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Introduction

Cancer is the leading cause of death worldwide (Rasouli 
et al., 2020). There are several type of cancer, such as lung, 
stomach, colorectal, liver, and breast (Sheervalilou et al., 
2016; Maasomi et al., 2017; Sadeghzadeh et al., 2017). 
Among the various cancers, gastrointestinal cancers occur 
mainly in men and women living in developing countries 
(Lotfi-Attari et al., 2017, Mohammadian et al., 2016a; 
Mohammadian et al., 2016b).

Colorectal cancer (CRC) is the third most common 
cancer among men and women in the US and affects 
all racial groups (Boyle and Ferlay, 2005; Siegel et al., 
2016). The reports indicated 50,260 deaths during 2017 
(Siegel et al., 2016; Siegel et al., 2017). Similar to other 
types of cancers, CRC could be prevented and treated 
with higher probability if detection occurs at the early 
stage of tumor initiation (Levin et al., 2008). There 
are several common tests to detect this malignancy 
including colonoscopy and serum Carcinoembryonic 
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Antigen (CEA) test, but their sensitivity is not desirable 
(Zou et al., 2015; Sheervalilou et al., 2016; Maasomi 
et al., 2017; Sadeghzadeh et al., 2017). There are also 
some common methods to screen susceptible individuals 
such as endoscopic, histopathological examination of 
biopsies, and surgically removed specimens that are 
undesirable in terms of sensitivity and also are painful 
which bring complications for patients (Zheng et al., 
2013). Generating biological high-throughput data and 
optimization of computational methods obviate obstacles 
to study biological systems using systems biology 
as a multidisciplinary approach (Ideker et al., 2001). 
While omics puzzle is being completed in parallel with 
evolving data integration and computational technics 
(Machado and Herrgård, 2014), numerous studies have 
tried to find biomarkers and enhanced the chance of early 
detection to improve diagnosis and prognosis of patients 
(Levin et al., 2008; Huang et al., 2010; Vatandoost et 
al., 2016). Since in an up to bottom approach in omics 
levels, metabolome perturbation is the final change, 
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it could provide a clearer vision of cell abnormalities 
status during initiation and progression of disease due 
to alteration in genomic, post-genomic, transcriptomic, 
and proteomic profiles (O’Connell, 2012; Zhang et 
al., 2014). Besides, it has been shown that metabolic 
perturbation is one of the common characteristics of 
cancerous cells. Numerous studies have tried to develop 
metabolic models by integrating gene expression data 
in the metabolic framework of target cells and design 
predictive cancerous metabolic models which could help 
to understand differences between tumor and normal 
samples (Hagland and Søreide, 2015; Mika et al., 2017). 
Exploring such alterations in genome, transcriptome, and 
metabolome could pave the way of finding biomarkers and 
understanding metabolic alterations that may be useful for 
diagnosis at the early stage of cancer. Study of underlying 
molecular mechanisms of CRC has conducted in many 
research by systems biology approach (Madhavan et al., 
2013). Accumulating changes in CNA, point mutations, 
gene expression and flux balance alteration of metabolic 
drivers indicated to promote the cancer initiation and 
progression (Corti et al., 2019). In this study, we tried 
to unravel the landscape of metabolic, genomic and 
transcriptomic alterations and their integrated role in 
fine-tuning of regulome for initiation and progression of 
CRC by systems biology approach and using the huge 
numbers of publicly available data. Since there have 
been very few studies that simultaneously considered 
changes in different omics levels for CRC, in this study 
we applied data from different sources to obtain signatures 
of each omics levels that could be applied to understand 
the molecular mechanisms of CRC. 

Materials and Methods

Data collection
Gene expression microarray data related to colorectal 

cancer were downloaded from the Gene Expression 
Omnibus (GEO) database. Microarray data platform 
was Affymetrix Human Genome U133 Plus 2.0 Array 
(GPL570) for both datasets. To analyzing copy number 
aberration and point mutations related to CRC, next 
generation sequencing data retrieved through Cbioportal 
(Cerami et al., 2012; Gao et al., 2013). Moreover, TCGA 
data including gene expression, copy number alteration, 
point mutation, microRNA, methylation, and protein 
profiles used to portrait regulome signatures of CRC. 

Microarray raw data were preprocessed using MATLAB 
software (version R2015b). First, a preprocessing of gene 
expression raw data has been performed by transferring 
all gene expression values to log2 scale, and by doing 
normalization step (using quantilenorm command in 
MATLAB based on Median). This procedure was repeated 
for both data types (normal and cancer). 

Metabolic Model Reconstruction
We have used the corrected human metabolic model 

(Shlomi et al., 2011) which includes 2766 metabolites, 
3748 reactions, and 1905 genes to work with. Gene 
expression values corresponding to metabolic genes 
have been mapped into the human metabolic model using 

E-Flux method (Colijn et al., 2009). E-Flux approach 
uses pre-processed gene expression data, finds metabolic 
genes through them, and considers the corresponding 
expression values. Next, all values were replaced into the 
gene-reaction association matrix available in the human 
metabolic model. The new gene-reaction association 
matrix now includes some changed elements due to 
mathematical operators and some unchanged elements 
because they did not have any metabolic genes. Then, the 
gene-reaction association matrix values were rescaled to 
[0,1], multiplied by the current upper bound values of the 
model (values for the human metabolic model), and set 
as the new upper bound values of the model. The lower 
bound values were negative values of the new upper bound 
values (for reversible reactions). Therefore, this method 
constrains the upper and lower bounds of each reaction 
according to its corresponding gene expression level. We 
wrote a Mathematica script to apply E-Flux algorithm to 
the human metabolic model. So, we have reconstructed 
normal and cancer colorectal metabolic models. The 
biomass and the medium compositions (RPMI-1640) 
added to the models are shown in the supplementary file 1. 
All normal and cancer metabolic models are also available 
in the supplementary file 2 as MATLAB structure files.

Flux Balance Analysis 
Flux Balance Analysis (FBA) considers appropriate 

constraints whereas the system is in its steady-state. 
In FBA, a metabolic network is considered as a 
stoichiometric set of equations (in a matrix format 
including the stoichiometric (S) and the flux (V) matrices 
(Masoudi-Nejad and Asgari, 2015). Since a higher number 
of reactions in comparison to metabolites is a common 
feature of most metabolic networks, this property prevents 
the system of linear equations to be solved analytically. 
One approach is using linear programming in which it 
tries to solve a system of equations in association with 
minimization/maximization of an objective function as 
follows:

min/max:  cT.v
subject to: S.v = 0 a < v < b

where cT is a transposed vector of stoichiometric 
coefficients of metabolites incorporating with the 
objective function, and v is a vector of fluxes which 
will be determined. Vectors a and b are also lower and 
upper bounds of all reaction, respectively. The solution 
of the metabolic fluxes is underdetermined when a 
system is unconstrained. Applying additional constraints 
(eg. a < v < b) would decrease the solution space. In such 
a condition, one could obtain the optimal set of the flux 
distribution while an objective function is optimized. 
Therefore, FBA would turn into a linear programming 
(LP) problem. For this study, we used the COBRA 
toolbox (Constraints Based Reconstruction and Analysis) 
for evaluating the metabolic models by maximization 
of the biomass equation (Feist and Palsson, 2010). The 
glpk solver was used for linear programming problems. 
For FBA, running the optimizeCbModel function builds 
four main output structures: f, x, w, and y, where f is the 
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transcriptomic levels of CRC, signatures corresponding 
to DEGs, point mutations and CNAs were constructed by 
data retrieved from the DifferentialNet database (Basha et 
al., 2017). The DEGs network created by DEGs with signal 
to noise ratio (SNR) more than 0.5. Also, in case of point 
mutation and CNA signatures frequency of 5% defined 
as a cut-off to select the genes for network construction. 
Construction and enrichment analyses of networks were 
done using networkanalyst (Xia et al., 2015).

Regulome analyses of CRC
To this end, we retrieved 621 samples related to CRC 

from TCGA through Regulome Explorer (Uddin et al., 
2011; Kannan et al., 2015). To unfold the regulatory 
effects of different omics levels on protein level as a 
final manifest of central dogma process, we investigated 
the correlation between methylation, microRNA, point 
mutation, copy number alteration and gene expression 
profiles with protein levels in CRC. 

Results

The total number of gene expression microarray 
samples for normal and cancer cells were 56 and 67, 
respectively (Sabates-Bellver et al., 2007; Uddin et al., 
2011). Moreover, 1596 samples with point mutation 
data, 1354 samples with CNA data and 621 samples that 
applied in regulome analysis retrieved from cBioportal 
and TCGA (Table 1).

Flux balance analysis reveals metabolic subsystems in 
CRC

Impacted subsystems in colorectal cancer showed in 
Table 2. As it has been demonstrated in the supplementary 

objective value, x includes reaction fluxes, w is a vector 
of reduced costs, and y is a vector of shadow prices. 
Every reaction belongs to a known metabolic subsystem. 
For example, there are 99 subsystems presented in the 
human metabolic model according to metabolic pathway 
classification (Lehninger et al., 2005). Subsystems 
information are available through the vector called 
subSystems in the MATLAB model structure. All FBA 
results related to normal and cancer metabolic models are 
available in the supplementary file3. 

Differentially expression gene and gene enrichment 
analysis by GSEA

To find differentially expressed genes (DEGs) in CRC 
cells in comparison with the normal cells, gene expression 
microarray data sets preprocessed by FRMA package 
(McCall et al., 2010) in R and then limma (Smyth, 2005) 
was used to develop a linear model for finding DEGs. 
Obtained DEGs for each dataset combined by fisher 
method. To find pathways that over and under-expressed 
in CRC samples mentioned datasets merged by COMBAT 
method to remove study bias. In the next step, a dataset 
consisting of DEGs and their expression values and 
Reactom geneset fed into the GSEA (Subramanian et 
al., 2007). To run the software, permutation type set to 
gene-set and the number of permutations set to 1000. 
After finding enriched pathways, 20 top-ranked pathways 
selected for leading edge analysis that clusters genes 
according to the number of genes involved in common 
gene-sets. 

Network analysis of genomic and transcriptomic 
signatures of CRC

To illustrate tissue-specific networks in genomic and 

 Figure 1. Differentially Expressed Genes in CRC Cells. Heatmap of 100 top ranked gene with altered expression
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file 3 in details, in the cancer metabolic model, the 
total number of 503 reactions had an increment in their 
flux values whereas 560 reactions had lower flux rates 
compared to normal metabolic models. Note that we 
ignored values smaller than 1×10-10 in the results.

According to FBA results the highest flux rate drop 
was in retinol dehydrogenase reaction in the “Vitamin 
A Metabolism” subsystem with the value of -1875. The 
notable flux value of -1398 was calculated for bicarbonate 
transport which is part of the” Transport Extracellular” 
subsystem. The results showed that in the “Pyrimidine 
Catabolism” subsystem, Cytosine deaminase reaction 
flux decreased in colorectal cancerous cells with the 
value of -529. Also, Glutathione peroxidase reaction in 
the “Glutathione Metabolism” subsystem represented a 
reduction in the colorectal cancer model with the value 
of -439. There was also a decrement in the “Transport 
Mitochondrial” subsystem in which the value of ADP/
ATP transporter reaction was -382. 

There was a reduction in the “Fatty acid elongation” 
subsystem with the value of -147, which was calculated 
for palmitoyl-CoA desaturase reaction. In the “Glutamate 
Metabolism” subsystem, there was a reduction in glutamine 
synthetase reaction with the value of -129. Moreover, two 
other subsystems (“Oxidative Phosphorylation” and 
“Galactose Metabolism”) decreased in colorectal cancer 
model for ATP synthase and UTP-glucose-1-phosphate 

uridylyl transferase reactions with the values of -95 and 
-80, respectively.

However, FBA results demonstrated some subsystems 
in cancerous model with an increment in their reactions. 
For example, in the “Nucleotides” and “Pyruvate 
Metabolism” subsystems, there were increment with 
the value of 280 and 142, respectively which were 
due to nucleoside-diphosphate kinase and L-lactate 
dehydrogenase pathways. Also, Adenosine deaminase as 

Figure 2. Point Mutation and Copy Number Aberration Hallmarks of CRC. (a) Heatmap of point mutations and, (b) 
CNAs show the genomic signatures related to colorectal cancer

Gene expression microarray data
Source Number of samples
GSE8671 64 (32 normal, 32 cancer)
GSE23878 59 (24 normal, 35 cancer)

Copy number aberration data
Source Number of samples
Cbioportal 1354

Point mutation data
Source Number of samples
Cbioportal 1596

Data applied for regulome analyses
Source Number of samples
TCGA 621

Table 1. Summary of CRC Data Used in This Study
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a reaction in the “Purine Catabolism” subsystem showed 
increment in the colorectal cancer model with the value 
of 56. In” Glycolysis/Gluconeogenesis” subsystem, the 
highest flux value was for glucose-6-phosphate isomerase 
pathway with the value of about 53. Moreover, our results 
presented that hyaluronan synthase reaction with the value 
of 21 was increased in the “Hyaluronan Metabolism” 
subsystem.

Differentially expression genes, point mutations and CNAs 
Differentially expression gene analysis shows the CRC 

gene signature including 396 genes with signal/noise ratio 
more than 0.5 and FDR<0.05. Figure 1 shows the heatmap 
of 100 top-ranked genes that altered in CRC cells. 

Genomic data of 1,596 samples with point mutation 
data and 1,354 samples with CNA data retrieved from 
eight studies through cBioportal to find point mutation 
and CNA signatures corresponding to colorectal cancer. 
Analyzing the retrieved data indicated 7 genes with CNA 
(gain or lose area) and 37 genes with point mutations. 
Figure 2 shows the heatmaps of CNAs and point mutations 
related to CRC.  

Pathway enrichment analysis results 
Enrichment analysis results revealed pathways that 

contributed to CRC phenotype. Some of the most impacted 

pathways were related to cell cycle and involved pathways 
with cell growth that represent as up-regulated pathways 
and conversely some pathways related to the immune 
system, rhodopsin-like receptors (class A/1) that serve 
as components of hormones, light, and neurotransmitter 
receptors are examples of down-regulated pathways in 
CRC cells. Figure 3 and Table 3 represent top enriched 
pathways. All enriched pathways are also available in the 
supplementary file 4 and 5.

Tissue-specific network analysis 
Analysis of three different networks constructed for 

DEG, point mutation and CNA signatures show different 
driver nodes related to CRC. The results show that finding 
driver nodes should be investigated in different level 
of omics network to obtain high reliable centrality for 
hub nodes of CRC. The result of PPIN of DEGs shows 
although this network illustrates a part of affected driver 
nodes of CRC, some CRC hallmarks cannot be found in 
this network. For example, in PPIN constructed by DEG, 
the P53 is not indicated as a driver node, while in point 
mutation network it was the most important node in the 
network. As a result, to find the CRC reliable hub nodes, 
applying comprehensive information from all of the omics 
levels is important. Figure 4 shows affected PPI networks 
for DEG, point mutation and CNA signatures. Also, the 

Figure 3. Gene Set Enrichment Analysis (GSEA) Results Show Impacted Pathway in CRC Cells. (a), Leading edge 
analysis results of 10 top overexpressed and 10 tops under expressed pathways that represented by a clustergram. (b), 
shows each enriched gene and the number of subsets in which it appears. (c), graphical view of the enrichment score 
of top three over and under expressed pathways that represented by GSEA plot. Peak of GSEA plot shows enrichment 
score for the gene set (FDR<0.05).
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GO biological process enrichment analysis of networks 
created by genomic and transcriptomic signatures that 
mapped on tissue-specific protein-protein interaction 
network provides a perspective from all biological process 
underlying CRC (Figure 5). The most important hub nodes 
in each network presented in Table 4.

Regulome analyses results
Role of microRNA profile on protein level in 

CRC screened and indicated negative correlation of 
hsa-miR-148a-3p and hsa-miR-192-5p with FN1, a 
positive correlation of hsa-miR-223-3p and CHEK1, and 

a positive correlation of hsa-miR-155-5p and CASP7 as 
the most important microRNAs regulatory modules in 
CRC regulome, (Figure 6a and supplementary file 6). Also, 
considering correlation results between gene expression 
and protein levels show a positive correlation between 
IGFBP2, BCL2L1, INPP4B and CCNE1 gene expression 
with their corresponding protein levels. Furthermore, 
COL10A1 gene expression level has a positive correlation 
with FN1 protein level, (Figure 6b and supplementary file 
7). The regulatory effect analysis of methylation profile 
in CRC shows a positive correlation between methylation 
in 5pUTR of RBM47, DGKA, ALKBH7 and TRAK1, 

Figure 4. Constructed Networks of Genomic and Transcriptomic Signatures of CRC. (a) Network of DEGs that 
illustrate transcriptomic driver nodes in CRC. (b and c) PPIN of CRC that indicated nodes that affected by point 
mutations and CNA profile of CRC.

Altered Subsystem Altered Reaction Alteration type (Tumor Model)
Vitamin A Metabolism Retinol Dehydrogenase Decreased
Transport Extracellular Bicarbonate Transport Decreased
Pyrimidine Catabolism Cytosine Deaminase Decreased
Glutathione Metabolism Glutathione Peroxidase Decreased
Transport Mitochondrial ADP/ATP Transporter Decreased
Fatty Acid Elongation Fatty Acyl-CoA Desaturase Decreased
Glutamate Metabolism Glutamine Synthetase Decreased
Oxidative Phosphorylation ATP Synthase Decreased
Galactose Metabolism UTP-Glucose-1-Phosphate Uridylyltransferase Decreased
Nucleotides Metabolism Nucleoside-Diphosphate Kinase Increased
Pyruvate Metabolism L-Lactate Dehydrogenase Increased
Purine Metabolism Adenosine Deaminase Increased
Glycolysis/Gluconeogenesis Glucose-6-Phosphate Isomerase Increased
Hyaluronan Metabolism Hyaluronan Synthase Increased

Table 2. Altered Reactions in the Subsystems for Colorectal Cancerous Model Compared to the Normal Model
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and YAP1 protein level, negative correlation between 
LOC100130987 methylation and CTNNB1 protein level 
and positive correlation of TMEM156 methylation with 
FN1 protein level (Figure 6c and supplementary file 8). 
The results of correlation between CNAs and protein 
level in the regulome framework suggest that CNAs 
have a low level of impact on the regulatory operating 
system of tumor cells in CRC to regulate protein level. 
But the most important of these regulatory interactions 
indicated for a positive correlation between chr20q12, 
20q11, chr20q11 with BCL2L1 protein level as the most 
important correlations (figure 6d and supplementary file 9). 
Finally, considering the correlation results between point 
mutations and protein levels in CRC, TP53-missense has a 
positive correlation with TP53 level, PTEN-All mutations 
have a positive correlation with WWTR1, ACVR2A-all 
mutations have a positive correlation with CASP7, and 
ACVR2A-all mutations have a positive correlation with 
RAD51, (Figure 6e and supplementary file 10). 

Discussion

Identification of altered agents in omics levels that are 
causally implicated in malignancy has been an overriding 
goal in understanding the cancer phenomenon. The 
growing body of high-throughput data coupled with the 
development of analyzing tools provided an opportunity 
for deciphering malignancy drivers and signaling 
pathways involved in tumorigenesis (Gao et al., 2013). 
Application of flux balance analysis in cancer is rapidly 
developing into a considerable scientific field and has been 
noticed as a helpful method for cancer diagnosis (Schulze 
and Harris, 2012). Indeed, the feasibility of data mining 
and exploration of subsystem fluxes provided a reliable 
explanation of metabolism alteration during cancer 
development (Schulze and Harris, 2012; Uhlen et al., 
2017). In this study, we proposed a new metabolic model 
which is useful for cancer diagnosis and treatment. The 
results showed miscellaneous metabolic pathways in 
which flux changes were associated with the mechanism 
of cancer. According to FBA results, the highest reduction 
in flux levels for the CRC samples was in the “Extracellular 
Transport” subsystem. Such decrement has been discussed 
by Netti et al., (2000) which is caused due to cellular 

Figure 5. Clustergram of Network Enrichment Analysis. 
GO (BP) enriched terms by DEGs, point mutations and 
CNAs networks. This figure provides a snapshot from all 
biological process that affected in CRC.

Under-expressed pathways Over expressed pathways

NAME FDR (q-val) NAME FDR q-val

Reactome_immunoregulatory_interactions_between_a_
lymphoid_and_a_non_lymphoid_cell

0 Reactome_dna_replication 0

Reactome_g_alpha_s_signalling_events 0.000434 Reactome_mitotic_m_m_g1_phases 0

Reactome_cgmp_effects 0.002634 Reactome_cell_cycle_mitotic 0

Reactome_class_a1_rhodopsin_like_receptors 0.002183 Reactome_cell_cycle 0

Reactome_gpcr_downstream_signaling 0.001746 Reactome_g2_m_checkpoints 0

Reactome_nitric_oxide_stimulates_guanylate_cyclase 0.001455 Reactome_mitotic_prometaphase 0

Reactome_generation_of_second_messenger_molecules 0.00283 Reactome_activation_of_atr_in_response_to_replication_stress 0

Reactome_tcr_signaling 0.003662 Reactome_dna_strand_elongation 0

Reactome_gpcr_ligand_binding 0.003533 Reactome_s_phase 0

Reactome_glucagon_type_ligand_receptors 0.003693 Reactome_activation_of_the_pre_replicative_complex 0

Table 3. The most Impacted Pathways that Enriched by Reactom Geneset
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DEGs network Point mutation network CNA network
Label Degree Betweenness Label Degree Betweenness Label Degree Betweenness
ITGA4 402 819295.4 TP53 556 596332.47 MYC 849 492887.81
TRIP13 75 146383.85 EP300 293 252816.94 BCL2L1 66 54377.5
PTP4A3 73 138377.42 CREBBP 196 127599.6 DNMT3B 35 28506.19
CCNB1 57 127533.74 CTNNB1 194 182161.38 RBFOX1 29 25624.5
NR3C1 54 159978.78 SMARCA4 100 93783.27 GNAS 28 21732.5
PTN 49 79172.5 SMAD4 100 78005.5 ASXL1 11 5978
THRB 46 89620.76 APC 89 96969.15 FLT3 8 5973.5
EPB41L3 45 94762.82 FBXW7 82 85781.6 POLR2A 3 6998.88
PCK1 45 60748.27 MTOR 68 59152.88 EZH2 3 1577.2

Table 4. The Most Important Hub Nodes in Network Created by Transcriptomic and Genomic Signatures

Figure 6. Regulome Scheme of CRC. This figure represents correlation of protein levels with the (a) microRNAs 
expression, (b) gene expression, (c) methylations, (d) copy number aberrations and (e) somatic point mutations in 
CRC. Yellow lines show top regulome interactions.

transfer reductions in the extracellular matrix (ECM). 
There is a controlling mechanism for molecular traffics 
in ECM. Barriers in molecular transport in ECM play an 
important role in tumor cells viability, for example, to 
prevent penetration of some therapeutic agents (Netti et 
al., 2000). Moreover, initiation of pro- or anti-apoptotic 

effects in cells particularly are related to ECM. Some of 
these functional components in cells promote tumor 
progression (Mott and Werb, 2004). Also, flux value for 
the “Vitamin A Metabolism” reduced in colorectal cancer 
cells. This result was in concordance with a previous study 
indicated the decrease of retinoic acid production 
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consequently results in tumor immune evasion in 
colorectal cancer (Huynh et al., 2013). In addition to the 
FBA result that shows the reduction in the production of 
retinoic acid (which leads to tumor immune evasion), 
enrichment analysis of CRC’s DEG signature shows the 
“immune response” and “Class_A1_Rhedopsin_like_
receptors” as examples of under-expressed pathways that 
were in concordance with the FBA results. Moreover, FBA 
results showed the Nucleotides Metabolism as an activated 
subsystem that is in concordance with the GSEA pathway 
analysis results (including activation of cell growth and 
involved pathways), (Table 2, 3 and Figure 3). Major 
alterations in energy metabolism occurred in cancerous 
cells. Mitochondria is the center for these changes in which 
the Warburg e-ect provides pyruvate for fermentation and 
oxidative phosphorylation process (Vander Heiden et al., 
2009). Also, amino acid and lipid biosynthesis are the 
other biochemical pathways run through mitochondria 
(Rizzuto et al., 2012; Andalib et al., 2013). It is expected 
when cells become cancerous, changes occur in 
biochemical transportation of cancer cells (Lytovchenko 
and Kunji, 2017). It has been previously confirmed that 
because of the increment in glycolysis and lactate 
pathways in tumors, the suitable condition would be 
achieved for tumor growth (Solaini et al., 2011). In this 
study, the FBA results explicitly represented a high level 
of flux response in the “Glycolysis” subsystem as it was 
expected. Previous studies also demonstrated lipid 
metabolism alterations in colon tumors (Keshk et al., 
2014), and fatty acid elongation may serve as a therapeutic 
and detection marker in colorectal cancer (Yan et al., 
2016). FBA results showed a reduction in the “Fatty acid 
elongation” subsystem. Moreover, former studies 
underscored the role of hyaluronidases in colorectal 
cancer. Indeed, tissue distribution of hyaluronidase 
reaction and the concept of certain isoforms in each tumor 
stages indicated a new evidence of involving in the 
mechanism of colorectal cancer progression (Bouga et al., 
2010). Analyzing the genomic data including point 
mutation and CNA data also revealed signatures related 
to CRC that could not be found by analyzing single omics 
level. As an example, P53 that plays a role as a cancer 
hallmark was not detected in transcriptome analysis. 
Hence, the findings of this study show that it is necessary 
to study cancer as a systemic and complicated disease 
through all omics levels simultaneously. Figures 1, 2 and 
4 and Table 4 show different signatures in gene expression, 
point mutation and copy number alteration profile of CRC. 
Among these signatures, Adenomatous Polyposis Coli 
(APC) burdens high frequency of inactivating mutations 
(76%) in 1,596 analyzed samples (these mutations mostly 
included truncated mutations and deep deletions) and it 
serves as an early driver for CRC (Genomic map in Figure 
2). One of the most important driver pathways in CRC is 
an abnormality of the WNT signaling pathway which 
extensively studied in relation with APC mutations 
(Müller et al., 2016). Moreover, the driver role of the APC 
represented in the network which indicated as a hub node 
in different functional modules. Moreover, KRAS, TP53, 
and SMAD4 are the other hallmarks of CRC that serve 
important roles in progression of CRC. Their functional 

roles in PPINs were highlighted in the enrichment results 
of networks (Figure 5). The obtained PPINs from mapping 
transcriptomic and genomic signatures also showed 
different functional network modules (Figures 4 and 5). 
These different cancerous network modules promote 
cancer in the framework of interconnected omics 
interactions. The goal of pan-omics in cancer studies is to 
identify driver agents that may be useful for finding 
diagnostic, prognostic and other markers related to 
different outcomes of disease. Screening in the result of 
regulome section of this study showed correlation between 
PTEN mutation and WWTR1 protein level (figure 6e and 
supplementary file 10). This result also observed in a 
previous study that indicated the WWTR1 protein level 
was high in cancer cells with up-regulated PI3K signaling 
in PTEN mutant tumor cells (Huang et al., 2012). A 
literature search was done to find a correlation between 
WWTR1 mutation and CASP7 protein level that indicated 
in our results (Figure 6e and supp file 10), but we could 
not find a correlation between WWTR1mutation and 
CASP7 protein level in previous studies. As reported 
previously, ACVR2A harboring genomic instability in 
CRC cells and was correlated with RAD51 that involves 
in DNA damage repair process (Brough et al., 2012; Kim 
et al., 2013). Subsequently, the correlation between 
ACVR2A mutations and RAD51 protein level indicated 
in regulome results of this study. Analyzing the methylation 
effect on regulome network of CRC revealed the 
significant regulatory effect of RBM47 methylation over 
YAP1 protein level. Since YAP1 is a key component of 
Epithelial–Mesenchymal Transition (EMT) regulation 
(Fisher et al., 1994), the results suggest that RBM47 
contributes to EMT through regulating YAP1 level in CRC 
that may trigger metastasis process (De Craene and Berx, 
2013). The results highlighted YAP1 as a key node in 
methylation regulatory network that affected by 
methylation of DGKA, TRAK1, ALKBH7, TM4SF4, 
MCOLN3, MDM1 and a long list of genes that represented 
in supplementary file 8. Evaluating the regulatory effect 
of micro-RNA profile of CRC on protein levels indicated 
correlation of hsa-miR-148a-3p with FN1, correlation of 
hsa-miR-155-5p with CASP7 and correlation of hsa-miR-
143-3p with PEA15 (Figure 6 and supplementary File 6). 
This result was in concordance with the previous study 
that profiled microRNA expression and regulatory effect 
of top-ranked microRNA in CRC (Kara et al., 2015). 
While data mining of one specific omics data is a 
promising approach to find predictive signatures of 
different biological states, the promise will be limited if 
findings are not considered the interaction of omics levels 
in an interconnected biological network. Findings of this 
study likely would help the future studies to understand 
molecular phenomena of colorectal cancer. 

In conclusion, considering paradigm shift of cancer 
studies that focus on the personalized study of cancers 
which ignore the heterogeneity of tumors and also paucity 
of multi-omics studies of colorectal cancer, this study 
directed to provide a reliable population-based perspective 
from molecular mechanisms underlying CRC. These 
results obtained from analysis of huge and different types 
of data to uncover alterations that are difficult to explain 
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by analysis of one omics level in CRC. 
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