
Asian Pacific Journal of Cancer Prevention, Vol 20 3399

DOI:10.31557/APJCP.2019.20.11.3399
Repurposing Drugs by In Silico Methods to Target BCR 

Asian Pac J Cancer Prev, 20 (11), 3399-3406 

Introduction

Chronic myeloid leukemia (CML) is a clonal 
myeloproliferative disorder characterized by the presence 
of a balanced reciprocal translocation between the 
breakpoint cluster region (BCR) gene on chromosome 
22q11.2 and the Abelson gene (ABL1) on chromosome 
9q34, resulting in the formation of t(9;22)(q34;q11) (Di 
Bacco et al., 2000). The BCR-ABL chimeric oncogenic 
protein constitutively activates tyrosine kinase, driving 
leukemic cells through the phosphorylation of downstream 
effector molecules such as Grb2, RAK, ROS, PI3K, JNK, 
STAT5, AKT and Myc, which in turn activate numerous 
signal transduction pathways and lead to uncontrolled 
cell proliferation (Deininger et al., 2000; Pendergast et 
al., 1993). The incidence of CML is about 1-2 cases per 
100,000 adults and accounts for approximately 15% of 
the newly diagnosed cases of leukemia (Jabbour and 
Kantarjian, 2016). 

The blast cell percentage divides CML into 
asymptomatic chronic phase (CP), accelerated phase (AP) 
and blast crisis (BC) with the accumulation of additional 
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genetic abnormalities as the disease inevitably progresses 
to a more aggressive form. Alterations in the p53 and Rb1 
genes occur in about 30% and 20% of blast crisis cases, 
respectively, and are responsible for the clonal evolution. 
About 20% of the patients may transit directly to BC 
without evolving into AP and become poor responders 
with a failure rate of >70% (Di Bacco et al., 2000; Jabbour 
and Kantarjian, 2016; Jain et al., 2017). 

CML is the first human malignancy for which targeted 
therapy was applied. The frontline treatment using the 
FDA approved first-generation tyrosine kinase inhibitor 
Imatinib mesylate to block the cellular proliferation of the 
malignant clones drastically reduced the annual mortality 
rate to 1-2%  and improved the long-term overall survival 
rates to >80-90% (de Kogel and Schellens, 2007; Mauro 
and Druker, 2001; Facts, 2015; Deininger et al., 2009; 
Hess et al., 2008; Hochhaus et al., 2008, 2017; Palandri 
et al., 2008).

The BCR-ABL protein contains multiple functional 
domains and motifs capable of transforming the primitive 
hematopoietic cells into malignant leukemic cells by 
disrupting the regulation of many signaling pathways 
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and cellular functions. The currently practiced targeted 
therapy fails to eliminate the complete population 
of CML progenitor cells having ABL kinase domain 
mutation that leads to imatinib resistance; hence, our 
interest is to explore the targets outside this domain. 
The first exon on the BCR domain contains tyrosine 177 
(Y177), which activates the transforming potential of the 
cells and synergistically promotes CML cell expansion, 
proliferation and survival. The autophosphorylated Y177 
of BCR-ABL recruits an adapter protein Grb2 (growth 
factor receptor-bound protein 2) and binds the SH2/
SH3 domain with high affinity. The BCR-ABL-Grb-2 
interaction leads to Grb2-SOS complex formation, which 
triggers the downstream activation of PI-3K-AKT through 
SOS mediated Ras-MAPK signaling (Chu et al., 2000; 
Zhang et al., 2001). Y177 also recruits the scaffolding 
adaptor Gab2 via a Grb2/Gab2 complex for effective 
induction of the myeloproliferative disease (Sattler et 
al., 2002). Mutations involving Y177 prevent Grb2 
binding, thereby decreasing the signaling and hence the 
proliferation of Ph+ myeloid progenitor cells (Million and 
Van Etten, 2000; Pendergast et al., 1993). 

Drug development is time-consuming and expensive 
with extremely low success and relatively high attrition 
rates (Wu et al.,  2013). Despite the enormous investment 
ranging from 500 million USD to 2 billion USD, the 
number of drugs being approved has been declining 
since the late 1990s (Boguski et al., 2009). Recycling 
existing licensed drugs for new medical indications gave 
the benefits of reducing the development cost and time 
as well as the probability of failure by exploiting the 
readily available pharmacokinetic properties, adverse 
effects/ toxicities, evidence from clinical trials, and 
post-marketing safety data (Deotarse et al., 2015). Protein 
structure predictions and molecular docking studies are 
reliable ways of screening thousands of drugs interacting 
with specific targets to shortlist a set of prospective FDA 
approved compounds to be repositioned for off-label uses 
(Candidate and Stratagies, 2018; Xue et al., 2018). 

A notable example is Thalidomide, a sedative initially 
used to treat leprosy, which was then repurposed for 
multiple myeloma, once it was identified to inhibit 
the angiogenesis induced by fibroblast and vascular 
endothelial growth factors (Richardson et al., 2002). 
Likewise, anti-cancer drugs such as Imatinib (Demetri 
et al., 2002), Sorafenib (Zhang et al., 2008), Crizotinib 
(Carpenter and Mosse, 2012), Gemcitabine (Zhang et 
al., 2017) and Ponatinib (Musumeci et al., 2018) are 
being successfully employed to treat various cancers 
apart from their original indication owing to their ability 
to target multiple pathways. Computational methods 
are also being used to identify new ways of tackling the 
BCR-ABL mutations by devising novel inhibitors that 
target the mutated clones (Banavath et al., 2014). We now 
propose to repurpose drugs identified by in silico methods 
to effectively target the serine/threonine (S/T) kinase 
domain of BCR, thereby blocking the Grb2 binding which 
leads to inhibition and progression of CML.

Materials and Methods

Identification of differentially expressed genes 
Dataset GSE33075 (Benito et al., 2012) was downloaded 

from Gene Expression Omnibus (GEO) (Barrett et al., 
2007). The dataset contained nine healthy bone marrow 
samples (donor) and hematopoietic cells from 9 Ph+ CML 
patients at diagnosis and their corresponding samples 
after one month of therapy with 400 mg of OD imatinib. 
The data were analyzed by categorizing the samples 
into defined groups: donor with untreated CML and pre 
vs. post imatinib treatment. GEO2R, an interactive web 
tool provided by NCBI (version R 3.2.3, Biobase 2.30.0, 
GEOquery 2.40.0, Limma 3.26.8), was used to perform 
the calculations (Edgar, Domrachev, and Lash, 2002). 

Target pathway identification
The obtained differentially regulated genes were used 

as input for the “Database for Annotation, Visualization 
and Integrated Discovery” (DAVID v6.8) to establish the 
gene ontology (GO terms) and analyze the KEGG pathway 
(Huang, Sherman, and Lempicki, 2009b, 2009a).

Connectivity Map (CMap)
The drugs associated with the differentially expressed 

genes were ascertained based on their phenotypic 
expression profile. CMap is a comprehensive drug 
perturbation database containing 6,100 data points 
derived from genome-wide transcriptional expression 
data using 3,000 chemical compounds in three cultivated 
cancer cell lines, thereby serving as a reference database 
(Ravindranath et al., 2015). The drugs at the top of the 
list are strongly correlated and those at the bottom are 
strongly anti-correlated functionally based on the query 
state through the transitory feature of common gene 
expression changes (Musa et al., 2018; Wang et al., 2018).

BCR interacting partners
The STRING database provides the networks and 

functional associations between proteins on a global 
scale. It predicts the protein-protein interactions between 
our target protein BCR and its interacting partners based 
on direct (physical) and indirect (functional) associations 
(http://string-db.org) (Szklarczyk et al., 2015), which have 
been provided with a probabilistic confidence score based 
on the selected value. 

Modeling and Docking
Model building

The amino acid sequence of the BCR protein (kinase 
domain) was retrieved from UniProt (P11274), and 
its structure was predicted using the SPARKS–X tool 
(http://sparks.informatics.iupui.edu/) (Yang et al., 2011). 
If the sequence identity was <40%, the domains and its 
chains were included in the library for model generation 
with modeler9v7 (Sali et al., 1995) using the alignment 
produced by SPARKS-X. The different models were 
linked, steric clashes were removed using the DFIRE 
potential functions (Yang et al.,, 2008; Zhou and Zhou, 
2002), and the protein model was generated. 
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Parallelized Open Babel and AutoDock suite Pipeline 
(POAP)

POAP integrates the tools such as Open Babel, 
AutoDock, AutoDock Vina and AutoDockZN in an 
easily configurable Bash shell-based text interface. The 
modules for ligand preparation such as single receptor 
virtual screening, multiple receptor virtual screening, and 
consensus scoring were performed. POAP calculates the 
ligand binding energy and scoring based on the AutoDock 
Lamarckian Genetic Algorithm and free energy empirical 
scoring (Morris et al., 2009; Samdani and Vetrivel, 2018). 
The energies obtained from POAP were compared with 
the ligand score identified from Schrodinger. 

Results

Identification of gene expression changes between the 
donors and CML patients

The differentially expressed genes between the 
donors and CML patients at diagnosis (Set A) and those 
between the pre and post imatinib treated patients (Set B) 
showing fold changes >2 were identified.  There were 92 
up-regulated and 250 down-regulated genes in Set A. In 
Set B, 262 up-regulated and 183 down-regulated genes 
were obtained. All gene lists are shown in Supplementary 
Table S1 (A and B). The genes present in the two sets 
were compared using InteractiveVenn (Heberle et al., 
2015) (Supplementary Figure 1a and 1b). The common 
genes acted in opposing ways, that is, up-regulated in Set 
A but down-regulated in Set B and vise-versa, implying 
that they could be probable targets for drug identification.  
(Supplementary Table S2)

Protein preparation and validation
The model which gave a Z-score >8 in the SPARKS-X 

tool was selected for further validation. The PDB file of 
the BCR kinase domain was processed using the “Protein 
Preparation Wizard” of Schrodinger suite 2018-1. All the 
missing hydrogen atoms were added and the orientation 
of side chains containing the glutamine, asparagine, and 
histidine residues was prepared. The protonation states 
of histidine were assigned, and energy minimization 
was performed with the OPLS force field (Sastry et al., 
2013). The protein was evaluated using the RAMPAGE 
Ramachandran plot analysis (Lovell et al., 2003).

Active site prediction
The active site of the BCR kinase domain was 

recognized using the SiteMap tool (Halgren, 2007; 
Halgren, 2009). The binding site having a score >1 was 
selected for further docking studies. 

Ligand preparation
The drugs attained from the CMap tool were corrected 

using the Ligprep tool (Schodinger Release 2018-1: 
LigPrep, Schodinger, LLC, New York, NY, 2018). The 
molecules were converted to their 3D structures, and their 
geometries were optimized by the addition of hydrogen.  

Receptor grid generation
Using the receptor grid generation module of 

Schrodinger, the grid was created at the active site of the 
amino acids (identified by SiteMap), that is, the Grb2 
binding region of the BCR kinase domain, by means of 
default parameters. 

Docking 
Schrodinger 2018-1 suite

Glide docking was carried out with the prepared 
ligands using the extra precision (XP) scoring (Friesner 
et al., 2004, 2006; Halgren et al., 2004) function. The 
compounds were ranked based on the scores, and 
the specific interactions such as hydrogen bonding, 
Pi – cation, and Pi -Pi between the protein and ligands 
were visualized using ligand interaction tools.

iGEMDOCK
iGEMDOCK is a graphical-automatic drug design 

system for docking, screening, and post-analysis, which 
calculates the energy of each pose and generates its fitness 
by calculating the individual energy terms (Yang and 
Chen, 2004; Yang and Shen, 2005). 

Chembl Id Compound (Drug Bank) Interacting Residues Xp G Score Glide Energy iGEMDOCK Poap

1234613 Nadide Lys125,Arg132,Lys163,Phe176, Val178 -8.257 -61.723 -214 -9

449317 Hesperidin Ala131,Arg162,Val178,Asn179Arg186 -6.739 -41.925 -179.7 -8.8

376923 Butirosin Glu159,Arg162,Lys163,Asn179 -6.901 -46.131 -225.3 -5.9

511565 Ovoflavin* Asn179,Arg186,Leu188,Lys190 -5.755 -32.374 -208.6 -7

52 Nordihydro-guaiaretic acid Ala131,Arg132,Val178,Leu188 -5.652 -33.604 -184.3 -8.4

Table 1. Glide XP Results for the Ligand Interactions, by Schrodinger and Validation Using iGEMDOCK and POAP

*Drug names obtained from Pubchem

Figure 1. BCR Interacting Partners from STRING 
database
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Characterizing the differentially expressed genes with 
DAVID by using Gene Ontology and KEGG pathway 
analysis

Gene ontology was performed using DAVID for 
the genes from Set A and B to infer the functional 
consequences of the up-regulated and down-regulated 
genes. The significant cutoff of the EASE score, a 
modified Fisher Exact test value (p-value) of 0.01, was 
set to identify the GO-terms. The differentially expressed 
genes were also mapped using the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway. It was found that 
the hematopoietic cell lineage, natural killer cell-mediated 
cytotoxicity, NF-κB signaling pathway, chemokine 
signaling pathway, transcriptional misregulation in cancer, 
and histidine metabolism were involved in Set A. On 
the other hand, chemokine signaling, cytokine-cytokine 
receptor interaction, viral carcinogenesis, and Fc gamma 
R-mediated phagocytosis were involved in Set B. The 
complete list of GO ontology terms and KEGG pathway 
are given in Supplementary Table S3 (A and B).

Candidate drugs from CMap
The perturbations from CMap yielded detailed results 

from the gene signatures analyzed according to their 
permutated results, P-values and enrichment scores. 
The robust connection between the genes and the drugs 
was applied to obtain candidates for docking. In Set A, 
1,156 drugs gave a positive score and 1,648 drugs gave a 
negative score. On the other hand, in Set B 1,052 and 493 

drugs showed positive and negative scores respectively. 
The complete list of drugs are given in Supplementary 
Table S4 (A and B).  

STRING protein-protein interactions
The STRING database was used to identify if BCR 

interacts with Grb-2 such that it can be targeted to inhibit 
the proliferation of the leukemic clones. To recognize 
the specific and meaningful interactions, the minimum 
required interaction score was set at the highest confidence 
of 0.900. The active interaction sources were from text 
mining, databases, and co-expression. A maximum of 
10 interactions were allowed to detect the top-scoring 
partners. BCR interacts with Grb2 with a score of 0.958. 
The interacting partners are represented in Figure 1.

Protein structure prediction and validation
The BCR gene (UniPort ID: P11274) consists of 

1,271 amino acids, of which the first 426 belong to the 
serine-threonine kinase domain. The SPARKS-X tool 
generated 10 models based on the Z-score using different 
templates, amongst which the one with the highest score 
value of 8.21 was selected for validation. (Supplementary 
data S5)

The protein preparation wizard of Schrodinger was 
used to correct the modeled BCR protein structure 
for virtual screening. The bond orders were assigned, 
and the hydrogen atoms were added to optimize the 
structure. Restrained minimization with a fixed RMSD 

Figure 2. Protein Modeling and Validation. (a) BCR protein structure from SPARK-X tool (b) Ramachandran plot

Figure 3. Ligand Interactions Using Schrodinger XP. (a), Diphosphopyridine nucleotide; (b), Hesperidin; (c), Butirosin; 
(d), Ovoflavin; (e), Nordihydroguaiaretic acid
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of 0.3Å using the OPLS3 force field was performed. The 
minimized structure thus obtained is depicted in Figure 
2a. Furthermore, the structure was validated using the 
RAMPAGE software, which indicated 84.4% as residues 
in the favored region, 9.7% as those in the allowed region, 
and 5.9% as outliers. The Ramachandran plot generated 
is given in Figure 2b. The validated structure was then 
used for docking studies. The active binding pocket with 
a site score of 1.058 was chosen, whose residues are as 
follows: 130-140, 158, 177-180, 182, 184, 186-192, 195, 
200-203. Tyrosine 177 was one of the various residues in 
the active binding pocket, which was used to generate the 
grid using a grid generation panel. 

Docking results
The docking score revealed the list of compounds 

that can form hydrogen bonds with the active binding 
region of the BCR protein, thereby increasing the chance 
of being repurposed for a therapeutic effect. A total of 32 
compounds (Supplementary Table S6) were discerned, 
including antibiotics, antimicrobials, flavonoids, and 
contrast agents. Five candidates, namely nadide (NAD+), 
hesperidin, butirosin, ovoflavin and nordihydroguaiaretic 
acid (NDGA), displayed strong interactions in close 
proximity to the active binding pocket containing Y177 
of the BCR protein (Figure 3). Table 1 lists the various 
residues that interact with the drugs to be repurposed for 
CML. 

Discussion

This work aims at repurposing well-known 
formulations to identify the connections between the 
molecular biology of CML and its treatment prospects 
in patients with progressive or resistant disease. The 
potential drugs capable of inhibiting the condition were 
identified by in silico molecular docking based on the XP 
glide score and glide energy. Among the top 32 candidates 
selected for repurposing, Deferoxamine, Mitoxantrone, 
and Leucovorin were also present which have already been 
identified for cancer treatment. Recent research published 
by Yujing et al., (2018) has revealed the protective role of 
Deferoxamine in leukemic cell apoptosis by regulating the 
concerned genes. Iron chelators have also been reported 
to exert anti-proliferative effects in various cancers, 
including head and neck (Donneys et al., 2018; Donneys 
et al., 2018), colorectal (Cao et al., 2018) and breast 
(Bajbouj et al., 2018; Tury et al., 2018). Mitoxantrone is 
a well-known antitumor antibiotic used for the treatment 
of relapsed acute lymphoblastic leukemia (ALL) (Parker 
et al., 2010), acute myeloid leukemia (AML), breast 
cancer, non-Hodgkin’s lymphoma, and hormone therapy 
failed advanced prostate cancer (Shenkenberg and Von 
Hoff, 1986). Leucovorin, an active metabolite of folic 
acid, is being used as an anti-cancer enhancer along with 
fluorouracil (Poon et al., 1989) or as a chemoprotectant 
along with methotrexate (Levitt et al., 1973). Such 
evidences prove that in silico docking can be used as the 
first step to screen thousands of known compounds to 
identify ideal drug candidates for repositioning.  

NAD+ plays a crucial role in diverse cellular 

processes. The targets from NAD+ metabolic pathways, 
such as rate-limiting enzyme NMPRTase, Indoleamine 
2.3-dioxygenase (IDO) and Inosine mononucleotide 
dehydrogenases (IMPDH), have been reviewed for their 
anti-cancer effects (Khan et al., 2007). Studies reveal that 
NAD+ acts as a protective factor in early carcinogenesis as 
it prevents or restores the malignant phenotype of cancer 
cells by inducing cellular repair, stress adaptive response, 
regulation of cell cycle arrest and apoptosis (Poljsak, 
2016). The coenzyme has also been observed to exert 
significant anti-cancer effects by blocking proliferation 
and inducing apoptosis in B-cell ALL (Takao et al., 2018) 
and chronic lymphocytic leukemia (CLL) (Audrito et al., 
2011). 

Hesperidin is a promising natural bioflavonoid that has 
been investigated for its anti-cancer property in various 
solid tumors including gastric, colon, breast, lung and 
liver. The compound induces apoptosis in cancer cells 
through NF-κβ, p53, PPAR-γ, PI3K/AKT and mTOR 
signaling pathways (Pandima et al., 2015). Besides, the 
flavonoid exerts cytotoxic and proapoptotic effects on ALL 
cells by blocking the PI3K/Akt pathway and inhibiting 
NF-κB activation (Shahbazi et al., 2018). 

Butirosin is a water-soluble amino cyclitol glycosidic 
antibiotic complex known to be active against many 
gram-positive and some gram-negative bacteria. Existing 
data assert that antibiotics can affect the kinase signaling 
pathways and the secretion of cytokines which are known 
to promote cancer stem cell expansion. The drug has 
been proven to reduce the viability and clonal expansion 
of breast cancer stem cells (Pestell and Rizvanov, 2015). 
Butirosin was one among the 20 small molecules identified 
to reverse prostate cancer by in silico method. CMap 
analysis revealed an enrichment score of -0.821, indicating 
that the drug can be exploited as an adjuvant to improve 
the therapeutic effect for prostate cancer (Wen et al., 2014). 
Similarly, latent pathway identification analysis (LPIA) 
and pathway–pathway interactions showed that butirosin 
and neomycin biosynthesis (hsa00524) significantly 
interact with other pathways. The identified genes serve as 
attractive targets for intervention to enhance the prognosis 
in pediatric ALL (Gao et al., 2015). 

Ovoflavin is a member of vitamin B complex, which 
is usually taken as a supplement. The vitamin is found in 
cells and tissues chiefly as flavin mononucleotide (FMN) 
and flavin adenine dinucleotide (FAD). Of late, vitamins 
are being explored for their role in the prevention and 
treatment of cancer. Vitamin B2 sensitizes breast and 
lung cancer cell lines to vitamin C in a synergistic way 
by inducing cell death through the inhibition of Akt and 
Bad phosphorylation (Chen et al., 2015). 

NDGA functions as an anti-tumorigenic and 
anti-proliferative agent in various cancers, including 
those of the breast, prostate, lung, esophageal and 
skin (Lu et al., 2010). The 5-lipoxygenase inhibitor, 
NDGA, selectively inhibits the expression of cyclin D1 
in pancreatic and cervical cancer cells. This process is 
accompanied by the activation of Jun-NH2-terminal 
kinase and p38 mitogen-activated protein kinase, inducing 
anoikis-like apoptosis. Disruption of the actin cytoskeleton 
in association with the activation of stress-activated 
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protein kinases has also been observed (Seufferlein et 
al., 2002). NDGA, along with the extract from the fungus 
Lecanicillum lecanii, inhibits the growth of lymphatic 
leukemia cells by inducing nuclear damage leading to 
reduced DNA content in the cells (Bibikova et al., 2017). 
Besides, the compound causes cell death in AML cell 
lines as well as in patient samples via inhibition of AKT 
phosphorylation, suggesting that the extrinsic and the 
mitochondrial apoptotic pathways are not essential for 
cell death (Mak et al., 2007).  

Previous work performed in our lab using synovial 
sarcoma cell lines containing SYT-SSXI fusion protein 
has revealed that the compounds identified by in 
silico methods have promising anti-proliferative 
effects. Target gene expression studies confirmed the 
down-regulation of the fusion protein, and cell cycle 
analysis showed enhanced apoptotic cell death (Natarajan 
et al., 2018). Thus, we conclude that the proposed set of 
drugs can be reinvestigated for their potential role in CML 
treatment. These compounds can be used either as part of 
a combination therapy or to reduce the adverse effects of 
chemotherapy along with the existing treatment regimens 
as they are fairly non-toxic and inexpensive. However, the 
efficacy of these drugs needs further evaluation.
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