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Introduction

In medical science, diagnosis of a disease is very 
complicated, and many tests must be done on patients 
to obtain a near accurate diagnosis. This has given rise 
to computerized diagnostic tools, intended to aid the 
physician in making primary medical decisions and hence 
an early diagnosis. A major area for such computerized 
tools is in the domain of cancer diagnosis. Specifically 
breast cancer, since the physician needs to know early 
on whether the patient under examination exhibits 
the symptoms of a benign, or a malignant case. The 
computerized assisted diagnostic tools should attain the 
highest possible performance, which means they must 
classify correctly benign or malignant cases with a good 
degree of confidence. Moreover, it would be desirable 
for such diagnostic systems to be well interpreted by the 
physicians. 

In this research paper, we combine two methodologies, 
namely the fuzzy systems and the genetic algorithms 
to automatically produce automated systems for breast 
cancer early diagnosis. The major advantage of fuzzy 
systems is the simple interpretation; however, finding 
good fuzzy systems is a hard task. This is where genetic 
algorithm contributes, helping us in optimizing a computer 
production of the fuzzy systems, based on a database of 
training cases. There are several different examples of the 
application of fuzzy systems and evolutionary algorithms 
in the medical domain, such as applying to the Wisconsin 
Breast Cancer Diagnosis Data (WBCD) in USA (Andreas 
et al., 1999), or applying them on pathogenesis of acute 
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sore throat conditions in humans (Carmona et al., 2015), 
or combining with wavelets as in (Nguyen et al., 2015) 
or with neural networks as in (Rashidi et al., 2011). In our 
paper, we present the genetic-fuzzy algorithm, which we 
developed for the Saudi Arabian breast cancer database 
consisting of 260 patients collected nationwide. Our aim 
is to aid physicians in obtaining an early-computerized 
diagnosis and hence prevent the development of cancer 
through identification and removal or treatment of 
premalignant abnormalities; early detection can also 
improve survival and decrease mortality by detecting 
cancer at an early stage when treatment is more effective.

In the next sections, we provide a brief overview of 
fuzzy systems and genetic algorithms respectively. Then, 
we describe the genetic-fuzzy approach, the Saudi breast 
cancer data, and the relative parameters settings. In the 
last sections, we discuss the results of our best-evolved 
systems, and finally we present our concluding remarks 
and future work.

Fuzzy Systems

Fuzzy logic is a form of many-valued logic, which 
deals with reasoning that is approximate rather than fixed 
and exact. Compared to traditional binary sets (where 
variables may take on true or false values) fuzzy logic 
variables may have a truth-value that ranges in degree 
between 0 and 1. Fuzzy logic has been extended to 
handle the concept of partial truth, where the truth-value 
may range between completely true and completely 
false. Hence, Fuzzy logic is a computational method 
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manipulating information in a way that resembles human 
logical reasoning processes (Yager and Filev, 1994; Yager 
and Zadeh, 1994). A fuzzy variable is characterized by 
its fuzzy variable and the membership functions of these 
variables. 

Figure 1 shows an example of a fuzzy variable 
with two possible values labelled Low and High, and 
orthogonal membership functions, to guaranty the sum 
of all membership functions at any point is one. The plot 
shows degree of membership with input values, m and 
n defining the start point and the length of membership 
function edges, respectively. 

A fuzzy inference system is a rule-based system that 
uses fuzzy logic, rather than Boolean logic (Zadeh, 1965). 
The structure includes four main components a fuzzifier, 
translating crisp (real valued) inputs into fuzzy values, an 
inference engine applying a fuzzy reasoning mechanism 
to obtain a fuzzy output, a defuzzifier, translating the 
output back into a crisp value; and a knowledge base, 
containing both an ensemble of fuzzy rules, and a group 
of connection membership functions as seen in Figure 
2. Moreover, the decision making process is performed 
in the inference engine using the rules contained in the 
rule base. These fuzzy rules define the input and output 
of the fuzzy variables. A fuzzy rule has the form [ if 
antecedent then consequent], where the antecedent is a 
fuzzy-logic expression composed of one or more simple 
fuzzy expressions connected by fuzzy operators, and the 
consequent is an expression that assigns fuzzy values to 
the output variables. The inference engine performance 
the learning phase where it evaluates all the rules in the 
rule base and combines the weighted consequents of all 
relevant rules into a single fuzzy set using the aggregation 
operation (Mendel, 1995). An example of a fuzzy rule in 
our case would be: if (v1 is Low) and (v2 is Low) then 
(output is benign; where v1 and v2 are variables given 
in the data set.

Using the direct fuzzy model with knowledge from 
a human expert, the fuzzy modelling identifies the 
parameters of a fuzzy inference system so that a desired 
decision can be made. This task is difficult when the 
problem space is complicated and very large; thus, it 
motivates us to apply genetic algorithms to this space 
and produce optimum fuzzy models. In the literature, 
there are several approaches to fuzzy modelling based on 
neural networks (Jang and Sun, 1995), genetic algorithms 
(Alander, 1997; Cordon et al., 1997; Heider and Drabe, 
1997), and linear programming (Mangasarianet al.,1994). 
Selection of relevant variables and adequate rules is 
critical for obtaining a good accurate classification 
system. One of the major problems in fuzzy modelling 
is that the amount of computation grows exponentially 
with the number of variables. The parameters of fuzzy 
inference systems can be classified into four categories, 
logical, structural, connective, and operational. In fuzzy 
modelling, logical parameters are usually predefined 
from experience in the problem settings. Typical choices 
for the reasoning mechanism are Mamdani-type, 
Takagi-Sugeno-Kang, and singleton-type (Vourimaa, 
1994). Common fuzzy operators are min, max, product, 
probabilistic and sum (Tchier, 2013). The most common 

membership functions are triangular, trapezoidal, and bell-
shaped. For defuzzification, the (COA) and the mean of 
maxima (MOM) methods are the mostly used (Mendel, 
1995;Tchier, 2014).

Genetic Algorithms 

A genetic algorithm (GA) is a search heuristic that 
mimics the process of natural selection. GA is used to 
generate useful solutions to optimization and search 
problems. GA belong to the larger class of evolutionary 
algorithms (EA), which generate solutions to optimization 
problems using techniques inspired by natural evolution, 
such as inheritance, mutation, selection, and crossover 
(Koza, 1992).GA are usually applied to spaces which are 
too large to be exhaustively searched and they have many 
applications in bioinformatics, medical (Michalewicz, 
1996), science, engineering (Rashidi et al., 2011), 
economics, manufacturing, computational mathematics 
(Alharbi et al., 2007), and many other fields. 

The genetic algorithm method is an iterative procedure 
that involves a population representing the search 
space for solutions to the problem, as individuals, each 
one represented by a finite string of symbols, called 
the genome. The basic genetic algorithm proceeds as 
follows: an initial population of individuals is generated at 
random or heuristically. In every evolutionary step (gene 
rationstep), the individuals in the current population are 
decoded and evaluated according to a fitness function 
that describes the optimization problem in the search 
space. To form a new population (the next generation), 
individuals are selected according to their fitness. Many 
selection procedures are available, one of the simplest 
being fitness-proportionate selection, where individuals 
are selected with a probability proportional to their relative 
fitness. This ensures that the expected number of times an 
individual is chosen is approximately proportional to its 
relative performance in the population. Thus, high-fitness 
individuals stand a better chance to reproduce and bring 
new individuals to the population, while low-fitness will 
not. 

New individuals are introduced into the population 
by genetic operators called crossover and mutation. 
Crossover is performed with probability between two 
selected individuals (parents) exchanging parts of their 
genomes to form two new individuals (offspring’s). The 
mutation operator prevents premature convergence to local 
optima by randomly sampling new points in the search 
space; it is performed by flipping bits at random, with some 
small probability. GA is a stochastic iterative processes, 
which is not necessarily guaranteed to converge, and the 
stopping condition may be specified as a maximal number 
of generations or a chosen level of the fitness. 

Genetic-Fuzzy Algorithms

Since evolutionary algorithms are used to search large 
complex, search spaces and are able to give optimal and 
near-optimal solutions on numerous diverse problems, 
therefore genetic-fuzzy algorithms can be considered as 
a modelling optimization process where the parameters 
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of a fuzzy system constitute the search space as seen in 
Figure 2. Many researchers investigated the application of 
evolutionary techniques in the domain of fuzzy modelling 
(Kovalerchuk et al., 1997; Muthukrishnan, 2014), where 
the tuning of fuzzy inference systems involved in control 
tasks were done by genetic algorithms. Evolutionary fuzzy 
modelling has been applied to many domains, branching 
into many areas as chemistry, telecommunications (Heider 
and Drabe, 1997; Herrara et al., 1995), biology (Lee and 
Takagi, 1993), geophysics and medicine (Andres et al., 
1999; Carmona et al., 2015). The evolutionary algorithm 
can be used to tune the knowledge contained in the 
fuzzy system by finding membership function values. 
An initial fuzzy system is defined by an expert. Then, the 
membership function values are encoded in a genome, 
and an evolutionary algorithm is used to find systems 
with high performance. Evolution often overcomes the 
local-minima problem seen in other gradient descent-
based optimization methods. Artificial evolution can be 
applied in different stages of the fuzzy parameters search 
depending on several conditions like the availability of 
a priori knowledge, the size of the parameter, and the 
availability and completeness of input/output data. These 
types of fuzzy parameters whcih can be used to define 
targets for evolutionary fuzzy modelling are: structural 
parameters, connective parameters, and operational 
parameters. 

In many cases, the available information about the 
system is composed almost exclusively of input/output 
data, and specific knowledge make up the system structure. 
In such a case, evolution has to deal with the simultaneous 
design of rules, membership functions, and structural 
parameters. Structure learning permits to specify other 
criteria related to the interpretability of the system, such 
as the number of membership functions and the number 
of rules. While, the strong interdependency among the 
parameters involved in this form of learning may slow 
down the convergence of the genetic algorithm. Both 
connective and structural parameters modelling are viewed 
as rule base learning processes with different levels of 
complexity. In the evolutionary algorithm applications, 
the main approaches for evolving such rule systems are 
the Michigan approach, the Pittsburgh approach (Alander, 
1997), and the iterative rule learning approach (Karr, 
1991). 

In the Michigan approach, each individual represents a 
single rule, and the entire population represents the fuzzy 
inference system. Since several rules participate in the 
inference process, the rules are in constant competition 
for the best action to be proposed, and cooperate to form 
an efficient fuzzy system. In the Pittsburgh approach, 
the evolutionary algorithm maintains a population of 
candidate fuzzy systems, each individual representing 
an entire fuzzy system. Selection and genetic operators 
produce new generations of fuzzy systems. This approach 
allows including additional optimization criteria in the 
fitness function, thus affording the implementation of 
multi-objective optimization. The main disadvantage of 
this approach is its computational cost, since a population 
of a complete fuzzy system has to be evaluated each 
generation.

Saudi Breast Cancer Data

Breast cancer is known as one of the most common 
cancers types affecting the female population. It is one 
of the major causes of death among women and a true 
emergency for health care systems of industrialized 
countries. It is one of the major causes of death among 
women and a true emergency for health care systems 
of industrialized countries. One of the epidemiological 
studies conducted by (Al-Diab et al., 2013) reported 
that the incidence of breast cancer in Saudi Arabia was 
19.8% of all the female cancers detected in Saudi Arabia 
(El-Akkadal et al., 1986). Top researchers in the field 
such as GLOBOCAN project (Ferlay et al., 2013) have 
shown that breast cancer is the second most common 
malignancy for women in Saudi Arabia in 2012 (Figure 
3). Nevertheless, there is a paucity of detailed published 
epidemiologic data. An earlier report according to Saudi 
National Cancer Registry mentioned an increasing 
proportion of breast cancer among women of different 
ages from 10.2% in 2000 to 24.3% in 2012 (Al Diab et 
al., 2013). The presence of a breast mass is an alert, but it 
does not always indicate a malignant cancer. Fine needle 
aspiration (FNA)2 of breast masses is a cost-effective, 
non-traumatic, and mostly non- invasive diagnostic test 
that obtains information needed to evaluate malignancy. 
The medical diagnosis data of breast cancer used in this 
study is from patients in Saudi Arabia (AlDiab, et al., 
2013). The database is similar to the WBCD database of 
the University of Wisconsin Hospital (Merez and Murphy, 
1996), where diagnosis of breast masses is based solely 
on an FNA test Nine visually assessed characteristics of 
an FNA sample considered relevant for diagnosis are 
identified, and were assigned an integer value between 
1 and 10. The diagnostics in the database were done by 
specialists in the field, and the database itself consists of 
260 cases, with each entry representing the classification 
for a patient with eleven entries: (patient number, v1, v2, 
v3,…, v9, Diagnostic: Benign or Malignant). The nine 
measured variables are as follows: v1 is clump thickness, 
v2 is uniformity of cell size, v3 is uniformity of cell shape, 
v4 is marginal adhesion, v5 is single epithelial cell size, 
v6 is bare nuclei, v7 is bland chromatin, v8 is normal 
nucleoli and v9 is mitosis.

Basically, an initial fuzzy rule base is defined by an 
expert, for example a fuzzy rule can be given as: if [v1 is 
Low] and [v7 is Low] then (output is benign). The genetic 
algorithm then fine-tunes the membership functions, i.e. 
the m and n values defining Low and High (Figure 1). 
The genetic algorithm is also used to find either the rule 
consequents, or other subset rules to be included in the rule 
base. As the membership functions are fixed this approach 
lacks the flexibility to modify substantially the system 
behavior. One of the major disadvantages of knowledge 
tuning is its dependency on the initial setting of the 
knowledge base. Furthermore, as the number of variables 
and membership functions increases, large dimensionality 
decreases the system’s performance. Evolutionary 
structure learning is done by encoding within the genome 
an entire fuzzy system using the Pittsburgh approach. 
The fuzzy system computes a continuous appraisal value 
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of the malignancy of a case, based on the input values. 
According to the fuzzy system’s output, the threshold unit 
then outputs a benign or malignant diagnostic. In order 
to evolve the fuzzy model we must set some preliminary 
parameters in the fuzzy system itself and in the genetic 
algorithm encoding.

Genetic-Fuzzy Parameters

All previous knowledge about the problem and 
about the existent rule-based models gives us valuable 
information for our choices of fuzzy parameters. It has 
been shown in previous work that systems with no more 
than four rules obtain high performance (Andreas et 
al., 1999) and there is no need for a higher number of 
rules. Moreover, small number of variable is associated 
with benign cases, and the higher-valued variables are 
associated with malignancy. Each variable should have 
semantic meaning and the fuzzy set should clearly define 
a range that describes it. Any value belongs to at least 
one fuzzy set (Low, High, or both); no value lies outside 
the range of all sets. Since all the labels have semantic 
meaning, for each label, at least one element of the space 
should have a membership value equal to one. Hence, a 
Low membership value of 0.8 entails a High membership 
value of 0.2, and for each element, the sum of all its 
membership values should be equal to one. The parameter 
settings are set as in the following.

A.The fuzzy system parameters:
i). Logical parameters: 
Reasoning mechanism: singleton-type fuzzy system 

(output membership are real values). 
Fuzzy operators: min and max. 
Input membership function type: orthogonal, 

trapezoidal. 
Defuzzification method: weighted average. 
ii). Structural parameters: 
Relevant variables: specified by the genetic algorithm. 
Number of input membership functions: two, 

denoted Low and High. 
Number of output membership functions: two 

singletons for the benign and malignant diagnostic cases. 
Number of rules: specified by the user between 1 and 

4, found by the genetic algorithm. 
Antecedents of rules: found by the genetic algorithm. 
Consequent of rules: the algorithm finds rules for 

the benign diagnostic; the malignant diagnostic is an else 
condition. 

Rule weights: the learning is done by letting active 
rules have a weigh of value 1, and the else condition has 
a weight of 0.25. 

Input membership function values: found by the 
genetic algorithm 

Output membership function values: following the 
database provided, we used a value of 2 for benign and 
4 for malignant. 

B. The genetic algorithm system parameters:
We applied the Pittsburgh-style-structure learning, 

namely, using a genetic algorithm to search for three 

parameters, the genome, input membership function 
values, and antecedents of rules are: i). Membership 
function parameters: Nine variables (v1- v9) each with 
two parameters m and n, defining the start point and 
the length of the membership function, respectively. ii). 
Antecedents: The i-th rule has the form: if (v1 is M1i) ...and 
(v2 is M9i ) then (output is benign), where Mji represents 
the membership function, which can take on the values: 
1 for Low, 2 for High, or 0 for Other. 

To evolve the fuzzy inference system, we used a 
genetic algorithm with a fixed population size of 50 
individuals, with the length of each genome depending 
on the number of rules (a three rule has genome with 
45 bits). The algorithm terminates when the maximum 
number of generations is reached at 300, or when 
the increase in fitness of the best individual over five 
successive generations falls below a certain threshold, set 
at 2×10-6. Our fitness function Fis set to the classification 
performance, computed as the percentage of cases 
correctly classified, given by

F=Fr-α Fc                                     (1) 
where α = 0.1, Fr, the ratio of correctly diagnosed cases, 
which is the most important measure of performance, and 
Fc measures the confidence, penalizing systems with large 
number of low appraisal value cases i.e., cases that are 
diagnosed with low confidence. The crossover between 
the two chosen parents genome is done at a single point 
randomly chosen with probability 0.8 to produce the 
new generation offspring. The selection operator of 
parent’s genome is set to the stochastic uniform selection 
method, and the mutation done on the new offspring has 
probability 0.01. Hence, the experiment starts by finding 
from a population of 50 genomes of length 45, where the 
first 18 bits represent the parameters of the membership 
functions (m, n) of each Vi and the remaining 27 bits are 
the output function Mji for each Vi in the three rule base 
system showing Low or High or irrelevant. Table 1 shows 
the parameters encoding to form a single individual is 
genome. The GA runs throughout the generations to find 
the best genome in this population. The best genome is the 
one, which classifies correctly the largest number of the 
260 cases given in the data set. After all 300 generations 
(repeated 50 times), the genetic algorithm finds the 
optimum genome; hence, it finds the best diagnostic 
system. 

Result

The solution scheme we present for the Saudi breast 
cancer database diagnosis consists of a fuzzy system and 
a threshold unit. The fuzzy system computes a continuous 
appraisal value of the malignancy of a case, based on the 
input values. The threshold unit then outputs a benign 
or malignant diagnostic according to the fuzzy system’s 
output. In order to evolve the fuzzy model we must set 
the fuzzy system parameters and the genetic algorithm 
encoding according to parameter settings discussed earlier. 
Table 1 shows the parameters encoding, forming a single 
individual genome. Figure 4 shows an example of a sample 
genome structure with its interpretation from a single rule 
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fuzzy system, with 27 parameters: where m1=1, n1=5, 
m2=2, n2=3, …m9=1, n9=4, and membership functions 
: M1

1=1, M2
1=0, M3

1=1, M4
1=0, M5

1=2, M6
1= M7

1= M8
1= 

M9
1=0.
The evolutionary experiments performed fall into 

three learning categories, in accordance with the data 
partitioning into two distinct sets: training set and testing 
set. The three experimental categories are: i). Training set 
contains all 260 cases of the database, while the testing set 
is empty. ii). Training set contains 75% of the data cases, 
and the testing set contains the remaining 25% of the cases. 
iii). Training set contains 50% of the database cases and 
the testing set contains the remaining 50% of the cases. 

In the last two categories, the choice of training-set 

cases is done randomly, and is performed at the outset of 
every evolutionary run. The number of rules per system 
was fixed at the beginning, to be between one and four, 
i.e. evolution seeks a system with a given number of rules. 
Fifty evolutionary runs were performed, all of which found 
systems whose classification performance is above 95% 
of the cases in the dataset correctly diagnosed. MATLAB 
Genetic Toolbox (Matlab Toolboxes, 2015) was modified 
to implement the genetic-fuzzy algorithm and to generate 
the graphs of the results. CPU time is efficient since it 
takes average 4.8 minutes to go through 300 generations 
with a 2.4 GHz Intel Core i5 processor. 

Figure 5, consists of the best diagnostic system with 
three rules (45 parameters). Taking into account the 
performance classification rate this system is the top one 
over all 50 evolutionary runs. It obtained 98.3% correct 
classification rate over the benign cases, 96.2% correct 
classification rate over the malignant cases, and an overall 
classification rate of 97.33%. Table 2 presents the average 
performance obtained by the genetic algorithm with this 
system over all 50 evolutionary runs, divided according to 
the three experimental categories. The performance value 
denotes the percentage of cases correctly classified. Three 
such performance values are shown: the performance over 
the training set; the performance over the test set; and the 
overall performance on the entire database. 

Even though our work is on a different dataset our 
proposed fuzzy three rule system described in this paper 
performs very well and reaches comparable results 
similar to work done on the WBCD dataset(Andres et al., 
1999; Setiono, 1996) in terms of both performance and 
simplicity of rule as seen in Table 3. It is worth noting that 

Figure 1. Example of a Fuzzy Variable with Values 
High and Low

Figure 2. Basic Structure of a Genetic-fuzzy System

Figure 3. Percentages of Several Types of Cancers 
Detected in Saudi Arabia in 2012

Figure 4. Example of a Genome Structure and 
Interpretation for a Single Rule Evolved Fuzzy System.
Rule: if (v1 is Low) and (v3 is Low) and (v5 High) then (output 
is benign) else (output is malignant)

V1 V2 V3 V4 V5 V6 V7 V8 V9
m 1 2 1 4 6 2 2 3 1
n 5 3 2 7 7 4 8 1 4

Figure 5. The best evolved fuzzy diagnostic system 
with three rules. It exhibits an overall classification 
rate of 97.33%. Rule 1 : if (v3 is Low) and (v7 is Low) and 
(v8 is Low) and (v9 is Low) then (output is  benign); Rule 2 : 
if (v1 is Low) and (v2 is Low) and (v4 is Low)and (v5 is High) 
and (v9 is Low)  then (output is benign); Rule 3 : if (v1 is Low) 
and (v4 is Low) and (v6 is Low) and (v8 is Low) then (output 
is benign)else (output is malignant)

V1 V2 V3 V4 V5 V6 V7 V8 V9
m 2 5 8 4 6 3 4 5 4
n 5 3 1 2 1 6 3 2 1

Figure 6. The Best Two Rule Fuzzy Diagnostic System 
with Overall Classification Rate of 97.03. Rule1 : if (v2 
is Low) and (v3 is Low) then (output is benign); Rule 2: if (v2 
is Low) and (v5 is Low) and (v6 is Low)and (v8 is Low) then 
(output is benign)else (output is malignant)

V1 V2 V3 V4 V5 V6 V7 V8 V9
m 1 1 3 8 6 2 1 3
n 5 8 1 1 1 6 8 1
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Andres et al. had 699 cases in the WBCD dataset from 
patients in USA and they used a different fitness function 
denoted F=Fc-0.05Fv-0.01Fe, such that Fc, the number 
of correctly diagnosed cases, Fv measures the linguistic 
integrity (interpretability), and Fe adds selection pressure 
towards systems with low quadratic error. Moreover, 
Setiono used an application of the neural networks that 
involves Boolean rule bases extracted from trained neural 
networks on the WBCD dataset. As we can see in the 
results shown in Table 3, the classification performance 
values obtained by the two other papers with the similar 
methodology but different database, are looking very 
close in terms of accuracy and in time efficiency, even 
though in our work here on the Saudi database we used 
a simpler fitness function which depended only on the 
number of correctly classified cases and the confidence of 
the diagnosis and we only have 260 cases in our database.

Figure 6 shows a diagnostic system with two rules, 
which obtained 97% correct classification rate in the 
benign cases, 97.06% correct classification rate over 
the malignant cases, and an overall classification rate of 
97.03%. Figure 7 gives the diagnostic system with four 
rules. It obtains 96.55% correct classification rate in the 
benign cases, 96.8% correct classification rate over the 
malignant cases, and an overall classification rate of 
96.67%. Figure 8 shows the plot of the best fitness value 
over the generations and the current best individual of 
all 36 variables in a two rule fuzzy diagnostic system. 
Figure 9 shows the plots of the best in fitness and best 
individual for the four-rule system, also the distance 
between individuals. Finally, Figure 10 delineates the 
best one-rule system found through our evolutionary 
approach. It obtains 96.17% correct classification rate 
in the benign cases, 96.22% correct classification rate 

Figure 9. Plots of the Best Fitness Value over the 
Generations and the Current Best Individual, Average 
Distance between Individuals, and the Selection 
Function for Best Parent in a Four Rule Fuzzy 
Diagnostic System

Figure 10. The Best Fuzzy Diagnostic System with One 
Rule. It exhibits an overall classification rate of 96.19%. Rule 1 
: if (v2 is Low) and (v5 is Low) and (v6 is Low) and (v8 is Low) 
then (output is benign) else (output is malignant)

V1 V2 V3 V4 V5 V6 V7 V8 V9
m 4 2 5 6 6 2 4 3 6 
n 3 5 3 1 2 3 3 1 5

Figure 7. The Best Fuzzy Diagnostic System with four 
Rules. It exhibits an overall classification rate of 96.67%. 
Rule 1: if (v3 is Low) and (v7 is Low) and  (v8 is Low) 
and (v9 is Low) then (output is benign); Rule 2: if (v1 is 
Low) and (v2 is Low) and (v4 is High)and (v5 is High) 
and (v9 is Low)  then (output is benign); Rule 3: if (v1 
is Low) and (v7 is Low) and (v6 is Low)and (v8 is Low) 
then (output is benign); Rule 4: if (v3 is Low) and (v2 is 
Low) and (v4 is High) and (v9 is Low) then (output is 
benign)else (output is malignant)

V1 V2 V3 V4 V5 V6 V7 V8 V9
m 4 2 5 6 6 2 4 3 6 
n 3 5 3 1 2 3 3 1 5

Figure 8. Plots of the Best Fitness Value over the 
Generations and the Current Best Individual of all 36 
Variables in the Two Rule 

Table 2. Results Divided According to the three 
Experimental Categories for the Best three Rules 
Diagnostic System

Performance
Training set Test set Overall

Training/test 100/0 - - 97.33%
Training/test 75/25 98.30% 96.21% 97.25%
Training/test 50/50 97.50% 96.61% 97.05%

Table 4. Results of Overall Classification Performance 
for all Fuzzy Diagnostic Systems with Rules 1-4

Rules per-system Best system (%) Average (%)
1 96.19 96.8
2 97.03 96.7
3 97.33 97
4 96.67 96.7

Table 3. Comparing Over All Results for a three Rule 
Base System in Our Work and with other Approaches 
in the Literature with a Different Dataset and Similar 
Methodology

Research approach This work Andres et al. Setiono
Performance 97.33 % 97.80 % 97.14 %

Table 1. Parameter Encoding of Genome

Values Bits Total bits 
m 1 to 8 3 27 
n 1 to 8 3 27 
M 0 to 2 2 18*number of rules 
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over the malignant cases, and an overall classification 
rate of 96.19%. Figure 11 shows the best fitness and 
distance between individuals with this system. We have 
performed 40 evolutionary runs in every system, the 
results of which are summarized in Table 4. Results are 
divided into four classes, in accordance with the number 
of rules-per-system, with 10 runs per class; shown are the 
resulting best systems as well as the average per class. In 
this comparison, we can see the three-rule system achieves 
a higher percentage of correct diagnosed cases than the 
other systems.

After completing the fuzzification phase it is time for 
the inference engine to compute the truth value of each 
rule (see Figure 2), by applying the fuzzy ‘and’ operator 
to combine the antecedent clauses in a fuzzy manner. This 
results in the output truth-value, which is a continuous 
value representing the rule’s degree of activation. Thus, 
a rule is not just activated, but it is activated to a certain 
degree represented by a value between 0 and 1. The 
inference engine now goes on to apply the aggregation 
operator and combining the continuous rule activation 
values to produce a fuzzy output with a set truth-value. 
The defuzzifier then works to produce the final continuous 
value of the fuzzy inference system; this latter value 
is the value that is passed on to the threshold unit. For 
our best three rule fuzzy system given in Figure 5 we 
calculate the membership values for each 260 patients 
and with the “and” function we get the appraisal value in 
the range [3,5]. We chose to place the threshold value at 
3, with inferior values classified as benign, and superior 
values classified as malignant. Thus, if a case in the 
database scores a value of 2.6 and that is classified as 
benign, it is close to the threshold 3 so its confidence is 
considered low. This demonstrates a prime advantage of 
fuzzy systems, which is the ability to find an output not 
only in binary form: benign, malignant, but also with a 
measure representing the system’s confidence in its output. 
Our three-rule system has computed intermediate values 
[2.5, 3.5] for only 23 cases; which means that in these 
cases the system is less confident about the output, but 
for the remaining 237 cases it has diagnosed it with high 
confidence. This is considered a very good diagnosis result 

Figure 11. Plots of the Best Fitness Value over 
the Generations, and Average Distance Between 
Individuals for the Evolved Fuzzy One Rule Diagnostic 
System

compared with other computerized diagnosis systems 
published in previous work on the WCBD dataset.

Discussion

In this paper, we applied a combined genetic-fuzzy 
algorithm to the Saudi breast cancer diagnosis database. 
Our evolved computerized systems exhibit both high 
classification performances with a high confidence 
measure; and with a few simple rules, that are easily 
interpretable. Our results suggest that the genetic-fuzzy 
approach is highly effective on medical diagnosis 
problems; in fact, our best three rule fuzzy system 
calculated a diagnosis for all 260 patients with a 97.33% 
accuracy and a confidence of 91%. This demonstrates a 
prime advantage of fuzzy systems, which is the ability to 
find an output not only in binary form: benign, malignant, 
but also with a measure representing the system’s 
confidence in the output. 

Our future work will involve applying the genetic-
fuzzy approach to other complex Cancer diagnosis 
problems such as Prostate or lung cancer diagnosis, which 
should help physicians detect it at an early stage. We 
will also try alternative fuzzy logic approaches such as 
Neuro-Fuzzy networks or Fuzzy Petri with evolutionary 
methods. In addition, we will explore another promising 
area combining evolutionary algorithms with neural 
networks such as adaptive neuro-fuzzy inference systems 
and evolved principle component analysis neural networks 
to develop other computerized diagnosis tools.
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