Persian Gulf Jellyfish (Cassiopea andromeda) Venom Fractions Induce Selective Injury and Cytochrome C Release in Mitochondria Obtained from Breast Adenocarcinoma Patients

Document Type: Research Articles

Authors

1 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences

2 Department of Surgical Oncology, Cancer Institute, Tehran University of Medical Science, Tehran, Iran

3 Department of Marine Toxinology, the Persian Gulf Marine Biotechnology Research Center, Persian Gulf Biomedical Research Center, Bushehr University of Medical Science, Bushehr

4 Department of Marine Biotechnology, the Persian Gulf Research and Studies Center, Persian Gulf University

5 Department of Pharmacology and Toxicology, Bushehr University of Medical Sciences,

Abstract

 
Objective: This study was conducted to investigate whether fractions of jellyfish Cassiope andromeda venom, could selectively induce toxicity on mitochondria isolated from cancer tissue of patients with breast adenocarcinomas. Methods: Firstly, we extracted two fractions, (f1 and f2) from crude jellyfish venom by gel filtration on Sephadex G-200.Then different dilutions of these extracted fractions were applied to mitochondria isolated from human breast tumoral- and extra-tumoral tissues. Parameters of mitochondrial toxicity including generation of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) collapse, swelling, cytochrome c release, activation of caspase3 and apoptosis were then assayed. Result: Our results demonstrate that fraction 2 of Cassiopea andromeda crude venom significantly (P<0.05) decreased mitochondrial succinate dehydrogenase activity, increased mitochondrial ROS production, induced mitochondrial swelling, MMP collapse and cytochrome c release, activated caspase3 and induced apoptosis only in tumoral mitochondria, and not in mitochondria obtained from extra-tumoral tissue (P<0.05). Conclusion: In conclusion this study suggested that fraction 2 of Cassiopea andromeda crude venom selectively induces ROS mediated cytotoxicity by directly targeting mitochondria isolated from human breast tumor tissue.

Keywords

Main Subjects