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Introduction

Colorectal cancer is one of the major causes of cancer 
mortality in the world with an estimation of more than 
1.8 million new colorectal cancer cases and 881,000 
deaths in 2018 (Bray et al., 2018). CRC usually begins 
as an abnormal growth on the rectum or colon, known 
as polyps. Development of polyps into cancerous status 
can lead to the formation of a tumor on the wall of the 
colon or rectum (Kinzler and Vogelstein, 1996). Sporadic 
CRC comprises majority of cases, while ~30% of cases 
are familial type. Somatic alterations in mismatch repair 
(MMR) genes, especially MSH2 and MLH1, are frequent 
in sporadic CRC and their germline mutations associated 
with lynch syndrome, the most common hereditary CRC 
(Li and Martin, 2016).

Microsatellite instability (MSI), variations in the 
length of tandem nucleotide repeats (microsatellite 
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fragments), is a result of mutations in MMR genes. 
Although the most attention to MSI is directed to familial 
CRC, only about 3% of all CRC cases come from the 
families with Lynch syndrome (Hampel et al., 2005, 
2008). Approximately 12%–17% of whole colorectal 
tumors have microsatellite instability and majority of 
them are sporadic (Ward et al., 2001; Popat et al., 2005). 
The main criteria for classification a tumor as MSS, low 
level of MSI or MSI-low (MSI-L), or MSI-H is based 
on five microsatellites recommended by the National 
Cancer Institute (NCI) including BAT26, D17S250, 
D2S123, BAT25 and D5S346. If two or more of the five 
microsatellite sequences have been mutated, tumor will be 
considered as MSI-H and if just one of the microsatellites 
has been mutated it considered as MSI-L. MSS refers to 
tumor without MSI in any of the markers (Kurzawski et al., 
2004). It has been demonstrated that there is a correlation 
between MSI-H and colorectal cancer prognosis; and the 
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existence of high-frequency MSI predicts a relatively 
favorable outcome and smaller likelihood of metastasis 
in CRC (Gryfe et al., 2000; Popat et al., 2005; Sagaert et 
al., 2014). Microsatellite instability gives distinguished 
features to the colorectal tumors; for instance, this type of 
tumors have a tendency to appear in the proximal colon, 
infiltration across the lymphocytes, and also they have 
featured as weakly differentiated, signet ring or mucinous 
appearance (Thibodeau et al., 1993). Moreover, MSS 
and MSI-H types of CRC are different in the response to 
chemotherapeutics and treatments. Tumors with MSI-H 
phenotype have better response to immunotherapy, while 
MSS and MSI-low Tumors display better response to 
5-fluorouracil (5-FU)-based chemotherapy (Peltomäki et 
al., 1993; Kim et al., 2016; Overman et al., 2018). 

Regarding the differences between MSI-H and MSS 
colorectal cancer in some aspects such as prognosis 
and treatment, there need to be more studies to reveal 
discrepancies and similarities between these two class 
of CRC in biological pathways and their regulation, and 
interplay between MMR and other biological processes. 
When we armed with this knowledge, we may be able 
to develop more therapeutic approaches which can be 
effective on both type of CRC, or develop more powerful 
drugs which can effectively target each type. In the current 
study, we applied meta- and network analysis on freely 
available expression data of MSS and MSI-H colorectal 
cancer patients deposited in gene expression omnibus 
(GEO) database to find common biological processes 
and transcription factors for their regulation in MSS and 
MSI-H CRC. Moreover we mined these expression data 
to detect differences between these two types of CRC in 
transcriptomics and regulatory context.

Materials and Methods

Data Collection
We searched Gene Expression Omnibus (GEO) 

(https://www.ncbi.nlm.nih.gov/geo/) deeply using the 
following key terms “Colorectal cancer”, “MSI CRC”, and 
“MSS CRC”. We included studies with following criteria: 
on human tissue samples, at least three samples, sporadic 
CRC, with control samples from CRC individuals, and 
studies that used array platforms which cover majority 
of human genes. Finally, 7 appropriate datasets which 
contain  expression data of 402 MSS patients, 101 MSI-H 
patients and 113 normal controls, were found (Watanabe 
et al., 2006; Vilar et al., 2009; Hong et al., 2010; Ågesen 
et al., 2011, 2012; Gröne et al., 2011; Sveen et al., 2011; 
Cordero et al., 2014).

Differential Expression (DE) analysis and Common DEGs 
Detection

Log2 transformed gene expression matrix of each 
study was obtained using Biobase, GEOquery, and 
limma R packages (Davis and Meltzer, 2007; Huber et 
al., 2015; Ritchie et al., 2015). Gene expression matrixes 
were annotated using the approved gene symbols, entrez 
gene ID or RefSeq ID from HUGO Gene Nomenclature 
Committee (HGNC, http://www.genenames.org/) (Yates et 
al., 2016) and imported into the INMEX web tool (Xia et 

al., 2013) for differential expression analysis. Expression 
tables were quantile normalized and DE analysis was 
performed based on linear model of limma algorithm 
(Ritchie et al., 2015) in INMEX. The results of DE analysis 
were filtered based on P value <0.05. In order to obtain 
common DEGs in majority of studies, the filtered results 
from DE analysis of all studies were merged. Finally, 
those genes that consistently up or down-regulated in at 
least 2 out of 3 (for MSI-H vs control) and 3 out of 4 (for 
MSS vs control) studies with | fold change (FC)|>1.5 in 
each study were considered as common DEGs. In MSS vs 
MSI-H comparison, genes that consistently up or down-
regulated in at least 3 out of 6 studies with |FC|>2 or 4 out 
of 6 studies with |FC|>1.5 in each study were considered 
as common DEGs.

Subsequently, Cluster 3 and Java TreeView (Eisen et 
al., 1998; Saldanha, 2004) were used for cluster analysis, 
gene arrangement based on similarity in expression, and 
heatmap demonstration of common DEGs. We applied 
correlation (uncentered) and centroid linkage analysis 
for cluster analysis.

Gene Ontology (GO) and Pathway analysis
The Database for Annotation, Visualization and 

Integrated Discovery (DAVID ) (Sherman and Lempicki, 
2009) with annotation from Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (Kanehisa et al., 2017) 
was used for pathway analysis. The list of common DEGs 
was imported into the DAVID and the results of KEGG 
pathway analysis were extracted. In order to address the 
most important terms, resulted pathways were filtered 
based on P value<0.05.

Gene ontology enrichment analysis was performed 
using the BiNGO plugin of Cytoscape (Shannon et al., 
2003; Maere et al., 2005). At first, the most updated 
ontology and gene association data were downloaded 
from gene ontology consortium (Consortium, 2016) and 
imported into the BiNGO for GO analysis. Common DEGs 
were imported into the Cytoscape and gene ontology 
analysis was performed based on biological process. 
Overrepresentation with the hypergeometric test was 
used and Bonferroni Family-Wise Error Rate (FWER) 
correction <0.05 was considered as a threshold in order to 
address the most important terms in GO analysis.

Gene regulatory network construction and analysis
To find and predict master regulators of common DEGs 

in each comparison, we performed regulatory network 
analysis. Gene regulatory networks was constructed 
using transcription factors and visualized by Cytoscape. 
To examine TF regulatory network in a comprehensive 
manner we used TF binding sites information from 
two extensive databases which include transcription 
binding sites profile resulted from various techniques 
including ChIP enrichment analysis (ChEA) database  
(mainly comprised of TF binding sites obtained from 
ChIP-chip, ChIP-seq, ChIA-PET, and DamID techniques) 
(Lachmann et al., 2010) and ENCODE TF ChIP-seq 
database (Transcription factor DNA-binding by ChIP-seq) 
(Consortium, 2004). Gene expression data were mapped 
to the TF-binding sites from mentioned databases. TFs 
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subsequently GO analysis of found protein complexes 
was performed using BinGO.

Results

To evaluate the gene expression and find common 
and also unique biological processes and their regulators 
in both MSS and MSI-H colorectal cancer we applied 
comprehensive transcriptome and network mining of 
CRC expression data deposited in GEO database (https://
www.ncbi.nlm.nih.gov/geo/). We searched GEO database 
to find appropriate studies on human colorectal cancer 
tissues. Finally, seven studies (Table 1) have been found 
from our search in GEO (Watanabe et al., 2006; Vilar et 
al., 2009; Hong et al., 2010; Ågesen et al., 2011, 2012; 
Gröne et al., 2011; Sveen et al., 2011; Cordero et al., 2014). 
Complete set of samples from original studies which 
used in this study is provided in Supplementary file 1. 
We used these studies to find significant DEGs and their 
regulators for colorectal cancer. We detected 1401 DEGs 
(764 downregulated and 637 upregulated genes) in MSS 
vs control cases (Figure 1a, Supplementary file 2), 2011 
DEGs (1,083 downregulated and 928 upregulated genes) 
in MSI-H vs control cases (Figure 2a, Supplementary file 
3), and 188 DEGs (65 downregulated and 123 upregulated 
genes) in MSS vs MSI-H cases (Figure 3a, Supplementary 
file 4).

Regarding GO analyses of DEGs (Figures 1b and 
2b), up-regulated genes in both MSS and MSI-H versus 
control cases were involved in biological processes related 
to cell cycle and cell division, while down-regulated 
genes were mainly involved in processes related to lipid 
and fatty acid metabolism, specifically catabolism and 
oxidation of fatty acids. The results of pathway analyses 
also highlighted the results of GO analyses (Figures 1c 
and 2c). Based on pathway analysis, in both comparisons 
(MSS and MSI-H versus control cases) cell cycle related 
pathways were the most overexpressed pathways, while 
fatty acid degradation pathway was among the most 
down-regulated ones.

In order to reveal differences between MSS and 
MSI cases we performed comparison of expression data 

with P value<0.05 and FC>1.5 in at least 2 out of 3 (for 
MSI-H vs control) and 3 out of 4 (for MSS vs control) 
studies with the same expression pattern were considered 
as differentially expressed transcription factors (DE-TFs). 
For MSS vs MSI-H, TFs with P value<0.05 and FC>2 in at 
least 3 out of 6 or FC>1.5 in at least 4 out of 6 studies with 
the same expression pattern were considered as DE-TFs.

In order to obtain hub regulators in regulatory networks 
degree parameter for the directed network was calculated 
using CentiScaPe plugin of Cytoscape (Scardoni et al., 
2014). To rank DE-TFs, we used out-degree which 
indicates the number of target genes for each TF. As well 
as, core regulatory networks were extracted to investigate 
regulatory interactions between regulators of DEGs and 
find upstream DE-TFs.

Protein-protein interaction (PPI) network construction 
and analysis

Protein-protein interactions drive biological processes. 
They are crucial for all intra and extracellular functions 
and the technologies to analyze these interactions are 
widely used throughout the diverse fields of biological 
sciences. To dissect the biological meaning of DEGs at 
the protein level and find DE-TFs and DEGs with the 
highest number of PPIs, we also constructed PPI networks 
for common DEGs. We used information derived from 
several databases to examine PPI networks at a more 
comprehensive level. For this aim, PPI networks were 
constructed using the most updated information from 
General Repository for Interaction Datasets (BioGRID) 
(Stark et al., 2006), The Molecular INTeraction Database 
(MINT) (Licata et al., 2011), Human Protein Reference 
Database (HPRD) (Keshava Prasad et al., 2008) and 
Search Tool for the Retrieval of Interacting Genes/
Proteins (String) (Jensen et al., 2008). The interactions 
from string were filtered based on interaction score ≥0.7 
which means high confidence. We applied topology 
analysis to find densely connected regions (clusters) 
in the PPI networks which may represent significant 
molecular complexes. Topology analysis was performed 
using MCODE algorithm (Bader and Hogue, 2003) to 
find crucial protein complexes from the PPI networks, 

Experiment Organism Comparison Accession 
Number

Chip Type

Sveen A et al, 2011 Human 21 MSI-H* vs 13 normal
110 MSS† vs 13 normal
110 MSS vs 21 MSI-H

GSE24551 Affymetrix Human Exon 1.0 ST Array [transcript 
(gene) version]

Ågesen et al, 2011 Human 5 MSI-H vs 4 normal
38 MSS vs 4 normal
38 MSS vs 5 MSI-H

GSE25071 ABI Human Genome Survey Microarray Version 2

Ågesen et al, 2012 Human 10 MSI-H vs 2 normal
34 MSS vs 2 normal

34 MSS vs 10 MSI-H

GSE29638 Affymetrix Human Exon 1.0 ST Array [transcript 
(gene) version]

Cordero et al, 2014 Human 98 MSS vs 98 normal GSE44076 Affymetrix Human Genome U219 Array
Watanabe et al, 2006 Human 50 MSS vs 33 MSI-H GSE4554 Affymetrix Human Genome U133 Plus 2.0 Array
Vilar et al, 2009 Human 38 MSS vs 13 MSI-H GSE11543 Affymetrix Human Full Length HuGeneFL Array
Gröne et al, 2011 Human 34 MSS vs 19 MSI-H GSE18088 Affymetrix Human Genome U133 Plus 2.0 Array

Table 1. Microarray Datasets Used in Our Survey

*, Microsatellite instability-high; †, Microsatellite stable
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in MSS sample versus MSI-H cases. Moreover, we 
compared the resulted DEGs of this comparison with the 
results of MSS and MSI-H vs controls in order to find 
direction of changes; for example genes and biological 
processes that represented downregulation in MSS vs 
MSI-H comparison may actually up-regulated in MSI-H 
cases and when we consider MSI-H cases as controls and 
compare the expression of MSS cases to them (MSS vs 
MSI-H) we see downregulation. Finally, we found that 
immune-related processes are more active in MSI-H type 
of CRC while processes related to metastasis including 
migratory and vasculature development processes are 
more overexpressed in MSS cases. As well as, comparison 
of pathway analysis results of MSS and MSI-H vs controls 
suggested more up-regulation of MMR pathway in MSI-H 
CRC.

Mining regulatory network and finding critical regulators 
of common DEGs

Regulatory networks were constructed by information 

from two databases to draw a comprehensive picture 
of DEGs regulation. We found 24 DE-TFs in MSI-H 
and 24 DE-TFs in MSS CRC cases (Figure 4a). Twelve 
DE-TFs were common in both comparisons which 
among them VDR (vitamin D receptor), KLF4 (Kruppel 
like factor 4), KLF6, TCF21 (transcription factor 21), 
JUND, and KAT2B (lysine acetyltransferase 2B) were 
down-regulated and MYC (MYC proto-oncogene, 
bHLH transcription), E2F7 (E2F transcription factor 7), 
BHLHE40 (basic helix-loop-helix family member e40), 
BATF (Basic Leucine Zipper ATF-Like Transcription 
Factor), STAT1 (Signal Transducer And Activator Of 
Transcription 1), and FOXM1 (forkhead box M1) were 
up-regulated.

On the other hand, we found specific DE-TFs for 
each condition that significantly up- or down-regulated 
just in MSS or MSI-H cases. For this aim we considered 
all found DE-TFs from all comparisons to find the most 
important ones. TP53 showed up-regulation in MSI-H 
cases and its expression did not change significantly in any 

Figure 1. Resulted Heatmap for Common DEGs in MSS vs Control Comparisons (a), and the results of their GO; (b), 
and pathway analysis; (c), MSS, microsatellite stable; DEG, differentially expressed genes; GO, gene ontology
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MSS cases, as well as TP53 showed down-regulation in 3 
out of 6 studies in MSS versus MSI-H comparison with 
fold change>1.5 which highlights its overexpression in 
MSI-H patients. Contrariwise, DACH1 and FOXA2 were 
up-regulated and FOXA1 was down-regulated in MSS 
cases and their expression did not change significantly 
in any MSI-H cases; among them, FOXA1 showed 
downregulation pattern in all MSS vs MSI-H cases (in 
2 cases with FC>1.5) and DACH1 displayed significant 
upregulation in 4 out of 6 MSS vs MSI-H comparisons.

By analysis the regulatory network of found DEGs 
from comparing the expression data of MSS versus 
MSI-H cases, we also found that CDX2 (Caudal Type 
Homeobox 2), ZMYND8 (Zinc Finger MYND-Type 
Containing 8), and DACH1 (Dachshund Family 
Transcription Factor 1 DACH) were up-regulated in 
the majority of MSS vs MSI-H comparisons. CDX2 
showed downregulation in one of the MSI-H vs control 
comparisons and the same pattern of expression in others. 

DACH1, as we mentioned previously, was significantly 
upregulated in MSS vs control studies, and ZMYND8 
showed downregulation pattern in all MSI-H vs control 
cases with FC>1.5 in one and FC~1.5 in another study. All 
in all, TP53 and DACH1 display exclusive up-regulation 
in MSI-H or MSS CRC, respectively. The exclusive 
up-regulation of these two TFs were consistent in all 
comparisons (MSS vs control, MSI-H vs control, and 
MSS vs MSI-H). 

We applied centrality and core regulatory analysis to 
find central and upstream DE-TFs. Out-degree (number of 
targets) parameter was calculated for each node (gene) in 
the regulatory networks and DE-TFs were sorted based on 
their number of targets in each comparison (Figures 4, b 
and c). Moreover, core regulatory networks were extracted 
to examine regulatory interactions between DE-TFs and 
find upstream regulators (Figures 4, d and e). These two 
analyses revealed MYC, JUND, FOXM1, BHLHE40, 
and VDR as significant regulators in both types of CRC.

Figure 2. Resulted Heatmap for Common DEGs in MSI-H vs Control Comparisons (a), and the results of their GO; 
(b), and pathway analysis; (c), MSI-H, microsatellite instable-high; DEG, differentially expressed genes; GO, gene 
ontology
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PPI network analysis
To examine the biological meaning of DEGs at 

the protein level in a comprehensive manner, we used 
information from several databases for PPIs. Final PPI 
networks were constructed by information from BioGRID, 
MINT, HPRD and STRING databases. PPI network of 
DEGs found in MSS vs control cases comprised of 1139 
nodes and 6569 edges and PPI network of DEGs found 
in MSI-H vs control cases consisted of 1,697 nodes and 
14,779 edges. We used topology analysis by MCODE 
algorithm to find crucial modules with score>4 in each 
comparison and examined their GO by BiNGO plugin 
(Supplementary file 5, Figures 1 and 2). As well as, 
we calculated the degree parameter to find the number 
of interactions of each node in the networks. Degree 
parameter was used to sort DE-TFs in the PPI networks 
based on their PPIs (Supplementary file 5, Figure 3). 
GO analysis of significant protein complexes revealed 
up-regulation in modules involved in cell cycle processes 
in both MSS and MSI-H cases, as well as dysregulation 
of modules involved in fatty acid oxidation processes. 
FOXM1 was the only DE-TF which represented in the 
most significant modules from MCODE analysis of MSS 
and MSI-H PPI networks and these modules critically 
involved in cell cycle processes which accentuates the 
crucial role of FOXM1 as a central regulator for cell cycle 
in CRC. On the other hand, MYC, FOXM1, and STAT1 
had the highest number of PPIs in comparison with the 

other common DE-TFs in both types of CRC.

Discussion

Among all found DE-TFs in both MSS and MSI-H 
CRC, MYC and FOXM1 were common in both type 
based on our criteria of DEG selection, and also had high 
number of targets and were among the most up-stream 
DE-TFs based on centrality and core regulatory network 
analysis. They also showed a high number of interactions 
in PPI networks in comparison with the other DE-TFs. 
Moreover, FOXM1 was in the most important module 
resulted from MCODE topology analysis in both MSS 
and MSI-H protein-protein interaction networks.

MYC is a proto-oncogene which involves in many 
cancers and its significance in the cell cycle, cell 
proliferation, and various metabolic processes has been 
reported (Stine et al., 2015). It has been demonstrated 
that elimination of MYC function can result in tumor 
regression which indicates its importance as a therapeutic 
target, however MYC is an elusive target for cancer 
therapy (Castell and Larsson, 2015). Our results also 
displayed significant upregulation of MYC in both MSS 
and MSI-H CRC and its importance as a critical regulator 
of DEGs involved in cell cycle and various metabolic 
processes. However, MYC is somehow undruggable and 
hard for targeted therapy, but some strategies have been 
proposed that in one of them suggested for CRC is to 

Figure 3. Resulted Heatmap for Common DEGs in MSS vs MSI-H Comparisons (a), and the results of their GO; 
(b), and pathway analysis; (c), MSS, microsatellite stable; MSI-H, microsatellite instable-high; DEG, differentially 
expressed genes; GO, gene ontology
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target MYC at translation level by directly targeting the 
translation initiation factor eIF4A (Castell and Larsson, 
2015). Another way to target MYC can be targeting 
its upstream regulators which indirectly affect MYC 
activation. However, when we target a regulator of gene 
expression it affects many other down-stream target genes; 
but if we target a MYC regulator, which also deregulated 
in CRC and plays a role in its development, may be an 
effective approach. Our results suggest FOXM1 as a 
critical and central regulator in both type of CRC and our 
core regulatory network represented positive regulation 
of MYC by FOXM1 in CRC. Upregulation of FOXM1 
in various type of cancer and its association with drug 
resistance have been proved (Myatt and Lam, 2008; Li et 
al., 2014; Gu et al., 2018). Moreover, the crucial role of 
FOXM1 in cell cycle and its use as a candidate for targeted 
therapy in a number of cancers have also been reported 
(Myatt and Lam, 2008; Wang et al., 2010; Buchner et 
al., 2015; Gu et al., 2016; Lu et al., 2018; Akbari et al., 
2019). Furthermore, transactivation of MYC promotor 
by FOXM1 has been demonstrated (Wierstra and Alves, 
2006, 2007). Taken together, these data suggest positive 
regulation of MYC by FOXM1 in CRC, therefore the use 

of FOXM1 as an alternative therapeutic target for MYC 
may be of great value. 

We also mined the expression data to unravel the 
differences between MSS and MSI-H CRC. Immune-related 
processes, mainly chemokine mediated processes, 
displayed more overexpression in MSI-H, while 
processes related to metastasis including migratory and 
vasculature development showed more upregulation in 
MSS. These results may explain why MSI-H colorectal 
cancer has better immunotherapy response and lower 
metastasis rather than MSS CRC. It has been proven that 
the existence of tumor-infiltrating lymphocytes (TILs) 
in many cancer types is a positive prognostic factor and 
increased TILs density have been demonstrated in MSI-H 
tumors, but the reason of that is not well underestood 
(Pagès et al., 2005; Lee et al., 2016). Chemokines 
play important role in recruitment and infilateration of 
lymphocytes within the tumor microenvironment. As well 
as, the role of chemokine–chemokine receptor network 
in T-cell–mediated antitumor immune response has been 
demonstrated (Franciszkiewicz et al., 2012). We detected 
up-regulation of chemokine mediated processes (Figure 
3 b and c) in MSI-H cases. CXCL10, CXCL9, CCL5, 

Figure 4. (a), Resulted Heatmap for DE-TFs in MSS and MSI-H vs Normal Comparisons; (b), results of centrality 
analysis of DE-TFs in MSI-H colorectal cancer and their arrangement based on number of targets; (c), results of 
centrality analysis of DE-TFs in MSS colorectal cancer and their arrangement based on number of targets; (d), extracted 
core regulatory network from MSI-H whole regulatory network; and (e), extracted core regulatory network from MSS 
whole regulatory network. DE-TFs, differentially expressed transcription factors; MSS, microsatellite stable; MSI-H, 
microsatellite instable-high
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CXCL13, and CCL18 genes which all encode chemokines 
and CXCR4 gene which encodes a chemokine receptor 
were common in all of those prossesses in our study. Taken 
together, up-regulation of these processes and cytokines 
may be responsible for increased density of TILs and better 
immunotherapy response in MSI-H CRC.

Additionally, MMR pathway showed more upregulation 
in MSI-H cases. Defective MMR is characterized by 
MSI, and hereditary nonpolyposis colorectal cancer 
(HNPCC) or Lynch syndrome, the most common form 
of hereditary colorectal cancer, caused by inherited MMR 
genes mutations, most commonly mutations in MLH1 
and MSH2 (Li and Martin, 2016). Even though MMR 
displayed upregulation; but one of the major genes in 
this process, MLH1, displayed downregulation just in 
MSI-H CRC without any significant change in MSS 
CRC studies. As well as, MLH1 showed upregulation in 
5 out of 6 MSS vs MSI-H studies (which is due to down-
regulation of MLH1 in MSI-H cases). In fact, MLH1 was 
the only mismatch repair gene that showed significant 
downregulation which highlights the importance of this 
gene in sporadic MSI-H CRC than the other MMR genes.

Further, we found TP53 (upregulated in MSI-H 
CRC), FOXA1 (downregulated in MSS CRC), DACH1 
(upregulated in MSS CRC), CDX2, and ZMYND8 
(downregulated in MSI-H CRC) as the main DE-TFs 
which showed differential expression just in one type of 
CRC, MSS or MSI-H. Among them, TP53 and DACH1 not 
only represent upregulation in all of the MSI-H and MSS 
versus control studies, respectively; but also displayed 
differential expression in a considerable number of MSS vs 
MSI-H cases. Previous studies reported an inverse relation 
between p53 gene alterations and MSI. On the other hand, 
some other studies reported that overexpression of p53 is 
more common in MSI than MSS CRC and suggested the 
possible use of TP53 expression to predict MSI-H CRC 
prior to MSI typing (Nyiraneza et al., 2011). Our result not 
only demonstrate upregulation of TP53 in MSI-H CRC but 
also suggest that this TF may be a significant regulator of 
DEGs in this type of cancer. Else ways, DACH1 showed 
significant upregulation just in MSS CRC. Previous 
studies reported methylation of DACH1 promoter and 
its downregulation in cancer and demonstrated that 
DACH1 can inhibit breast tumor invasion and growth by 
suppressing epithelial-mesenchymal transition (EMT) 
and proliferation through repression of Snai1and Cyclin 
D1, respectively (Wu et al., 2006; Zhao et al., 2015). 
Bu, Xiao-Na and colleagues illustrated that DACH1 
upregulation can promote pancreatic cancer growth and 
invasion; downregulation of DACH1 activity with shRNA 
can repress cell proliferation and tumor invasion by mostly 
inducing apoptosis and inhibiting EMT in pancreatic 
cancer cells through modulating Bcl-2 (pro-survival 
regulator) and E-cadherin, respectively (Bu et al., 2016). 
Our data have shown significant upregulation of DACH1 
in MSS CRC; moreover Cyclin D1 and Snai1 represent 
upregulation in 3 out of 4 MSS studies; on the other 
hand, Bcl-2 was downregulated and E-cadherin did not 
represent significant change in expression in MSS studies. 
These results may refute the inhibitory role of DACH1 in 
tumor growth and invasion in MSS CRC through Snai1 

and Cyclin D1 and also may reject the involvement of 
DACH1 in tumor growth and invasion through Bcl-2 and 
E-cadherin in MSS CRC. Lee, Jae-Woong, and colleagues 
have shown that DACH1 can elevate cell cycle progression 
through upregulation of cyclin D1, D3, F, and Cdk 1, 4, 
and 6 and decrease in p21Cip1 in myeloid cells (Lee et 
al., 2012). In our survey, Cyclin D1, F, and Cdk 4 were 
shown significant upregulation in most of the MSS studies; 
as well as Cdk 1 showed upregulation pattern in all MSS 
studies (FC>1.5 in 3 studies with significant P value in 2 
of them) and p21Cip1 represented downregulation pattern 
in all MSS studies (with significant downregulation in 
1 study). These results may suggest the involvement of 
DACH1 in cell cycle progression in MSS CRC mainly 
through upregulation of cyclin D, F, Cdk 1 and 4.

In conclusion, the present study revealed significant 
upregulation of cell cycle and downregulation of 
metabolic, specifically fatty acid catabolism, processes in 
CRC and predicted MYC and FOXM1 as two critical and 
central regulators of DEGs in CRC. On the other hand, 
we demonstrated that immune-related processes are more 
active in MSI-H cases, while in MSS cases metastasis 
related processes including migratory and vasculature 
development are more active; also we found TP53 and 
DACH1 as two DE-TFs which differentially expressed 
just in one type of CRC.
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