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Introduction

Ovarian cancer (OV) is one of the most common 
malignant tumors of the female genital organ. The 
morbidity of OV ranks second after the cervical cancer 
and uterine body carcinoma, and moreover, the third in 
the list of malignance. Globally about 200,000 people are 
diagnosed with ovarian cancer and 125,000  die from the 
disease each year (Torreet al., 2012). As the symptoms of 
ovarian cancer is vague and the lack of effective screening 
techniques and early diagnosis methods, 70%~80% of 
patients are diagnosed with advanced disease, which 
contributes to poor treatment effect that 5-year survival 
rate is less than 20%(Chou et al., 2010; Ledermann et 
al., 2016). From a medical point of view, the embryo 
development of ovary, the histological anatomy and the 
endocrine function are rather complex, and the early 
symptoms are not typical, as a result it is difficult to 
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identify the origin and malignancy degree before surgery.
Epidemiological studies have demonstrated that 

the risk of OV is associated with obesity, diabetes, and 
metabolic syndrome. More evidences show that persons 
with type I diabetes mellitus (DM) have an approximately 
20-25% higher cancer incidence compared with persons 
without diabetes. For instance, women with diabetes 
have been shown to have an elevated incidence of liver, 
pancreatic, kidney, and endometrial cancer. 

Recently a meta-analysis of epidemiological studies 
on the correlation between diabetes and OV indicated that 
diabetes was associated with an increased risk of OV. The 
incidence of OV risks related approximately to 1.17 (95% 
confidences interval (CI), 1.02-1.33)](Donal and Lamkin, 
2009). Besides, a variety of proteins in glycometabolism 
have been attracting increasing attention as potential 
targets for OV treatment (Birrer et al., 2011). The clinical 
results are still controversial though, it suggests that 

Editorial Process: Submission:06/25/2018   Acceptance:12/26/2018

1Department of Toxicology, Guilin Medical University School of Public Health, Guilin, 2Department of Gynaecology and Obstetrics, 
Kailuan General Hospital, Tangshan, Hebei, 3Department of Nutrition, School of Medicine, Jinan University, Guangzhou, 
Guangdong, 4Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun 
Yat-sen University, Guangzhou, China. *For Correspondence: bobojpn2002@163.com. Yi Sun, Xiaoyan Huang and Yun Liu have 
equal  contribution in this study.



Yi Sun et al

Asian Pacific Journal of Cancer Prevention, Vol 20146

targeting glycometabolism could be a novel approach to 
treat OV.

High throughput platform for genetic analysis is 
becoming more and more important, and the proper 
application of microarray is one of the most promising 
technology in medical oncology. Gene microarray 
technology in cancer gene research, cancer gene 
expression profile analysis, molecular classification of the 
tumor and tumor gene mutations is widely used due to the 
great advantage in tumor biology. For the past few years, 
gene microarray technology has been used in the study 
of malignant OV to analyze the expression difference of 
genes, detect the molecular markers of early diagnosis, 
analyze the characteristics of drug resistance genes, judge 
the sensitivity to chemothearpy, analyze characteristics 
of gene expression and predict the early tendency of 
recurrence. All of these are the critical methods to study 
the gene expression profile of OV.

In our research, the initial data were downloaded from 
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.
nih.gov/geo). GSE26712 genetic data from the patients 
with OV were compared with normal controls, then GO 
and pathway enrichment analysis was performed. We want 
to integrate the publicly available microarray datasets in 
the database, analyze the biological functions of genes and 
pathways, explore whether diabetes is the risk factor of 
OV, which provides meaningful clues for the relationship 
of diabetes and OV. 

Materials and Methods

Microarray data information and DEGs identification
GSE26712 gene expression profiles were downloaded 

from the GEO database. GSE26712 was submitted by 
Michael Birrer based on the agilent GPL96 platform 
([hg-u133a] Affymetrix Human Genome U133A 
Array). The database consisted of 195 samples in total, 
including185 tissues from ovarian cancer patients and 
10 from normal human. We downloaded the raw data in 
text form (agilent platform). After analyzing the top 250 
genes with GEO online tools 2R, we got all genes with 
differences expression. And the genetic variations were 
extracted in Excel spreadsheets, with the conditions of 
|log FC| ≥ 2, P-value< 0.05. Finally 379 eligible difference 
genes were found. The results showed that the data was 
statistically significant.

Genetic ontology and pathway enrichment analysis of 
differential genes

A variety of online databases were utilized to analyze 
candidate DEGs function and access enrichment. GO 
constitutes one of a variety of biological ontology 
languages, providing a three-tier system definition method 
for describing the function of gene products, which is 
suitable for all kinds of species, gene and protein function 
for qualified and description]Gene Ontology C 2006). 
KEGG (http://www.kegg.jp/) is a database to know the 
advanced features and biological systems (such as cells, 
biological and ecological systems) from the molecular 
information, especially large data sets generated genome 
sequencing and other high-throughput experimental 

technologies (Ashburner et al., 2000). Now David (https://
david.ncifcrf.gov/) provides researchers with a set of 
complete functional annotation tools for investigators 
to understand the biological significance behind the 
numerous genes (Kanehisa and Goto, 2000). GO analysis 
and KEGG analysis of the selected different genes were 
performed using David online tools. The biological 
process, molecular mechanism and the cell composition 
of the GO term were obtained by the annotation of the 
altered genes, and the correlation pathway of KEGG was 
analyzed. The differential genes of David online tool 
analysis (P-value < 0.05) was considered to be statistically 
significant.

The network diagram and module synthesis analysis of 
protein-protein interaction

Search Tool for the Retrieval of Interaction 
Genes-STRING- is an online tool used to identify 
protein-protein interaction information.

The STRING (version10.5) contains 9,643,763 
proteins from 2031 species; 1,380,838,440 interactions. 
To evaluate the interaction of different genes, we mapped 
all the differences of all the genes into a STRING and used 
score > 0.4 as the cut-off criteria. Then, the PPI network 
diagram was constructed by using the cytoscape, and 
the three modules of the expression were selected by the 
plug-in MCODE of cytoscape, and the module analysis 
was carried out. The corresponding proteins in the central 
nodes might be the core proteins and key candidate genes 
with significant physiological regulatory functions.

2.4 Disease predictions of candidate genes
The Comparative Toxicogenomics Database CTD, 

http://ctdbase.org./ was used for describing the relationship 
between chemicals, genes and diseases. We put ten central 
genes into CTD website, and the CTD tools was used to 
express the abnormal expression of OV in these ten hub 
genes and to analyze the relationship between metabolic 
and cancer related diseases.

Analysis of ROC in candidate gene ovarian cancer
Receiver operating characteristic (ROC) curves for 

the hub genes were analyzed using web-based tools 
(http://www.proteinatlas.org). Oncolnc is a website that 
incorporates various RNA data and patient clinical data 
from TCGA and provides survival analysis. We mapped 
ten central genes into this site, the use of the functions and 
characteristics of the Oncolnc hub genes in OV survival 
situation is analyzed, and the survival curves of the ten 
central genes, is used to evaluate 10 hub genes diagnosis 
effectiveness of abnormal expression in OV.

Results 

Identification of differential genes in ovarian cancer
A total of 185 cases of ovarian cancer and 10 control 

samples were analyzed. The series of microarray data 
were analyzed with GEO 2R tool, and the different genes 
were obtained with P-value < 0.05 and |log FC| ≥ 2.0 as 
the cut-off criterion. In the analysis of GSE26712, a total 
of 379 DEGs were identified, including 104 up-regulated 
genes and 275 down-regulated genes (Table 1). The heat 
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DEGs Genes Name

Up-regulated CD24 CD24 SNORA68 RPL18A CD24 CLDN3 IGFBP2 LOC101929219 LOC100505650 C1orf186 HIST2H2AA4 
HIST2H2AA3 CALR WFDC2 SCGB2A1 FOLR1 CD24 PFN1 CRABP2 
PKM COL1A1 RPL37ASOX17 RPS7 CD24 PPDPF MUC1 MECOM C9orf16 NOTCH3 CLDN3 ACTB RHOB S100A13 
ELF3 LCN2 SLC52A2 IGLC1 KLK6 S100A11 DEFB1 
INS-IGF2 IGF2 HMGA1 ISG15 FOLR1 GSTP1 TAGLN S100A2 H2BFS IGLC1 CALR COL1A1 CKS2 CP IGHA2 IGHA1 
IGH ATP5H H2AFX YWHAE PEA15 ADGRG1 PRMT1 
S100A6 LSM4 SOX9 MMP11 SETSIP SETP4 SET CYAT1 IGLV1-44 IGLC1 PRKCSH MIR7113 MIR4691 NDUFS8 
CL2L2-PABPN1 PABPN1 C9orf16 GRINA LOC100506248 
MIR1244-2 MIR1244-3 MIR1244-1 LOC728026 PTMA MMP7 ACTB NT5DC2 BCAM COL6A2 FXYD3  JUNB  MUC1  
PAX8  UBE2C  CLDN4  LYPD1  UQCRQ  HSPG2  MRPS12 
ZNF593 CDC20 IGLV1-44 C1orf106 IDH2 IFI6 ENO1 COX7B SLC39A4 IFI27 KLK8 KDELR1 MDK HIST1H1C UCP2 
MIR1282 HYPK SERF2 TMED2 PRSS8 ATP2A2 BCAM 
CHMP5 PAXBP1 EZR  MEF2C SCP2 RARRES1 PLIN2 HSD17B11 PRNP DCUN1D4 HAS1 DLG5 EPS15 PNRC2 PDZD2 
ATF1  ADGRG6  CPE  BAMBI  PRKAR1A  GJA1  NR2F2 
RSRP1 PLCB1 CHMP2B VPS13C TJP2 ADH5 NEFH CAV2 ANK3  SMARCA2 CHGB ZNF45 RARRES1  RHOT1 LIPA 
EFHC1  ATMIN  PURA  GLS  WT1 SFRP1 C21orf62 
LOC101929500 CRIM1 KAT2B BICC1 SERPINB9 ADAMTS3 PRKAR2B GALNT12 PDPN HNRNPD GNG11 TOB1 
SEL1L3 DCN GPR137B ISOC1 MAP3K8 TSPYL1 SNX7 UPK3B 
CIRBP PREPL PTPRC NT5C1B-RDH14 RDH14 CLK1 PODXL SNORD45C SNORD45A SNORD45B RABGGTB HPR 
HP CELF2 ANOS1 LGALS2 PCDH9   PKD2 ARAP2   CELF2 
CAV2 KLF4 PCOLCE2 PLCE1 LUC7L3 ARHGAP44 LAMB1 FZD7 SLC16A1 PRKAR1A ARHGAP6 GFPT2 DAPK1 
FZD7 CLDN15 S100PBP ACSL1 ZDHHC17 DSC3 ADAM9 
FLRT3 SEMA5A ITGAM CFH PGRMC2 SOBP GABARAPL3 GABARAPL1 PSD3 TSPAN8 ATP10D ME1 ZBTB20 
IGFBP6  RBM25  WSB1  RAP2C TCF21  PTGER3 GPRASP1 
CSGALNACT1 SLK GCOM1 POLR2M ATP8A1 GALC GCA TSPAN13 ATXN1 CFHR1 CFH DOCK4MIR22 MIR22HG 
OGN  UFSP2  TLE4 RECK  SARAF FEZ2 SMARCA2

Down-regulated TPD52L1 PDGFC PDE8B GSAP GSAP HBA2 HBA1 FGF9 PHACTR2 PNISR CREBL2 CPVL SLC46A3 OLFML1 
HBG2 HBG1 MTUS1 CLEC4M TRPC1 LXN CAST CLEC4M HBA2 
BA1 GHR CPE SEMA3C SULF1 HBA2 HBA1 DPYSL2 TACC1 SLC16A1 NSG1 METTL7A ECM2 QKI HBA2 HBA1 
NKX3-1 CFI CLIC5 PTGIS LOC101926921 DAB2 RARRES1 
DMD HOXC6 WNT2B ZNF330 PTGER4 NR2F1 GREB1 SNCAIP MARCO GAS1 LAMA4 FRMD4B AQP9 IL6ST 
BTAF1 HP SCG5 ZFPM2 FGF13 FAM13B RSRP1 DIRAS3 
ALDH1A1 WNT5A TMX4 AMIGO2 ANXA3 CREBL2 ID4 N4BP2L2 GATA6 RGS4 CAV1 HBA2 HBA1 DDX17 
LOC101926921 DAB2 TFPI2 PLPP1 RNASE4 RTN1 PRG4 HBB 
REEP1 PDGFD MEIS2 TFPI2 DSE FRY KDR HEG1 HBB PEG3 SFRP1 MAF SPOCK1 MET LGALS8 NAP1L3 PSD3 
TMEM255A DFNA5 PROS1 LGALS8 PLSCR4 ANXA8L1 
ANXA8 ARMCX1 PROCR ADH1B HBA2 HBA1 CHRDL1 SLC39A8 ADH1B SLC4A4NPY1R NELL2 DPYD BNC1 
LHX2 GPM6A EFEMP1 CALB2 REEP1 STK26 OC100506718 
FLRT2 TCEAL2 HB ABCA8 EFEMP1 AOX1 LOC101928635 ALDH1A2 BCHE MNDA LOC101930363 LOC101928349 
LOC100507387 FAM153C FAM153A FAM153B

Table 1. Identification of the Up-Regulated and Down-Regulated Differential Genes

Figure 1. Heat Map of the Top Differentially Expressed Genes (50 up- and 50 down-regulated genes). Red, up-regu-
lation; Blue, down-regulation
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map of differential gene expression (the genes of the first 
50 and down-regulated genes) was presented in Figure 1.

The ontology analysis of differential genes in ovarian 
cancer

The results of GO analysis indicated that the different 
expressions of the top 20 DEGs were mainly associated 
with cell migration, proliferation and adhesion. The 
identified DEGs also participated in the metabolism 
process of cells and polymer, the response to lipid, and 
organ and tissue development. The up-regulated genes 

were mainly concentrated in biological processes, 
including cell adhesion, transcription of nucleic acid and 
biosynthesis, and negative regulation of cell metabolism. 
The down-regulated genes were predominantly 
concentrated in cell proliferation, migration, angiogenesis, 
and macromolecular metabolism. The molecular function 
enrichment analysis showed that the up-regulated genes 
were mainly focused on enzyme binding, RNA binding 
and protein dimerization activity, and the down-regulated 
genes were predominantly concentrated in receptor 
binding, molecular function regulatory mechanism, 
enzyme binding and enzyme regulation activity. In 
addition, the analysis of GO cell components indicated 
that the increase of genes is mainly concentrated in remote 
body, extracellular region and membrane binding domain. 
And the down-regulated genes were predominantly 
concentrated in extracellular regions, membrane-bounded 
vesicls, extracellular exosomes and cell joints (Figure 
2 and Table 2). The signaling pathways and functions 
identified by KEGG PATHWAY enrichment analysis were  

Expression Category Term Count % P- Value

Up-reulated

     GOTERM_BP_FAT GO:0007399~nervous system development 25 27.47252747 5.33E-05

     GOTERM_BP_FAT GO:0007155~cell adhesion 21 23.07692308 1.16E-04

     GOTERM_BP_FAT GO:0022610~biological adhesion 21 23.07692308 1.22E-04

     GOTERM_BP_FAT GO:1901700~response to oxygen-containing compound 19 20.87912088 1.64E-04

     GOTERM_BP_FAT GO:0033993~response to lipid 14 15.38461538 2.15E-04

     GOTERM_BP_FAT GO:0045892~negative regulation of transcription, DNA-templated 16 17.58241758 2.77E-04

     GOTERM_BP_FAT GO:0010558~negative regulation of macromolecule biosynthetic process 18 19.78021978 3.42E-04

     GOTERM_BP_FAT GO:1903507~negative regulation of nucleic acid-templated transcription 16 17.58241758 4.28E-04

     GOTERM_BP_FAT GO:0010605~negative regulation of macromolecule metabolic process 24 26.37362637 4.34E-04

     GOTERM_BP_FAT GO:0031324~negative regulation of cellular metabolic process 24 26.37362637 4.88E-04

     GOTERM_BP_FAT GO:0009890~negative regulation of biosynthetic process 18 19.78021978 6.74E-04

     GOTERM_BP_FAT GO:0010033~response to organic substance 26 28.57142857 0.0011882

     GOTERM_BP_FAT GO:0009892~negative regulation of metabolic process 24 26.37362637 0.001356973

     GOTERM_BP_FAT GO:0023051~regulation of signaling 27 29.67032967 0.00178692

     GOTERM_BP_FAT GO:0010604~positive regulation of macromolecule metabolic process 25 27.47252747 0.003192651

Down-regulated

     GOTERM_BP_FAT  GO:0040011~locomotion 48 21.33333333 5.62E-09

     GOTERM_BP_FAT GO:0008283~cell proliferation 53 23.55555556 1.77E-08

     GOTERM_BP_FAT GO:0006928~movement of cell or subcellular component 51 22.66666667 4.02E-08

     GOTERM_BP_FAT GO:0016477~cell migration 38 16.88888889 2.14E-07

     GOTERM_BP_FAT GO:0032268~regulation of cellular protein metabolic process 56 24.88888889 2.11E-06

     GOTERM_BP_FAT GO:0007399~nervous system development 52 23.11111111 5.25E-06

     GOTERM_BP_FAT GO:0010604~positive regulation of macromolecule metabolic process 62 27.55555556 1.04E-05

     GOTERM_BP_FAT GO:0010605~negative regulation of macromolecule metabolic process 53 23.55555556 1.72E-05

     GOTERM_BP_FAT GO:0009605~response to external stimulus 48 21.33333333 3.47E-05

     GOTERM_BP_FAT GO:0050790~regulation of catalytic activity 52 23.11111111 5.13E-05

     GOTERM_BP_FAT GO:0048514~blood vessel morphogenesis 19 8.444444444 4.92E-05

     GOTERM_BP_FAT GO:0072358~cardiovascular system development 33 14.66666667 2.77E-07

     GOTERM_BP_FAT GO:0008285~negative regulation of cell proliferation 25 11.11111111 2.34E-06

     GOTERM_BP_FAT GO:0060537~muscle tissue development 18 8 4.03E-06

     GOTERM_BP_FAT GO:0007155~cell adhesion 43 19.11111111 1.33E-05

Table 2.Gene Ontology Analysis of Differentially Expressed Genes Associated with Ovarian Cancer3.3 Signal Path 
Enrichment Analyses

Significant Enriched Pathway terms P-Value
PI3K-Akt signaling pathway |HAS-04151 0.037083032
Wnt signaling pathway      |HAS-04310 0.035010312
Ras signaling pathway      |HAS-04014 0.02893891
Rap1 signaling pathway     |HAS-04015 0.001684852

Table 3. Significantly Enriched Pathway Terms of DEGs 
in Ovarian Cancer
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Rap1, Ras, Wnt, and PI3K-AKT, as well as the metabolism 
of retinol and amino acids. The up-regulated genes were 
mainly enriched in the biosynthesis of amino acid and 
the ECM receptor interactions, while the down-regulated 
genes were mainly enriched in cancer-related signaling 

pathways, especially Rap1 signaling pathway (Figure 3 
and Table 3-4). According to the information in STRING 
database and Cytoscape software, there were 379 DEGs 
(104 up- and 275 down-regulated) in the total of 4,271 
genes, and the PPI network was constructed with 218 nodes 

Pathway Name Gene % P Value Genes ID
Up-reulated DEGs
    hsa01230:Biosynthesis of amino acid 3 3.296703297 0.074028877 IDH2, ENO1, PKM
    hsa05010:Alzheimer's disease 4 4.395604396 ATP2A2, ATP5H , UQCRQ , COX7B
    hsa04512:ECM-receptor interaction 3 3.296703297 0.097658172 COL1A1, COL1A1, HSPG2, COL6A2
Down-reulated   DEGS
    hsa05205:Proteoglycans in cancer 11 4.888888889 2.75E-04 WNT5A,  CAV2,  CAV1,  PLCE1,  EZR, ANK3,  

MET, DCN, FZD7, KDR, WNT2B
    hsa04015:Rap1 signaling pathway 10 4.444444444 0.001684852 PLCE1, FGF9, MET, FGF13, PDGFC, PDGFD, 

PLCB1, ITGAM, KDR, DOCK4
    hsa05200:Pathways in cancer 14 6.222222222 0.001775521 WNT5A, PTGER3,  PTGER4,  FGF9,  

MET,  GNG11, FGF13, FZD7, DAPK1, 
WNT2B,LAMA4, KX3-1, LAMB1, PLCB1

Table 4. KEGG Pathway Analysis of Differentially Expressed Genes Associated with Ovarian Cancer

Figure 2. Gene Ontology Anlysis; A, Significantly enriched GO terms of DEGs in ovarian cancer; B, Significantly 
enriched pathway terms of DEGs in ovarian cancer
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and 434 edges. The top ten principal nodes of node degree 
were screened. The hub genes were Cell division cycle 20 
(CDC20), histone family, member X (H2AFX),  Enolase 1 
(ENO1) , Actin beta (ACTB), interferon (IFN)-stimulated 
gene 15 (ISG15), Klysine acetyltransferase 2 b (KAT2B), 
Heterogeneous nuclear ribonucleoprotein D (HNRNPD), 
tryptophan 5-monooxygenase activation protein, epsilon 
(YWHAE), Gap junction protein alpha 1 (GJA1), 
Caveolin 1 (CAV1), respectively (Figure 3).

We used the plug-in MCODE analysis to further 
analyze the 218 nodes and 434 edges, and the top three 

most significant modules were selected. We also analyzed 
the function annotation of the genes in the modules, 
respectively. The consequences of enrichment analysis 
showed that the genes of these three modules were mainly 
related to the positive regulation of biological process, 
regulation of metabolic process, oxidation-reduction 
process and carboxylic acid metabolic process (Table 
5-7).Ten hub genes related to cancers and metabolic 
diseases were analyzed by CTD. The results of the 
analysis indicated 1,128 distinct diseases with statistical 
significance (bonferroni-corrected P<0.05). It involved 

Gene Set FDR Node
oxidation-reduction process 5.82E-10 ALDH1A1,DPYD,ENO1,ENO2,ENO3,GAPDH,IDH2,PGK1,PKLR,PKM,TPI1
Carboxylic acid metabolic process 2.87E-09 CAD,DPYD,DPYS,ENO1,ENO2,ENO3,GAPDH,IDH2,PGK1,TPI1
single-organism catabolic process 7.08E-09 DPYD,DPYS,ENO1,ENO2,ENO3,GAPDH,PGK1,PKLR,PKM,TPI1

Table 6. Pathway Enrichment Analysis of Module B Genes Function

Gene Set FDR Node
oxidation-reduction process 7.86E-12 ALDH1A1,DPYD,ENO1,ENO2,ENO3,GAPDH,IDH2,PGK1,PKLR,PKM,TPI1
generation of precursor metabolites 
and energy

2.45E-11 ENO1,ENO2,ENO3,GAPDH,IDH2,PGK1,PKLR,PKM,TPI1

nucleoside metabolic process 2.75E-10 DPYD,ENO1,ENO2,ENO3,GAPDH,PGK1,TPI1,UMPS

Table 7. Pathway Enrichment Analysis of Module C Genes Function

Hube Gene Disease cantegories (p-value)
OC Diabetes Mellitus, Type 1 Diabetes Mellitus, Type 2 Hypertriglyceridemia

CDC20 2.22E-09 1.56E-38 3.37E-98 5.93E-11
H2AFX 2.14E-09 1.32E-38 2.17E-98 5.67E-11
ENO1 2.24E-09 1.62E-38 3.69E-98 5.98E-11
ACTB - 4.35E-35 1.21E-92 5.07E-11
ISG15 2.20E-09 1.49E-38 2.97E-98 5.85E-11
KAT2B 2.12E-09 1.27E-38 1.95E-98 5.60E-11
HNRNPD 2.15E-09 1.35E-38 2.30E-98 5.70E-11
YWHAE 1.88E-09 7.51E-39 4.88E-99 3.35E-09
GJA1 2.10E-09 1.23E-38 1.78E-98 5.55E-11
CAV1 2.12E-09 1.27E-38 1.95E-98 5.60E-11

-, means No available data

Table 8. The Relationship between Hub Gene with Ovarian Cancer or Metabolic Disease of the Comparative 
Toxicogenomics Database Prediction

Gene Set FDR Node
positive regulation of biological 
process

0.00364 ACTB,ALDH1A1,BUB1,CALR,CCNB1,CDC16,CDC23,CDC27,CDK1,DD
X17,H2AFX,HNRNPD,ISG15,KAT2B,MAD2L1,PFN1,YWHAE 
ALDH1A1,BUB1,BUB1B,CALR,CDC16,CDC20,CDC23,CDC27,CDK1,D

regulation of metabolic process 0.016 DX17,ENO1,EZR,GJA1,H2AFX,ISG15,KAT2B,MAD2L1,YWHAE
ACTB,ALDH1A1,BUB1,CALR,CDC16,CDC20,CDC23,CDC27,CDK1,DD

cellular metabolic process 0.0487 X17,DPYD,ENO1,EZR,H2AFX,HAS1,HNRNPD,IDH2,KAT2B,MAD2L1,
YWHAE

Table 5. Pathway Enrichment Analysis of Module Agenes Function
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Table 5. Pathway Enrichment Analysis of Module Agenes Function

Figure 3. DEGs Protein-Protein Interaction (PPI) Network Complex and Modular Analysis

Figure 4. K-M Cures of the Top 10 Hub Genes in OC. Red line represents high level of a hub gene, and green line 
represents low level. These genes were statistically significant. The X axis indicates overall survival time (day), and 
the Y axis indicates the survival rate.
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185 kinds of cancer, including ovarian cancer. In addition, 
we found that the ten hub genes could cause many ovarian 
diseases and disorders, for example, ovarian cysts, ovarian 
neoplasms, ovarian epithelial cancer, and primary ovarian 
insufficiency. Interestingly, we also found that these 
genes were closely related to diabetes, weight change, 
hypertriglyceridemia and other metabolic disorders, 
particularly to type I and II diabetes. For the relationship 
between OV and diabetes, the results were displayed in 
Table 8.

The clinical significance of ten abnormally expressed 
hub genes

Further analysis was conducted on the above ten 
hub genes in abnormal expressions. The Kaplan-Meier 
survival curve showed that the survival time of CDC20, 
H2AFX, HNRNPD and ISG15 is significantly correlated 
with the survival time of OC (P < 0.05), as showed in 
Fig.4. Preliminary results showed that high expression 
of CDC20, H2AFX, HNRNPD and ISG15 in ovarian 
cancer prognosis has an obvious effect, compared with 
lower expression.

Discussion 

It is extremely important to explore the risk factors 
and prognostic factors for the early diagnosis of OV. We 
received 185 OV samples and 10 normal samples from 
GSE26712 in GEO database. At last we identified 379 
different genes, 104 up- and 275 down-regulated genes. 
The results of GO analysis showed that DEGs were 
mainly related to cell migration, cell proliferation and 
cell adhesion, the process of cell and macromolecular 
metabolism, and lipid response. Results of KEGG pathway 
analysis showed that DEGs were mainly related to 
signaling pathways such as Rap1, Ras, Wnt and PI3K-Akt 
as well as the metabolism of retinol and amino acids. We 
constructed PPI network diagrams genetic variations and 
obtained the most significant modules. Moreover the top 
ten hub genes were found from DEGs, which are: CDC20, 
H2AFX, ENO1, ACTB, ISG15, KAT2B, HNRNPD, 
YWHAE, GJA1 and CAV1.

Module analysis of PPI network demonstrated 
that Module A was focused on positive regulation of 
biological process, regulation of metabolic process, 
cellular metabolic process, that Module B was mainly 
enriched in the oxidation-reduction process, Carboxylic 
acid metabolic process, and that Module C was mostly 
concentrated in the oxidation-reduction process and 
generation of precursor metabolites and energy, nucleoside 
of the metabolic process. All of the three modules had 
statistical significance with MCODE score > 10, FDR 
< 0.05.

The functions of each hub gene were different. CDC20 
exists in normal ovarian tissue and ovarian cancer tissue. 
High expression of CDC20 was associated with High 
tumor grade in the ovarian (P = 0.044). Studies using 
weighted gene co-expression network analysis (WGC) 
to analyze serous ovarian cancer (SOC) identified one 
stage-associated module and one grade-associated 
module.CDC20 was found to be one of the top hub genes 

related to grade. In addition, studies showed that glucose 
and the activated Ras2 (Val19) protein sympathetically 
inhibited APC/C function via the cAMP/PKA pathway 
in yeast, at the same time CDC20 was involved in the 
APC/C regulation by the cAMP/PKA pathway (Bolte  et 
al., 2003; Gayyed et al., 2016; Sun et al., 2017). H2AFX: 
In the treatment of ovarian cancer, the P38 lightning/
H2AX shaft was one of the molecular mechanisms of 
drug resistance in ovarian cancer. In addition, H2AX and 
SEI1 have co-localization in the nucleus, and the high 
expression of SHI1 in ovarian cancer plays a major role 
in the deterioration of ovarian cancer. At the same time, 
it is found that histone H2AX phosphorylation (gamma 
H2AX foci) expression was significantly increased 
in patients with type 1 diabetes, especially in women 
(Giovannini et al., 2014; Mo et al., 2016; You et al., 2017). 
ENO1 interferes with follicles in ovarian granulose cell 
by inducing the mRAN expression of hormone receptor 
(FSHR) and reducing the mRNA expression of luteinizing 
hormone receptor (LHR). Besides, ENO1 is a glycolysis 
enzyme that can reduce glycolysis in the cells of gastric 
cancer. The expression level of ENO1 increases with the 
shortening of the survival time in patients with gastric 
cancer. ENO1 is closely linked to glucose metabolism 
enzyme PGK1, and is up-regulated in the study of 
glucose uptake (Kim et al., 2013; Zhonghua et al., 2015; 
Zhao Y et al., 2016). ACTB is closely related to various 
cancers, including liver, melanoma, lung cancer, breast 
cancer, prostate cancer, uncontrolled ovarian cancer, 
and its expression rises in most tumor cells and tissues. 
Furthermore, abnormal expression of ACTB is associated 
with invasive and metastatic potential of cancer (Guo 
et al., 2013). In the chip analysis of tissues from 128 
cases of ovarian serous carcinoma patients with surgery 
and chemotherapy treatment, it was found that ISG15 
protein expression was significantly elevated in relapsed 
carcinomas as compared to primary tumors (P = 0.027) 
and ISG15-positive carcinomas had a significantly longer 
overall survival in university analysis (P = 0.002). The 
study also found the molecular basis for ubiquity and 
ISG15 cross-reactivity in viral ovarian tumor domains. 
IFNs: Using the Type I IFN receptors (NOD) IFNAR1 
(- / -)) immunodeficient NOD mice model, it was found 
that ISG15 expression was significantly increased in mice 
at one week of age, and reached peak after 3-4 weeks. 
The results suggested that ISG15 is closely related to the 
function of pancreas in young mice (Akutsu et al., 2011; 
Darb-Esfahani et al., 2014). KAT2B: Whole genome 
analysis in the Han nationalities and ethnic minorities 
with high uric acid, Type 2 diabetes and obesity in 
China were carried on and it was found that KAT2B 
was closely related to HbA1c. The study also found that 
KAT2B and WDR5 stimulated gluconeogenesis through 
self-reinforcing cycle, and the small molecule inhibitors 
of KAT2B decreased the blood sugar levels, indicating 
KAT2B one of the effective targets in diabetes treatment. 
But no evidence showed that KAT2B concerned with 
ovarian carcinoma yet (Ravnskjaer et al.,2013; Wei et 
al.,  2015). HNRNPD: It was found that AUF1/ HNRNPD 
over-expression could lead to tumor occurrence in the 
research of transgenic mice. Furthermore, in Akita mice 
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with type I diabetes, insulin caused the effects on Nrf2 
and angiotensinogen (Agt) gene expression of the kidneys 
and unregulated heterogeneous nuclear ribonucleoprotein 
F and K (hnRNP F and hnRNP K). Insulin curbed 
Nrf2 promoter activity via a specific DNA-responsive 
element that binds hnRNP F/K and hnRNP F/K that over 
expression curtailed Nrf2 promoter activity and hnRNP K. 
These findings identified hnRNP F/K and Nrf2 as potential 
therapeutic targets in diabetes (Gouble et al., 2002; Abdo et 
al., 2013; Lo et al., 2015; Singh 2016., Ghosh et al., 2017; 
Lo et al., 2017). YWHAE: We evaluated the expression 
of approximately 21,000 genes using DNA microarray 
screening of paired tumor samples taken prior to and 
after CT treatment from 6 patients with predominantly 
advanced stage, high-grade epithelial ovarian cancer. 
Up-regulated genes in post-CT tumors included research 
on diseases associated with diabetes or metabolic 
disorders. Substantial number of genes with previously 
known implication of mechanisms of tumorigenesis 
(L’Espérance et al., 2006). YWHAE: There is no research 
on the relationship between diabetes or dysmetabolic 
syndrome and YWHAE. GJA1: It was demonstrated that 
TGF-β up-regulateed GJA1/Cx43 in two human ovarian 
cancer cell lines, SKOV3 and OVCAR4. In the study of 
diabetes, it was discovered that intercellular coupling via 
gap junctions was decreased after insulin administration 
in diabetic and non-diabetic mice. This decrease in 
coupling was associated with a concomitant increase 
in the phosphorylation of GJA1/Cx43 at serine 368. 
Insulin regulated both gap junction-mediated intercellular 
communication and injury propagation in type I diabetic 
mouse heart. GJA1/Cx43 expression and cell-to-cell 
communication increased in response to elevated glucose 
and may protect the collecting duct from renal damage 
associated with established diabetic nephropathy (Hills et 
al., 2006; Qiu et al., 2015; Liu et al., 2015;Palatinuset al., 
2015; Qiu et al., 2016). CAV1: In SKOV3 and A278 cells, 
it was reported that Cav1 promoted the chemoresistance 
of ovarian cancer by targeting apoptosis through Notch-1/
Akt/ and NF-kappa B pathway. The other microarray 
analysis on ovarian tissues and SKOV- 3 and ES-2 cell 
lines proved that CAV1 gene was likely to act as a tumor 
suppressor gene in human ovarian epithelium. In addition, 
there was a significant change of Cav1 and mir-375 in the 
beta-cells (insulin secretory cells) in the islets of mice and 
people with different degrees of fusion. Fasudil was found 
in the diabetic rats of fasudil by blocking VEGFR2/Src/
caveolin-1 signaling pathway to protect the diabetic rats 
(Wiechen et al., 2001; Zou et al., 2015; Ofori et al., 2017).

We used comparative toxicogenomics database to 
predict the onset of these ten hub genes with ovarian and 
metabolic diseases, and the results showed that the ten 
genes were associated with ovarian cancer or diabetes 
and metabolic disorders. Meanwhile, the analysis results 
of the ten survival curves illustrated that high expression 
of CDC20, H2AFX, HNRNPD and ISG15 had good 
prognosis in ovarian cancer. The studies of the above 
literatures indicated that five genes, GJA1, CAV1, ENO1, 
H2AFX and ISG15 were related to  both ovarian cancer 
and diabetes, CDC20, however, was only involved in 
diabetes, and KAT2B, HNRNPD and YWHAE only in 

ovarian cancer.
With the improvement of people’s living conditions, 

the incidence of diabetes has increased year by year (Clery 
et al., 2017). Epidemiological studies have demonstrated 
that diabetes reduced the survival time and median 
survival of ovarian cancer patients.It was reported 23.3% 
newly diagnosed cervical cancer patients, almost twice 
as many as the previous Swiss census. Insulin resistance 
is common in type 2 diabetics, and insulin resistance 
often leads to hyperinsulinemia. The vitro studies have 
demonstrated that hyperinsulinemia affected the binding 
protein level of sex hormones, leading to elevated estradiol 
and testosterone levels, thus, affected the prognosis of 
patients with ovarian malignancy (Ruge et al., 2012).
Besides, insulin inhibited cell apoptosis by affecting the 
PI3K/AKT pathway and mitotic kinase pathway, thereby 
inducing tumor cell proliferation (Gryko et al., 2014).
Meanwhile, oxidative stress is closely related to the 
development of type 1 diabetes mellitus, which leads to 
genome damage, especially DNA double chain fracture. 
Previous studies have shown apparent metabolic changes 
that occur in cancer tissues, and low oxygen would result 
in higher HIF-1 alpha level, which increases the sugar 
intake in tumor cells. . Moreover, sugar increased within 
the tumor cells, not only leads to enhanced glycolysis 
pathway, but increases the biosynthesis at the same 
time. And studies in vitro have shown that P53 pathway 
influences the reprogramming of glucose metabolism in 
ovarian cancer cells. (Semczuk et al., 2017). It’s found 
that metformin produced anti-cancer effects via AMPK 
dependent or non-dependent pathways, and the study 
provided evidence of diabetes and ovarian cancer. (Rattan 
et al., 2011). By using molecular bioinformatics tools we 
found out the possible common target genes in ovarian 
cancer and diabetes, provided evidence from the molecular 
level supporting that diabetes is a risk factor for ovarian 
cancer, which provides researchers a new way of thinking 
when facing the big challenges in cancer detection, early 
diagnosis and medicinal treatment of  ovarian malignant 
tumors.

All in all, we studied the differences in ovarian 
cancer genes with bioinformatics analysis, aiming 
at the population based case-control study to collect 
information on relationship between diabetes and ovarian 
cancer. However, the study does have limitations and 
more experiments are needed to be done in order to 
further validate our observation, for example, to conduct 
experiments to validate the expression levels of these 
DEGs and to increase the sample size to confirm out 
findings.
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