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Introduction

Cholangiocarcinoma (CCA) is a malignant tumor 
arising from cells within the bile duct (Hammill and 
Wong, 2008). As CCA is asymptomatic at the early 
stages, detection of patients with this cancer usually 
occur at the metastatic stage, when tumor removal has 
minimal effect on survival outcome, a median ranging 
from 12 to 40 months and five-year survival rate of 14 to 
36% respectively (Guglielmi et al., 2009; Woradet et al., 
2016). To date, there is no specific biomarker for early 
detection of CCA (Bartella and Dufour, 2015; Loosen et 
al., 2018). Although this type of cancer is rare worldwide, 
it is notably prevalent in northeastern Thailand, which also 
is an endemic of liver fluke Opisthorchis viverrini (OV) 
infection, one of the suspected etiologies of CCA (Sripa 
et al., 2011). Infection with OV through consuming raw 
freshwater fish infected with the parasite cysts ultimately 
results in infection with adult forms of OV at the bile duct, 
where the presence of OV secretory carcinogenic products, 

Abstract

Background: Cholangiocarcinoma (CCA), a common cancer in northeastern Thailand, is a severe disease with poor 
prognosis and short survival time following diagnosis. DNA damage in CCA is believed to be caused by liver fluke 
infection in combination with exposure to carcinogens. p53, a tumor suppressor, is the most mutated gene in human 
cancers including liver fluke-associated CCA. Hence, expression patterns of p53 and its target genes may be useful 
for diagnosis and/or prognosis of CCA patients. Methods: Differential mRNA expression of p53 and its target genes, 
namely, FUCA1, ICAM2 MDM2, p21, PAI-1, S100A9, and WIP1 in CCA tissue samples (n = 30) relative to matched 
adjacent non-tumor tissues was determined by quantitative RT-PCR and compared to clinicopathological features. 
Level of p53 protein was determined by immunohistochemistry and correlated with the expression of its target genes. 
Results: Immunohistochemistry showed elevation of p53 protein level in 77% of the cases, while RT-PCR showed 
downregulation of p53 mRNA and its seven target genes in 23% and 47-97% of the samples. PAI-1 was down-regulated 
in almost all CCA samples, thus highlighting it as a potential diagnostic marker for CCA. However, no significant 
clinical associations were found except for down-regulation of WIP1 that was significantly correlated with non-papillary 
type tissue (p-value = 0.001) and with high p53 protein level (p-value = 0.007). Conclusion: Our results demonstrated 
statistically significant association between down-regulation of WIP1 with non-papillary type and with high p53 protein 
level, and PAI-1 was down-regulated in almost all CCA. Therefore, expression level of WIP1 and PAI-1 may be useful 
for predicting p53 functional status and as a potential diagnostic marker of CCA, respectively. 

Keywords: Cholangiocarcinoma- Clinicopathology- Plasminogen activator inhibitor-1- tumor suppressor p53- WIP1

RESEARCH ARTICLE

Evaluation of p53 and Its Target Gene Expression as Potential 
Biomarkers of Cholangiocarcinoma in Thai Patients

Janpen Puetkasichonpasutha1, Nisana Namwat2,3, Prakasit Sa-Ngiamwibool3,4, 
Attapol Titapun3,5, Tuangporn Suthiphongchai1*

mechanical damage and chronic inflammation are thought 
to induce pathological changes to host cells, such as DNA 
damage, interference to DNA repair mechanisms and/
or apoptosis, ultimately resulting in genetic alterations 
and malignant transformation of cholangiocytes (Sripa 
et al., 2012). 

Tumor suppressor p53, “guardian of the genome”, 
is a sequence-specific transcription factor (Funk et al., 
1992; Lane, 1992; Pietenpol et al., 1994) playing a key 
role in prevention of tumor development by regulating 
expression of its downstream target genes involved 
in cell cycle arrest, DNA repair, apoptosis and cell 
senescence (Vousden and Lu, 2002; Kastenhuber and 
Lowe, 2017). Loss-of-function mutations in p53 are 
found in more than 50% of human cancers (Kandoth et 
al., 2013) and is also the most prevalent mutated gene 
in OV-associated CCA (Ong et al., 2012). In addition 
to loss of native function, heterozygous mutant p53 
can also have dominant negative effects over wild-type 
protein function, thereby compromising expression of its 
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downstream target genes (Billant et al., 2016; Vieler and 
Sanyal, 2018). Among the gene targets of p53, the most 
predominant is that encoding cyclin-dependent kinase 
(CDK) inhibitor p21, a negative regulator of cell cycle 
progression (Karimian et al., 2016). Another common p53 
target is MDM2, an E3 ubiquitin-protein ligase, which 
negatively regulates p53 function through a proteasome 
degradation process (Urso et al., 2016). During DNA 
damage, p53 and MDM2 are phosphorylated, resulting 
in a decrease in p53-MDM2 interaction, thereby reducing 
p53 degradation, and together with a concomitant increase 
in p53 production result in a net increase in p53 (Cheng 
et al., 2009).

Wild-type p53-inducible phosphatase 1 (WIP1), of 
which expression is stimulated in response to γ or UV 
radiation in a p53-dependent manner (Fiscella et al., 
1997), suppresses transcriptional and apoptotic activities 
of p53 through reduction of p38 MAP kinase-mediated 
p53 phosphorylation and promotes MDM2-mediated p53 
degradation (Takekawa et al., 2000; Lu et al., 2007). In 
addition p53 also mediates metastasis through regulating 
expression of PAI (Shetty et al., 2008), an inhibitor of 
tPA and uPA, key secreted proteases in cancer metastasis 
(Binder et al., 2002). 

Other than these well-known p53 target genes, there 
exists a number of novel p53-target genes associated with 
tumorigenesis, viz. α-L-fucosidase-1 (FUCA1), encoded 
a lysosomal protein involved in cancer progression by 
suppressing cancer cell growth and inducing cell death 
(Ezawa et al., 2016); S100 calcium-binding protein A9 
(S100A9), an inflammatory marker inducing apoptosis 
through mediating p53-dependent apoptotic pathway 
(Li et al., 2009), with down-regulation of S100A9 
associated with squamous cell carcinoma of head and 
neck (Khammanivong et al., 2016), esophagus (Kong et 
al., 2004; Pawar et al., 2015) and nasopharynx (Fung et al., 
2000); and intercellular adhesion molecule-2 (ICAM2), a 
type I transmembrane protein activated by p53 to function 
as a tumor suppressor by inducing immune response 
through accumulation of immature myeloid dendritic cells 
in pancreatic carcinogenesis (Hiraoka et al., 2011), and 
by down-regulation of ICAM2 associating with cancer 
progression and metastasis (Sasaki et al., 2016).

Although direct DNA sequencing or mutation 
assays are the gold standard for detecting p53 mutation, 
it is laborious and time consuming. On the contrary, 
immunohistochemistry (IHC) is an economic and 
convenient method. Additionally, overexpression of p53 
protein detected by IHC have been proven to be useful 
for predicting p53 mutation in hepatocellular carcinoma 
(Liu et al., 2016). Besides, p53 alterations have an effect 
on its downstream targets. Hence, the expression of 
these p53 target genes might indicate the status of p53 in 
cancer and their contributions to various steps of cancer 
progression. In this study, mRNA expression levels of p53 
and the seven above-mentioned p53 target genes in CCA 
and adjacent non-tumor (NT) tissues were investigated 
and correlated with clinicopathology. Furthermore, p53 
protein was determined by IHC and correlated with p53 
target gene expression. Any significant association of 
these genes with clinicopathology data may help identify 

possible diagnostic or prognostic biomarkers of CCA 
tumorigenesis.

Materials and Methods

Human CCA and Adjacent Non-Tumor (NT) Tissues
Sixty frozen liver tissues (30 CCA and 30 NT) from 

CCA patients who had liver resection were provided 
by Cholangiocarcinoma Research Institute, Faculty of 
Medicine, Khon Kaen University, Khon Kaen, Thailand. 
Average age of the patients is 58 ± 10 years with the 
average survival time of 1.4 ± 1.2 years. Histological 
properties of the tissues were examined by a certified 
pathologist with histological grading classified as well-, 
moderate-differentiated stage (Nakanuma et al., 2000).

The study protocol was approved by Ethics Committee 
of Khon Kaen University (ethical clearance no. HE571283).

Quantitative (q) RT-PCR
RNA was extracted from liver tissue using TRIzolTM 

Reagent (Invitrogen, Carlsbad, CA, USA). In brief, liver 
tissues were homogenized in TRIzolTM Reagent and 
RNA was extracted with phenol/chloroform solution, 
precipitated with isopropanol and dissolved in RNase-free 
water. RNA concentration was determined with a Nano 
Drop spectrophotometer (Thermo Fisher Scientific, 
Waltham, MA, USA). QRT-PCR was performed 
by incubating 2 μg of RNA with 0.5 μg of random 
oligohexamer, 0.5 mM dNTP and 160 U ImProm-II™ 
reverse transcriptase (Promega, South-Central, WI, 
USA) in a 20-μl reaction containing 3 mM MgCl2 and 
1X reaction buffer (Promega) for 60 min at 42°C. Then 
qPCR amplification was performed in a 10-μl mixture 
containing 1X FastStart Universal SYBR Green Master 
Mix (Roche Diagnostics, Rotkreuz, Switzerland), 25 ng 
of cDNA, 2 pmol of each specific primer pair (Table 1) 
in a CFX Connect™ Real-Time PCR Detection System 
(Bio-Rad, Richmond, CA, USA) under the following 
thermocycling conditions: 95°C for 10 min, followed by 
40 cycles of 95°C for 15 sec and 55°C for 1 min. Adjusted 
Ct values with rounding up was used in the calculating 
expression level of target gene in CCA relative to matched 
NT tissues samples using 2-∆∆Ct formula (normalized 
with glyceraldehyde 3-phosphate dehydrogenase gene 
expression).

Immunohistochemistry
Paraffin-embedded human liver CCA and matched NT 

tissues samples were deparaffinized by autoclaving for 
10 min and then rehydrated with 10 mM sodium citrate 
buffer containing 0.05% Tween and 0.05% triton X. Tissue 
endogenous peroxidase activity was inhibited by treating 
with 0.3% (v/v) hydrogen peroxide for 30 min. Following 
incubation with 10% skim milk for 30 min, tissue sections 
were probed with primary antibody, murine primary 
anti-p53 antibodies (sc-126; Santa Cruz Biotechnology, 
Dallas, TX, USA) followed by peroxidase-conjugated 
Envision™ secondary anti-mouse antibody (DAKO, 
Glostrup, Denmark). Visualization of immunoreactive 
p53 was performed using a 3,3′-diaminobenzidine 
tetrahydrochloride (DAB) substrate kit (Vector 
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Kaplan-Meier plot demonstrated a significant correlation 
between S100A9 up-regulated gene expression and 
longer patient’s survival (P-value = 0.041) (Figure 3), 
it is still too early to make any conclusion due to the 
limited number of samples. In addition, no correlation 
between S100A9 up-regulated gene expression and other 
clinicopathological features could be discerned. Although 
more than 23% of CCA patients exhibited down-regulation 
of FUCA1, ICAM2, MDM2, p21, p53, or PAI-1 expression, 
there is no correlation between expression of these genes 
and various clinicopathological parameters.

Expression of p53 protein and its correlation with the 
mRNA expression of p53 and its downstream target genes

Wild-type p53 generally has a short half-life making 
it unable to be detected within the cell (Vijayakumaran et 
al., 2015). However, mutant p53, often found in human 
CCA, accumulates in tumor cells and is able to be detected 
by such technique as IHC. Thus, p53 protein level could 
reflect the mutational status of p53. In this study, IHC 
revealed overexpression of p53 in 23 (77%) cancer tissues 

Laboratories, Inc., CA, USA), followed by counter 
staining with Mayer’s hematoxylin. Tissue sections 
were dehydrated with an increasing concentration of 
ethanol solution and mounted with permount solution. 
Negative control slides were similarly prepared but 
without primary antibody treatment. IHC score was 
calculated by multiplying frequency of positive staining 
(0 = <10%: 1 = 10-25%, 2 = 25-50%, and 3 = 50-100%) 
with staining intensity score (0 = negative, 1 = weak, 
2 = moderate, and 3 = strong staining). Samples with 
IHC score either in nucleus or in cytoplasm higher than 
median were classified as high p53, and those with IHC 
score both in nucleus and cytoplasm lower than median 
were low p53.

Statistical Analysis
Correlation between relative expression of p53-target 

genes with clinicopathological features and among 
p53 levels in CCA tissue with gene expression and 
clinicopathological parameters were analyzed using 
Fisher’s Exact probability test. Patient survival analysis 
was evaluated using Kaplan–Meier method and compared 
employing a log-rank test. Statistical analysis was carried 
out using SPSS version 22.0 (SPSS Inc., Chicago, IL, 
USA) and result is considered statistically significant 
when P-value <0.05.

Results

Expression of p53 and p53 target genes in human CCA 
tissues and NT

QRT-PCR was performed to determine mRNA 
expression levels of p53 and its seven target genes, 
namely, FUCA1, ICAM2, MDM2, p21, PAI-1, S100A9, 
and WIP1, in human CCA tissues (n = 30) relative to 
matched NT tissues. Relative up-regulation (>2-fold 
difference) in mRNA expression levels between CCA 
tissues and NT of p53 or its target genes was found only in 
a few cases (0-3 cases (0-10%); 2.5-40.3 folds), while the 
down-regulation (< 0.5-fold difference) was in majority of 
the cases (up to 29 cases (97%); 0.00-0.40 fold) (Figure 1). 
PAI-1 gene expression was down-regulated the most (97% 
of CCA tissues) (Figure 2), while expression of FUCA1, 
ICAM2, MDM2, p21, p53, S100A9, and WIP1 genes was 
down-regulated in 14 (47%; 0.13- to 0.40-fold), 17 (57%; 
0.13- to 0.4-fold), 14 (47%; 0.01- to 0.31-fold), 15 (50%; 
0.06- to 0.40-fold), 7 (23%; 0.05- to 0.40-fold), 14 (47%; 
0.10- to 0.31-fold), and 11 (37%; 0.01- to 0.40-fold) cases, 
respectively (Figure 1 and Figure 2).

Correlation between p53 target gene expression and 
clinicopathological features and survival of CCA Patients

Analysis of the associations of mRNA expression 
levels of  p53  and its seven target genes with 
clinicopathological features revealed down-regulation 
of WIP1 gene expression is significantly correlated with 
non-papillary type (P-value = 0.001), while there is no 
correlation between WIP1 gene expression and other 
clinicopathological features (Table 2). Although S100A9 
up-regulated gene expression is significantly correlated 
with better survival (P-value = 0.005) (Table 2) and 

Figure 1. Gene Expression in Cholangiocarcinoma 
(CCA) Compared to Matched Adjacent Non-tumor 
(NT) Tissues. Quantitative RT-PCR was employed 
to determine mRNA level of in CCA relative to NT 
tissue samples (n = 30) using 2-δδCt formula (normalized 
with glyceraldehyde 3-phosphate dehydrogenase gene 
expression). Each colored dot represents the same 
sample. Ct, threshold cycle.

Figure 2. Comparison of Gene Expression in 
Cholangiocarcinoma Samples Compared to Matched 
Adjacent Non-tumor (NT) Tissues (n = 30). The bar 
graph shows number of patients with up-regulated (fold 
difference >2), down-regulated (fold difference <0.5) or 
Unchanged (fold difference in the range of 0.5-2.0) in 
mRNA expression in CCA tissues compared to NT.
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when compared with NT (Figure 4A). The IHC scores 
of p53 protein in cancer regions (6 ± 1) were mostly 
higher than those in normal (0.5 ± 0.2) (Figure 4B). As 
p53 function in regulation of its target gene expression, 
levels of its target gene expression should be able to 
imply p53 functional status. Studying the association of 
p53 protein and its downstream target mRNA expression 
demonstrated that high p53 protein level was significantly 
correlated with down-regulated WIP1 expression 
(P-value = 0.007) (Table 3), but no association of p53 level 
was discernable with any clinicopathological features.

Discussion

CCA is usually detected at an advanced stage leading 

to poor prognosis. The major risk factors of CCA include 
OV infection, nitrosamines and hepatitis C virus infection 
(Sripa et al., 2007; Li et al., 2015), a combination of 
which was suggested to induce DNA damage in bile duct 
cells (Sripa et al., 2007). In particular, loss-of-function 
mutations in p53 would result in uncontrolled cell 
proliferation, resistance to apoptosis and accumulation of 
genetic alterations (Vijayakumaran et al., 2015). Wild 
type p53 has a short half-life, thus difficult to detect by 

Primer set Direction  Sequence (5' → 3') Amplicon (bp) Reference
FUCA1 Forward AGTCACCCTGTTGCCTATGG 190 [44]

Reverse TTTGGCGCTTTTAGATTGCT
GAPDH Forward CACCAGGGCTGCTTTTAACTCTGGTA 131 [45]

Reverse CCTTGACGGTGCCATGGAATTTGC
ICAM2 Forward AGGTACACGTGAGGCCAAAG 179

Reverse CGTGTCATGGGAGATGTTTG
MDM2 Forward GCAGTGAATCTACAGGGACGC 83 [46]

Reverse ATCCTGATCCAACCAATCACC
p21 Forward GCAGACCAGCATGACAGATTT 70 [47]

Reverse GGATTAGGGCTTCCTCTTGGA
p53 Forward CCCCTCTGAGTCAGGAAACA 151

Reverse TCATCTGGACCTGGGTCTTC
PAI-1 Forward GGCCATTACTACGACATCCTG 150

Reverse GGTCATGTTGCCTTTCCAGT
S100A9 Forward TGGAGGACCTGGACACAAATG 109 [48]

Reverse TCGTCACCCTCGTGCATCTT
WIP1 Forward ATCCGCAAAGGCTTTCTCGCTT 61 [49]

Reverse TTGGCCATTCCGCCAGTTTCTT

Table 1. Primers Used in the Study

Figure 3. Kaplan-Meier Survival Plot of Association of 
Cholangiocarcinoma S100A9 Expression and Patient’s 
Survival Post-liver Resection.

Figure 4. p53 Immunohistochemical Staining in 
Normal Bile Duct of an Adjacent Non-tumor Area 
and CCA Tissues. (A) Representative of IHC staining 
(magnification, x200). Arrows are indicated normal bile 
duct. (B) The distribution of p53 IHC scores calculated 
by combining IHC scores in nucleus and in cytoplasm 
in human CCA tissues and matched NT tissues (n = 30).
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IHC, while mutant forms are usually more stable and 
can readily be detected, e.g. IHC (Vijayakumaran et al., 
2015). As p53 exerts its biological activities through 
transcriptional regulation of its target genes, mutations 
affecting p53 function could be implied from changes in 
expression levels of these target genes.

In the present study cellular p53 content determined 
by IHC was overexpressed in 77% of CCA tissue samples 
compared to match NT tissue, suggestive of carriage of 
(putative) mutant p53. Furthermore, 37-97% of mRNA 
levels of seven p53 target genes were down-regulated 
in CCA tissues compared to those in matched adjacent 
NT specimens, while only 23% of p53 mRNA was 
down-regulated. Thus, besides down-regulation of p53 
expression, the discrepancy of p53 target genes might 
result from functional defective mutant p53 overexpressed 
in CCA.

However, there was a notable lack of significant 
associations between decreased p53 mRNA expression, 
elevated (putative mutant) p53 content or down-regulated 
expression of p53 target genes with clinicopathological 
features, except in the case of WIP1, decreased expression 
of which was associated with non-papillary type. 
Although our data also showed statistically significant 
increased survival rate of CCA patients in association 
with up-regulation of S100A9, the number of up-regulated 
cases were too low to make such conclusion. Regarding 
WIP1, a target of p53 and also a p53 negative regulator, 
its over-expression was reported in many cancer types, 
and leading to colorectal cancer progression (Li et al., 
2013) and kidney cancer metastasis (Sun et al., 2015). 
In cancer cells with wild-type p53, knockdown of WIP1 
expression enhances doxorubicin-induced apoptosis via 
Bax-dependent p53 activation (Kong et al., 2009). In CCA, 

down-regulation of WIP1 is associated with non-papillary 
type, generally a poor prognosis in intrahepatic CCA 
(Jarnagin et al., 2005). However, these adverse clinical 
outcomes were not evident in our study.

The above mention associations of S100A9 and WIP1 
expressions with clinicopathological features suggest their 
potential biomarkers of CCA progression, but the number 
of cases are too limited to make any conclusion. It is of 
note that PAI-1 was down-regulated in 97% of CCA tissue 
samples, thus highlighting its loss in the etiology of CCA 
and its potential diagnostic marker of CCA.

In conclusion, we showed that p53 protein is elevated 
in most CCA tissue samples and inversely correlated 
with WIP1 mRNA expression. Down-regulation of WIP1 
associated with non-papillary type, and down-expression 
of PAI-1 was present in almost all CCA tissue samples. 
Although this study was limited by the small sample 
number, it provides some trends of potential biomarkers 
of CCA.
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