Practical Laboratory Tools for Monitoring of BCR-ABL1 Transcripts and Tyrosine Kinase (TK) Domain Mutations in Chronic Myeloid Leukemia Patients Undergoing TK Inhibitor Therapy: A Single-Center Experience in Thailand

Document Type: Research Articles

Authors

1 Human Genetic Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

2 Doctoral Program in Clinical Pathology, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

3 Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

Abstract

Objective: The genetic hallmark of CML is known as the appearance of t(9;22)(q34.1;q11.2) (BCR-ABL1) which is present in more than 95% of cases. Here, we demonstrated practical laboratory tools for monitoring of BCR-ABL1 transcripts in chronic myeloid leukemia patients undergoing TK inhibitor therapy. Methods: Real time quantitative PCR and direct sequencing were performed for monitoring of BCR-ABL1 transcripts in 245 treated CML. Results: At month 3 after first time point of monitoring, we found that 89% (218/245), 2% (5/245), and 9% (22/245) of patients are determined as optimal, warning, and failure response, respectively. The responses to TKI were slightly decreased at months 6 as following 73% optimal (180/245), 18% warning (43/245), and 9% failure response (22/245). Additionally, responses to TKI were gradually decreased at month 12 after first time point of monitoring as following 65% optimal (160/245), 13% warning (31/245), and 22% failure (54/245). We could detect 20% (49/245) of patients positive for BCR-ABL1 TKD mutations. Interestingly, one third (17 of 49) of TKD mutated cases were positive for compound/polyclonal mutation patterns. While major molecular response were observed in the majority of patients without TKD mutation, resistant to TKI were detected in patients with T315I mutation (n = 9; % mean IS = 8.1510, % median IS = 9.7000), compound/polyclonal mutations with T315I (n = 9; % mean IS = 13.0779, % median IS = 5.404), and other TKD mutations (n = 14; % mean IS = 8.1416, % median IS = 1.060), respectively. Conlusion: These practical laboratory techniques provided a more comprehensive understanding of CML progression during drug therapy and could be of benefit in earlier prognosis.

Keywords

Main Subjects