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Introduction

Staurosporine is a biological matter that induces 
neurite outgrowthat low concentrations (nM) and 
apoptosis at high concentrations (µM) in several cells 
(Schumacher et al., 2003; Das et al., 2004; Giuliano et al., 
2004; Faghihi et al., 2008). Staurosporine inhibits some 
protein kinases such as protein kinase C (PKC), a family 
of serine/threonine kinases (Senderowicz, 2005) which 
may contribute to neurite outgrowth, cell proliferation, 
and cell differentiation (Jin et al., 2015). Pentoxifylline 
can inhibit the phosphodiesterase (PDE) enzyme activity, 
leading to an increase in cyclic adenosine monophosphate 
(cAMP) (Joshi et al., 2014). Previous studies have 
demonstrated that pentoxifylline may exert its effects 
through several mechanisms including translocation 
of extracellular calcium, increased cAMP and cyclic 
guanosine monophosphate (cGMP) caused by inhibition 
of phosphodiesterase, and blockade of adenosine receptors 
(Nasiri-Toosi et al., 2013; Speer et al., 2017) and cAMP 
overload pathway, resulting in cell viability and cell 
proliferation in neuronal cells (Cui and So, 2004; Hannila 
and Filbin, 2008).

An increasing number of reports have shown that 
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PTX has many anti-inflammatory/immunomodulatory 
activities by reducing the production of several cytokines. 
Moreover, PTX and other PDE inhibitors exert their anti-
inflammatory/immunomodulatory activities by interfering 
with production of many cytokines (IL-4, IL-5, IL-10, 
TNF-α, IL-2 etc.) through inhibition of NF-kB and NFAT 
and stimulation of AP-1 and CREBs (cAMP response 
element binding proteins)(Hannila and Filbin, 2008). 
Furthermore, the effect of pentoxifylline on cytokines 
production seems to be due, at least in part, to an increase 
in intracellular cAMP levels in inflammatory cells. The 
results of a study by Sirin et al., (1998) showed that 
pentoxifylline reduces cerebral injury and preserves the 
neurologic function in transient global ischemia in rats.

The present study was designed to investigate the 
effects of different concentrations of pentoxifylline on 
staurosporine-induced neurite elongation, cell viability, 
and cell death in bone marrow mesenchymal stem cells. 

Materials and Methods

Cell lines
In this experimental study, PC12 cells were cultured 

in the RPMI1640 culture medium (Gibco), supplemented 
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with 5% FBS (Gibco), 100 u/ml penicillin (Sigma), 
and 100 mg/ml streptomycin (Sigma). The cells were 
incubated at 37 °C in a humidified environment containing 
5% CO2.

Cell treatment
PC12 cells were plated overnight, washed with PBS 

(pH=7.4), and were then cultured. Cells were treated with 
pentoxifylline at different concentrations (group I: 1 nM, 
group II: 10 nM, group III: 100 nM, group IV: 1 uM, group 
V: 10 uM,), and then treated with 214 nM staurosporine as 
a neurite outgrowth inducer (for 6, 12 and 24 hours). Cells 
only treated with staurosporine at a concentration of 214 
nM were used as control cells. The cells were incubated 
at 37°C with 5% CO2.

Cell proliferation measurement
The percentage of cell proliferation was measured 

by the MTT assay (Khatibi et al., 2017). The cells were 
cultured in a 96-well plate at a density of 1×104 cell/well 
in the RPMI1640 culture medium containing 0.2% BSA 
added overnight. Then, the cells were cultured with 
different treatment media as described (for 6, 12, and 24 
hours). The optical density of each well was measured 
using a microplate reader (EL800; USA). 

Quantification of cell death
The cell death index was calculated as described 

previously (Yamasaki, 2003). Briefly, the cells were 
cultured in 96-well culture plates at a density of 5×103 

cells/well overnight. The cells were treated in different 
treatment media for different periods (6, 12 and 24 hours). 
Then, the cells were incubated at 37°C for 30 minutes 
using the Hoechst 33,342 dye (10 mg/ml in PBS) and 
washed twice in PBS. PI (50 mg/ml in PBS) was added 
just before microscopy. The cells were visualized using an 
inverted florescence microscope (Olympus IX-71, Japan). 
The apoptotic index was then calculated. 

Measurement of total neurite length (TNL)
The TNL was measured as reported in a previous 

study (Rønn et al., 2000). The cells were plated in 24-well 

culture plates at a density of 6×104 cells/well overnight. 
The cells were treated in different treatment media for 
certain periods of time (6, 12 and 24 hours) and fixed. 
The morphology of the cells was assessed by an inverted 
microscope (Olympus IX-71, Japan). 

Immunocytochemistry
The cells were plated in 96-well culture plates at a 

density of 1×104 cells/well overnight. Then, the cells were 
treated in different treatment media for 6 hours, fixed, 
and permeabilized in 0.1% Triton/PBS for 5 minutes. 
The cells were incubated in PBS containing 0.5% bovine 
serum albumin and 0.1% Tween 20 for 30 minutes 
to reduce nonspecific binding, followed by overnight 
incubation at 4°C with the following rabbit polyclonal 
Abs: β-tubulin III (1:40; Sigma) and GFAP (1:80; Sigma). 
After washing, FITC-conjugated (green) secondary Ab 
(1:100; Santa Cruz Biotechnology) was applied for 1 
h at room temperature. The wells were treated with an 
anti-fade reagent (Molecular Probes, Inc.) and examined 
for immunofluorescence under a fluorescent microscope 
(Olympus AX-70).

Statistical analysis
Data are expressed as mean ± SEM. All calculations 

were performed by SPSS (version 19; SPSS Inc.). The 
differences in the percentage of viability, apoptotic index, 
and total neurite length between different treatment groups 
were analyzed using t-test at a significance level of 0.05.

Results

Cell proliferation 
The percentage of cell proliferation in cells cultured 

in a culture medium containing pentoxifylline and 
staurosporine was assessed by the MTT assay. After 
6 hours, cell proliferation assay showed that cell 
proliferation decreased in treatment groups 1 and 2 
compared with control group (p<0.05). In treatment group 
5, cell proliferation increased when compared with the 
control group, but in treatment groups 3 and 4, differences 
in cell proliferation were not significant (p<0.05). The 

Figure 1. Effect of Pentoxifylline in the Presence of Staurosporine on Viability of PC12 Cells. Cells were treated with 
different concentrations of pentoxifylline (I: 1 nM, II: 10 nM, III: 100 nM, IV: 1 uM, V: 10 uM) and then treated with 
214 nM staurosporine. Cells only treated with 214 nM staurosporine were used as the control group. a,b,c,d p < 0.05; A 
significant difference was seen between the experiment and control groups.
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assessed by PI/Hoechst florescence staining (Figure 2A). 
Hoechst/PI staining assay showed that with an increase 
in the concentration of pntoxifylline, cell death decreased 
over time (p<0.05). 

After 6 hours, the percentage of cell death in treatment 
groups 1-3 increased as compared with the control group 
and the percentage of cell death in treatment groups 4 and 
5 was similar to the control group. The highest percentage 
of cell death was seen in treatment group 1 (11%) and the 
lowest percentage of cell death was observed in treatment 
group 5 (2.8%). 

After 12 hours, the percentage of cell death in 
treatment groups 1-3 increased when compared to the 
control group but the percentage of cell death in treatment 
groups 4 and 5 was similar to the control group (p<0.05). 
The highest and lowest percentage of cell death was 
seen in treatment group 1 (14.9%) and treatment group 5 
(3.8%), respectively. 

After 24 hours, the percentage of cell death in 
treatment groups 1-3 increased when compared to control 
group while the percentage of cell death in treatment 
groups 4 and 5 was similar to the control group (p<0.05). 
The highest and lowest percentage of cell death was seen 
in treatment group 1 (19%) and treatment group 5 (6.9%), 

lowest percentage of cell proliferation after 6 hours was 
seen in treatment group 1 (85%) and the highest was 
observed in treatment group 5 (115%) (p<0.05).

After 12 hours, cell proliferation assay showed that 
cell proliferation decreased in treatment groups 1 and 2 
compared with the control group (p<0.05). In treatment 
groups 3-5, cell proliferation increased significantly as 
compared to the control group (p<0.05). The lowest and 
highest percentage of cell proliferation after 12 hours was 
seen in treatment group 1 (87%) and treatment group 5 
(140%), respectively (p<0.05).

After 24 hours, cell proliferation assay showed that 
cell proliferation decreased in treatment groups 1 and 
2 compared with control group (p<0.05). In treatment 
groups 3-5, cell proliferation increased significantly as 
compared with the control group (p<0.05). The lowest 
and highest percentage of cell proliferation after 24 hours 
was seen in treatment group 1 (87%) and treatment group 
5 (145%), respectively (p<0.05).

Cell death
The apoptotic effect of pentoxifylline on PC12 

cells cultured in culture media containing different 
concentrations of pentoxifylline and staurosporine was 

Figure 2. A. Effect of pentoxifylline in the presence of staurosporine on cell death of PC12 cells after 6 hours (column 1), 
12 hours (column 2), and 24 hours (column 3). A= Control, B=treatment group 5, C=treatment group 4, D=treatment 
group 3, E=treatment group 2, F=treatment group 1. B. Effect of pentoxifylline in the presence of staurosporine on cell 
death of PC12 cells. Cells were treated with different concentrations of pentoxifylline (I: 1 nM, II: 10 nM, III: 100 nM, 
IV: 1 uM, V: 10 uM) and then treated with 214 nM staurosporine. Cells only treated with 214 nM staurosporine were 
used as the control group. a,b,c,d p < 0.05; a significant difference was seen between the experiment and control groups.
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respectively (Figure 2A). 

Neurite outgrowth measurement
The mean TNL for PC12 cells was assessed using 

an inverted microscope (Figure 3A). The total neurite 
length was calculated, which showed that pentoxifylline 
concentrations enhanced neurite outgrowth (p<0.05) 
(Figure 3A). After 6 hours, TNL increased in treatment 
groups 2-5 when compared to the control group. TNL 
also increased with an increase in the concentration of 
pentoxifylline (p<0.05). TNL in treatment group 1 was 
similar to TNL in the control group. The highest and 
lowest TNL was seen in treatment group 5 and the control 
group, respectively (p<0.05). 

After 12 hours, TNL increased in treatment groups 2-5 
when compared to the control group. TNL also increased 
with an increase in the concentration of pentoxifylline 
(p<0.05). TNL in treatment group 1 was similar to TNL in 
the control group.  The highest and lowest TNL was seen 
in treatment group 5 and the control group, respectively 
(p<0.05).

After 24 hours, TNL increased in treatment groups 2-5 
as compared to the control group. TNL also increased with 

an increase in the concentration of pentoxifylline over 
time (p<0.05). TNL in treatment group 1 was similar to 
TNL in the control group. The highest and lowest TNL 
was seen in treatment group 5 and the control group, 
respectively (p<0.05).

Immunocytochemistry assay
The effect of pentoxifylline in the presence of 

staurosporine on PC12 cells was characterized by 
immunocytochemistry study after 24 hours exposure. For 
immunocytochemistry study, cultured cells were stained 
with β-tubulin III and GFAP as neurological biomarker 
antibodies. The showed that pentoxifylline at different 
concentrations (in different treatment media) enhanced 
PC12 cells β-tubulin III (Figure 4A) and GFAP (Figure 
4B) as compared to the control group. 

Discussion

In the current study, we investigated the effect of 
pentoxifylline on staurosporine induced neurite outgrowth 
in PC12 cells. It has been shown that staurosporine, 
as a fungal chemical matter, can induce neuronal 

Figure 3. A. Effect of pentoxifylline in the presence of staurosporine on the total neurite length of PC12 cells after 6 
hours (A1-F1), 12 hours (A2-F2), and 24 hours (A3-F3).  A1-A3= Control, B1-B3=treatment group 1, C1-C3=treatment 
group 2, D1-D3=treatment group 3, E1-E3=treatment group 4, F1-F3=treatment group 5. B. Effect of pentoxifylline 
in the presence of staurosporine on total neurite length of PC12 cells. Cells were treated with different concentrations 
of pentoxifylline (I: 1 nM, II: 10 nM, III: 100 nM, IV: 1 uM, V: 10 uM) and then treated with 214 nM staurosporine. 
Cells only treated with 214 nM staurosporine were used as the control group. a,b,c,d p < 0.05; a significant difference 
was seen between the experiment and control groups.
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differentiation in neuronal cells (Frassetto et al., 2006). It 
can induce neuronal differentiation by neurite outgrowth in 
PC12 cells (Rasouly et al., 1996; Das et al., 2004). In the 
present investigation, it was used as a biological inducer 
of neurite elongation. Staurosporine is a potent inhibitor of 
a number of kinases like PKC, PKA, and tyrosine protein 

kinase (Gani and Engh, 2010). In the present study, we 
used the pentoxifylline to enhance neurite elongation in 
PC12 cells. Pentoxifylline as a phosphodiesterase enzyme 
inhibitor increases the concentrations of intracellular 
cAMP. Many studies have demonstrated that increased 
cAMP enhances the growth and survival of the neurons. 
It has been shown that the cells differentiate into early 
neural progenitors under conditions that increase 
intracellular cAMP. Following a treatment that elevates 
intracellular levels of cAMP, about 25% of hMSCs assume 
a neuron-like morphology (Deng et al., 2001). It has 
been already reported that cAMP induces mechanisms 
for maturation of neuronal progenitor cells (Lepski et 
al., 2013). The results of our study showed when cells 
are treated with pentoxifylline and staurosporine, cell 
proliferation (as shown in Figure 1) and neurite outgrowth 
(as shown in Figure 3)  increase and cell death (as shown in 
Figure 2) decreases (p<0.05). It is possible that an increase 
in the cAMP concentration induces cell proliferation and 
neurite elongation and suppresses cell death in treatment 
groups more than the control group. Pentoxifylline 
regulates the neurite outgrowth process as well as GFAP 
and β-tubulin III protein expression through activation 
of the PKA pathway and capacitative Ca2+ influx. 
Development, neuronal survival, and differentiation 
can be influenced by a variety of local signals or signals 
derived from intermediate or final target tissues. therefore, 
in this study, we suggest it is possible that pentoxifylline 

Figure 4. A. Immunocytochemistry assay of β-tubulin III in PC12 cells after 6 hours (A1-F1), 12 hours (A2-F2), and 24 hours (A3-
F3); A1-A3, Control; B1-B3, treatment group 1; C1-C3, treatment group 2; D1-D3, treatment group 3; E1-E3, treatment group 4; 
F1-F3, treatment group 5; B. Immunocytochemistry assay of GFAP in PC12 cells after 6 hours (A1-F1), 12 hours (A2-F2), and 24 
hours (A3-F3); A1-A3, Control; B1-B3, treatment group 1; C1-C3, treatment group 2; D1-D3, treatment group 3; E1-E3, treatment 
group 4; F1-F3, treatment group 5.

Figure 5. Scheme of PDE Inactivation by Pentoxifylline 
through a Protein Kinase-Dependent Mechanism (PKC, 
PKA), Leading to Increased cAMP, Neurite Elongation, 
and Neuroglial Protein Marker Expression in the PC12 
Cell Line.
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enhances neurite elongation and neurological protein 
marker expression in PC12 treated by staurosporine 
through a protein kinase-dependent mechanism (PKC, 
PKA) and an increase in cAMP.

In conclusion, according to the results of the present 
study, pentoxifylline, possibly through increasing the 
cAMP level, may enhance neurite elongation and increase 
protein expression. However, more key factors need to be 
investigated in these effects.
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