RESEARCH ARTICLE

Calpeptin Prevents Malignant Pleural Mesothelioma Cell Proliferation via the Angiopoietin-1/Tie-2 System

Chiharu Tabata1*, Rie Tabata2, Takashi Nakano1

Abstract

Malignant pleural mesothelioma (MPM), an aggressive malignant tumor of mesothelial origin associated with asbestos exposure, shows a limited response to conventional chemotherapy and radiotherapy. Therefore, the overall survival of MPM patients remains very poor. Progress in the development of therapeutic strategies for MPM has been limited. We recently reported that the calpain inhibitor, calpeptin exerted inhibitory effects on pulmonary fibrosis by inhibiting the proliferation of lung fibroblasts. In the present study, we examined the preventive effects of calpeptin on the cell growth of MPM, the origin of which is mesenchymal cells, similar to lung fibroblasts. Calpeptin inhibited the proliferation of MPM cells, but not mesothelial cells. It also prevented 1) the expression of angiopoietin (Ang)-1 and Tie-2 mRNA in MPM cells, but not mesothelial cells and 2) the Ang-1-induced proliferation of MPM cells through an NF-κB dependent pathway, which may be the mechanism underlying the preventive effects of calpeptin on the growth of MPM cells. These results suggest potential clinical use of calpeptin for the treatment of MPM.

Keywords: Calpeptin - mesothelioma - cell proliferation - Ang-1/Tie-2 mRNA

Introduction

Malignant pleural mesothelioma (MPM) is an aggressive malignant tumor of mesothelial origin associated with asbestos exposure, and shows a limited response to conventional chemotherapy and radiotherapy. Therefore, the overall survival of MPM patients remains very poor. Progress in the development of therapeutic strategies for MPM has been limited. We recently reported that the calpain inhibitor, calpeptin exerted inhibitory effects on pulmonary fibrosis by inhibiting the proliferation of lung fibroblasts. In the present study, we examined the preventive effects of calpeptin on the cell growth of MPM, the origin of which is mesenchymal cells, similar to lung fibroblasts. Calpeptin inhibited the proliferation of MPM cells, but not mesothelial cells. It also prevented 1) the expression of angiopoietin (Ang)-1 and Tie-2 mRNA in MPM cells, but not mesothelial cells and 2) the Ang-1-induced proliferation of MPM cells through an NF-κB dependent pathway, which may be the mechanism underlying the preventive effects of calpeptin on the growth of MPM cells. These results suggest potential clinical use of calpeptin for the treatment of MPM.

Keywords: Calpeptin - mesothelioma - cell proliferation - Ang-1/Tie-2 mRNA
Materials and Methods

Cell culture

The human malignant pleural mesothelioma (MPM) cell lines H28 (epithelioid), H2052 (sarcomatoid), H2452 (biphasic), and MStO-211H (biphasic) and the human mesothelial cell line MeT-5A were purchased from the American Type Culture Collection (Rockville, MD). These cells were cultured in RPMI 1640 (Sigma Chemical Co., St Louis, MO) supplemented with 10% heat-inactivated fetal calf serum in a humidified incubator with 5% CO2 at 37°C. Calpeptin (Calbiochem, San Diego, CA) was diluted in DMSO and added to the growth medium to yield the final DMSO solvent concentration<0.01% (v/v). As a control, the same concentration of DMSO was added to cells. This final concentration of DMSO had no significant effects on these cells.

In some experiments, the cells were stimulated with recombinant human angiopoietin-1 (Ang-1) (R&D Systems, Oxford, UK) and preincubated with the NF-κB inhibitor and proteasome inhibitor MG-132 (5 μM, Calbiochem, San Diego, CA), p38MAPK inhibitor SB203580 (10 μM, Calbiochem), or ERK1/2 inhibitor PD98059 (25 μM, Calbiochem) for 60 minutes as previously described (Tabata et al., 2006).

Quantitative real-time RT-PCR

Quantitative real-time RT-PCR was performed using TaqMan Gene expression products as previously described (Tabata et al., 2006). 18SrRNA served as an endogenous control (Applied Biosystems).

Cell proliferation assay

A cell proliferation assay was performed as previously described (Tabata et al., 2006). Cell Counting Kit-8 (Dojindo, Tokyo, Japan) was used to measure the growth of cells.

Measurement of NF-κB p65

Nuclear extracts were prepared and protein concentrations in nuclear extracts were measured as previously described (Tabata et al., 2006). Nuclear NF-κB p65 was detected using an ELISA Kit (BioSource, Sigma, and Active Motif, respectively).

Statistical analysis

Results are presented as the mean ± SD. Statistical analyses were performed using the Bonferroni/Dunn multiple comparisons test.

Results

Inhibitory effects of Calpeptin on the proliferation of MPM cells and MeT-5A cells

We examined the effects of Calpeptin on the growth of MPM cells and MeT-5A cells. The addition of Calpeptin had a preventive effect on the proliferation of all MPM cells such as MStO-211H (biphasic) (A), H2052 (sarcomatoid) (B), H2452 (biphasic) (C), and H28 (epithelioid) (D) in a dose-dependent manner (Figure 1A-D). The maximum preventive effect was observed at 100 nM Calpeptin (9% decrease [p<0.01], 10% decrease [p<0.01], 13% decrease [p<0.01], and 9% decrease [p<0.01], respectively); whereas, lower concentrations (1 nM or 10 nM) of Calpeptin had markedly weaker effects than those of 100 nM. The viability of MPM cells and MeT-5A cells was not affected by 100 nM Calpeptin (data not shown). On the other hand, Calpeptin had no effect on the proliferation of MeT-5A (Figure 1E).

Effects of Calpeptin on Ang-1 and Tie-2 expression in MPM cells and MeT-5A cells

We previously reported the mRNA expression of Ang-1, Ang-2, and Tie-2 in MPM cells and MeT-5A cells using a real-time RT-PCR analysis (Tabata et al., 2010). Ang-1 mRNA was detected in H2052 and MStO-211H cells. However, Ang-1 mRNA expression was not detected in H28, H2452, or MeT-5A cells. On the other hand, Tie-2 mRNA was detected in H2452, MStO-211H, and MeT-5A cells. MPM and MeT-5A cells did not express Ang-2 mRNA. The protein levels of Ang-1 and Tie-2 were not detected in any of the MPM and MeT-5A cells (Figure 2A-D).
Calpeptin Prevents Malignant Pleural Mesothelioma Cell Proliferation via the Angiopoietin-1/Tie-2 System

The levels of Ang-1 and Ang-2 in cells were measured by ELISA. H2052 and MSTD-211H cells produced Ang-1 (2384.4±372.6 and 140.9±22.1 pg/ml, respectively), whereas H28, H2452, and MeT-5A cells did not. On the other hand, none of the cells examined produced Ang-2 (data not shown). We herein examined the effects of Calpeptin on Ang-1/Tie-2 expression in MPM cells and MeT-5A cells. Figure 2A, B shows that the Ang-1 mRNA/18S rRNA ratio was decreased in MSTD-211H (A) and H2052 cells (B) by the treatment with 100 nM Calpeptin after 18 hours (p<0.01 and p<0.01, respectively). Figure 2C, D shows that the Tie-2 mRNA/18S rRNA ratio was decreased in MSTD-211H (C) and H2452 (D) cells by the treatment with 100 nM Calpeptin after 18 hours (p<0.01 and p<0.05, respectively). However, the addition of 100 nM Calpeptin had no effect on the Tie-2 mRNA/18S rRNA ratio in MeT-5A cells (data not shown).

Involvement of NF-κB in the suppressive effect of Calpeptin on Ang-1 mRNA expression

In order to elucidate the mechanism underlying the suppressive effect of Calpeptin on Ang-1 expression in MSTD-211H cells, we examined whether any kinases are required for this process. The pretreatment of cells with a NF-κB inhibitor led to a decrease in Ang-1 mRNA levels (p<0.01, Figure 3A), suggesting that NF-κB plays an important role in the production of Ang-1. We then showed that the levels of nuclear NF-κB p65 in cells were reduced in the presence of Calpeptin (p<0.01, Figure 3B). Inhibitors of p38 MAPK and ERK1/2 had no effect on Ang-1 mRNA levels in cells (data not shown).

Effects of Calpeptin on the Ang-1/Tie-2-mediated proliferation of MPM cells

In our previous study, we showed that the addition of Ang-1 stimulated MSTD-211H cell growth in a dose-dependent manner and reached a plateau at a concentration of 100 ng/ml (Tabata et al., 2010). MSTD-211H cells secreted Ang-1, and Ang-1 induced the proliferation of these cells in an autocrine manner. In the present study, we examined the effects of Calpeptin on Ang-1-mediated cell proliferation. We found that Calpeptin inhibited the Ang-1-induced proliferation of MSTD-211H cells (p<0.01) (Figure 4).

Discussion

We previously reported that Calpeptin prevented bleomycin-induced lung fibrosis in mice (Tabata et al., 2010). MPM is a malignant transformation of mesothelial cells, which originate from mesenchymal cells, similar to lung fibroblasts. Therefore, we examined the relationship between Calpeptin and the growth of MPM cells and mesothelial cells. Our results demonstrated that Calpeptin prevented the proliferation of MPM cells, but not mesothelial cells in a dose-dependent manner.

We then examined the cellular suppressive mechanism of Calpeptin on the proliferation of MPM cells. Ang-1 and Ang-2, which are counteracting ligands for the endothelial-specific receptor, tyrosine kinase Tie-2 are important regulators of blood vessel growth, maturation, and...
function. Ang-1 promotes angiogenesis. In contrast, Ang-2 antagonizes Ang-1 (Thurston et al., 2000; Yancopoulos et al., 2000; Jain, 2003).

We previously showed the production of Ang-1 in 2 out of 4 MPM cells, and the expression of mRNA of Tie-2 in 2 of these cells. Met-5A cells expressed Tie-2 mRNA, but did not produce Ang-1. MSTO-211H cells expressed the mRNA of Ang-1 and Tie-2. In order to clarify the involvement of Ang-1 in MPM tumor growth, we previously demonstrated that Ang-1 induced the proliferation of MSTO-211H cells and H2452 cells with the expression of Tie-2 in a dose-dependent manner. On the other hand, Ang-1 had no effect on the proliferation of H2052 or H28 cells, without the expression of Tie-2, suggesting the important role of Tie-2 in Ang-1-induced proliferation (Tabata et al., 2010).

We previously demonstrated the inhibitory effects of Calpeptin on the expression of Ang-1, one of important key cytokines in pulmonary fibrosis (Tabata et al., 2007). We herein showed that Calpeptin suppressed the mRNA expression of Ang-1 and the Ang-1 receptor, Tie-2 in MPM cells, and also prevented Ang-1-dependent cell proliferation, suggesting that Calpeptin exerts inhibitory effects on MPM cell proliferation via an “Ang-1/Tie-2 autocrine and/or paracrine mechanism” in MPM cells and Ang-1-producing cells, such as fibroblasts (Tabata et al., 2007) and pericytes (Jain, 2003).

In order to elucidate the cellular mechanisms underlying the regulation of Ang-1 expression, we used several inhibitors such as ERK, JNK, p38MAPK, and NF-κB (Sullivan et al., 2005). We identified an important role for NF-κB in this process (Figure 3A, B). These results suggest one mechanism whereby Calpeptin reduces the expression of Ang-1 and Ang-1 induces the proliferation of MPM cells through an NF-κB-dependent pathway (Figure 4). Moreover, a recent study reported that asbestos-induced oncogenesis was associated with the activation of NF-κB (Yang et al., 2006); therefore, the suppressive effects of Calpeptin on the activation of NF-κB may be beneficial for the prevention of MPM tumor growth.

Previous studies demonstrated that increased vascular formation in MPM is associated with a poor prognosis (Edwards et al., 2003; Robinson and Lake, 2005). Ang-1 is one of the major regulators of blood vessel growth (Thurston et al., 2000; Yancopoulos et al., 2000; Jain, 2003). Therefore, the suppressive effects of Calpeptin on the expression of Ang-1 in MPM cells may play an important role in the development of MPM.

The inhibitory effects of Calpeptin on cell proliferation are not derived from its toxic effects because it did not influence the viabilities of any of the cells examined in this study, as demonstrated by trypan blue staining (data not shown).

In summary, we herein show the preventive effects of Calpeptin on the proliferation of MPM cells, but not mesothelial cells, for which one of the possible mechanisms is the inhibition of Ang-1 -induced MPM cell proliferation through an NF-kB dependent pathway. Although the precise cellular suppressive mechanism of Calpeptin in the proliferation of MPM cells has not been fully elucidated, our results suggest the potential of the clinical use of Calpeptin for the treatment of MPM.

Acknowledgements

We thank Ms. Hidemi Kitai (Division of Thoracic Oncology, Hyogo College of Medicine) for her technical assistance. This work was supported by grants from KAKENHI, and a Grant-in-Aid for Scientific Research (C) (23591167) (16K09566).

References


Calpeptin Prevents Malignant Pleural Mesothelioma Cell Proliferation via the Angiopoietin-1/Tie-2 System


