with phytopharmaceutical on existing target to assess 
synergism which inturn may provide better management 
of CML (Figure 3).
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