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Introduction

The rising global incidence of oral cancer (OC) and 
unaffected OC survival over past few decades compel 
better approaches to detect early, enhance treatment 
choices and foretell outcome (Bray et al., 2018; Torre et 
al., 2015). Gene expression profiling, one of the modern 
advances is being employed in cancer research as it offers 
assistance in understanding the disease mechanisms and 
treatment resistance (Uhlen et al., 2017). These attempts 
in prostate cancer, breast cancer and ovarian cancer 
have expedited the development and implementation 
of gene expression profiling tests such as Mamma print 
and Oncotype Dx in clinics (Ademuyiwa et al., 2011; 
Madden et al., 2013). Nevertheless, the establishment of 
OC biomarkers for use in diagnosis and prognosis has 
remained obscure.

A few gene expression profiling studies have been 
carried out in OC that enumerates potential biomarkers 
of disease identification, progression and response 
to treatment (Chen et al., 2008; Eslami et al., 2015; 
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Lohavanichbutr et al., 2013; Patel et al., 2020; Ye et 
al., 2008). Even so, it is strenuous to find the same set 
of genes as OC biomarkers in published literature; thus 
far, these biomarkers have not been applied in clinical 
settings. The foremost troubles in biomarker identification 
using high throughput technologies are their selection and 
validation as it provides a huge amount of data. Further, 
there is a considerable discrepancy in the controls for gene 
expression profiling. Generally, histologically normal 
tissue adjacent to the tumor used for the comparison 
with the postulation that histologically normalcy infers 
biological normalcy (Farah et al., 2016; Lohavanichbutr 
et al., 2013; Ye et al., 2008). Alas, it was proven erroneous 
through the concept of “field cancerization” (Mohan and 
Jagannathan, 2014). The troubles are also augmented in 
view of limited sample size and considerable discordance 
between gene expression profiling studies as to microarray 
platforms (eg. Affymetrix, Agilent, Illumina), gene chip 
model (eg. Affymetrix HU-U133A, HU-U95A), sampling 
process and experimental process (Li and Wong, 2001). 

The public microarray data archives like gene 
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expression omnibus (GEO) and array express along 
with advanced computational data analysis tools such as 
GeneSpring GX, INMEX and R/Bioconductor allow us 
to congregate and re-examine gene expression data in a 
single experiment. Ergo, various groups have effectively 
extracted significant insights using meticulous analytical 
strategies (Liu et al., 2018; Reddy et al., 2016; Zhao 
and Li, 2018). Here, to overcome the aforementioned 
limitations, we integrated single chip microarray data 
(HG-U133_Plus_2) and stratified normal samples 
into two classes: healthy normal tissues and adjacent 
normal tissues. The analysis was carried out to identify 
differentially expressed genes (DEGs) and biological 
pathways among different groups compared. We also 
validated the catalogue of DEGs with the cancer genome 
atlas (TCGA) data for alterations, disease-free survival 
(DFS) and overall survival (OS) in OC cohort to verify 
the findings of the integrative analysis. Our attempts in 
turn recorded the repertoire of OC associated biomarkers 
which can be used for the disease management.

Materials and Methods

The basic workflow was followed stepwise to execute 
the integrative analysis as illustrated in Figure 1. The 
comprehensive procedure was as follows.

Database search and data mining 
Gene expression profiling datasets for OC were 

identified through screening of the publicly available 
datasets, GEO (NCBI) [http://www.ncbi.nlm.nih.gov/
geo] and array express (EBI) [http://www.ebi.ac.uk/
arrayexpress] using the following keywords in different 
blends: ‘oral’, ‘head and neck’, ‘cancer’, ‘carcinoma’ 
‘homo sapiens’ and ‘expression profiling by array’ until 
December, 2019. The criteria to select eligible datasets to 
create the meta-dataset were as follows: i) studies carried 
out only on human samples were included, ii) studies of 
head and neck cancer in which the details of sub-sites are 
obtainable were considered and only samples of oral cavity 
sites were taken, iii) studies/samples including healthy 
and unaffected oral sites were incorporated, iv) studies/
samples with other oral conditions, such as epithelial 
dysplasia and/or premalignant lesions were eliminated 
and v) samples with no source details were kept out of the 
analysis. All along, it was noted that maximum numbers 
of eligible studies were of Affymetrix HG-U133_Plus_2 
array (GPL 570), hence, the integrative analysis was 
focused on the single microarray chip model.

The integrative analysis using GeneSpring software
The accession number, sample type, number of 

samples, references and raw data were retrieved for each 
study. The assessment was performed using GeneSpring 
software v14.9.1 (Agilent, California, USA). The data was 
baseline transformed and normalised by robust multi-array 
analysis (RMA). The data files were further categorized 
as ‘OC tissues’, ‘healthy normal tissues’ and ‘adjacent 
normal tissues’. Clustering of each group was checked 
using principal component analysis (PCA) in order to 
examine clear stratification between the classified groups. 

Gene entities were filtered with regard to signal intensity 
values. ‘t’ test was used for comparison between: i) OC 
tissues and healthy normal tissues, ii) OC tissues and 
adjacent normal tissues and iii) adjacent normal tissues 
and healthy normal tissues. The ‘p’ value computation 
was asymptotic and Benjamini Hochberg false discovery 
rate (FDR) was applied to get corrected ‘p’ value. The 
DEGs were selected based on ‘p’ value (<0.001) and fold 
change (FC>4.0). The Entrez id, gene symbol and other 
gene descriptions were exported to Microsoft excel. Gene 
ontology (GO) analysis was also carried out by integral 
tools in GeneSpring software. The overlapping DEGs 
among the groups compared were derived by drawing 
Venn diagrams using venny v2.1.0 tool (https://bioinfogp.
cnb.csic.es/tools/venny/). 

Functional annotation 
The DEGs were introduced to online bioinformatics 

tool, GeneCodis 4.0 (http://genecodis.genyo.es/) 
(Tabas-Madrid et al., 2012) to uncover molecular function 
of genes and annotate cellular localization of gene 
products. The pathway enrichment analysis was also done 
based on the kyoto encyclopedia of genes and genomes 
(KEGG) database. 

Interaction network construction
The network was constructed to envisage direct 

(physical) and/or indirect (functional) protein-protein 
interactions (PPIs) across the DEGs and analysed to 
identify the potential hub proteins for OC using the 
STRING database (STRING v11.0) (http://string-db.
org/) (Szklarczyk et al., 2017). The interaction maps 
were derived from integrated interaction data that were 
gained from the four sources, namely previous knowledge, 
conserved co-expression, genomic context and high 
throughput experimentation. 

Virtual validation using TCGA database
The virtual OC cohort (n=345) was created in TCGA 

database (http://www.cbioportal.org) (Cerami et al., 2012). 
The catalogue of DEGs was compared in the cohort for 
their mutation, copy number variation (CNV), m-RNA 
expression and protein expression data. The markers with 
high alterations were selected. The genes were further 
checked for survival data (DFS and OS) in association 
with their m-RNA expression values to evaluate their 
clinical implications.

Results

Datasets included in the meta-dataset
After electronic search, data mining identified 

Affymetrix platform, Gene chip model: U133 plus 
2.0 (GPL570) as a most commonly used technology 
for transcriptome scrutiny. Based on the inclusion and 
exclusion criteria, 29 data sets were enrolled in the study. 
Overlapped samples in datasets were considered only 
once in the meta-dataset. Thus, overall, the meta-dataset 
comprised total 961 samples: 533 OC tissues, 335 healthy 
normal tissues and 93 adjacent normal tissues. The details 
of the selected datasets are shown in Supporting File 1. The 
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No. Pathway ID KEGG Term No. of Genes Corrected ‘p’ Value
OC tissues vs. Healthy normal tissues
     1 hsa04061 Viral protein interaction with cytokine and cytokine receptor 10 6.52E-06
     2 hsa04657 IL-17 signaling pathway 10 7.17E-06
     3 hsa04512 ECM-receptor interaction 8 0.000192
     4 hsa04060 Cytokine-cytokine receptor interaction 13 0.000358
     5 hsa05146 Amoebiasis 8 0.000436
     6 hsa04062 Chemokine signaling pathway 10 0.000735
     7 hsa00350 Tyrosine metabolism 5 0.000773
     8 hsa04668 TNF signaling pathway 7 0.003381
     9 hsa05204 Chemical carcinogenesis 6 0.003796
     10 hsa05222 Small cell lung cancer 6 0.006394
     11 hsa04620 Toll-like receptor signaling pathway 6 0.008784
     12 hsa05165 Human papillomavirus infection 11 0.008829
     13 hsa04933 AGE-RAGE signaling pathway in diabetic complications 6 0.009084
     14 hsa05202 Transcriptional misregulation in cancer 8 0.009088
     15 hsa05219 Bladder cancer 4 0.009202
OC tissues vs. Adjacent normal tissues
     1 hsa04512 ECM-receptor interaction 12 2.04E-07
     2 hsa04974 Protein digestion and absorption 12 2.51E-07
     3 hsa04657 IL-17 signaling pathway 11 1.82E-06
     4 hsa04510 Focal adhesion 14 1.12E-05
     5 hsa05146 Amoebiasis 10 2.60E-05
     6 hsa04933 AGE-RAGE signaling pathway in diabetic complications 9 0.000141
     7 hsa05165 Human papillomavirus infection 16 0.000146
     8 hsa04151 PI3K-Akt signaling pathway 15 0.001095
     9 hsa04926 Relaxin signaling pathway 8 0.005343
     10 hsa04061 Viral protein interaction with cytokine and cytokine receptor 7 0.005663
     11 hsa04610 Complement and coagulation cascades 6 0.013473
     12 hsa05323 Rheumatoid arthritis 6 0.016973
     13 hsa05222 Small cell lung cancer 6 0.017279
     14 hsa00350 Tyrosine metabolism 4 0.017942
     15 hsa05219 Bladder cancer 4 0.023482
Adjacent normal tissues vs. Healthy normal tissues†

     1 hsa05132 Salmonella infection 9 0.0031677
     2 hsa05100 Bacterial invasion of epithelial cells 5 0.00546264
     3 hsa04520 Adherens junction 5 0.00598445
     4 hsa04670 Leukocyte transendothelial migration 6 0.00773211
     5 hsa04390 Hippo signaling pathway 7 0.0100045
     6 hsa04145 Phagosome 6 0.0171834
     7 hsa04015 Rap1 signaling pathway 7 0.0196547
     8 hsa00010 Glycolysis / Gluconeogenesis 4 0.0251694
     9 hsa04530 Tight junction 6 0.0261049
     10 hsa05135 Yersinia infection 5 0.0267642
     11 hsa05418 Fluid shear stress and atherosclerosis 5 0.0391383
     12 hsa05203 Viral carcinogenesis 6 0.041833
     13 hsa04510 Focal adhesion 6 0.0434251
     14 hsa04810 Regulation of actin cytoskeleton 6 0.0477088

Table 1. Top 15 KEGG Pathways for Differentially Expressed Genes

†Only 14 terms were significantly enriched for KEGG pathway. Abbreviations: KEGG, kyoto encyclopedia of genes and genomes; OC, oral cancer.
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sub-sites of OC malignant and normal tissues were buccal 
mucosa, tongue, gingiva, floor of mouth and hard palate. 

Differentially expressed genes in the meta-dataset
The data were analysed as a single experiment 

in GeneSpring software. All three groups displayed 

distinguished expression patterns in the PCA plot. This 
implies that all the samples were good to fit for further 
analysis. A total of 54,675 probes were profiled in all the 
samples. The default analysis setting (‘p’ value <0.05 
with Benjamini Hochberg FDR and FC >2.0) identified 
more than 1700 gene entities in each group compared. 

Figure 1. The Basic Work-Flow Demonstrating the Integrative Analysis Study Design. DEGs, differentially expressed 
genes; DFS, disease-free survival; FC, fold change; FDR, false discovery rate; GEO, gene expression omnibus; GO, 
gene ontology; KEGG, kyoto encyclopedia of genes and genomes; OC, oral cancer; OS, overall survival; PCA, 
principal component analysis; PPI, protein-protein interaction; QC, quality control; RMA, robust multi-array analysis; 
TCGA, the cancer genome atlas.

Figure 2. The Protein-Protein Interaction Network for Differentially Expressed Genes in Each Compared Groups: a. 
oral cancer tissues vs healthy normal tissues; b, oral cancer tissues vs adjacent normal tissues; and c, adjacent normal 
tissues vs healthy normal tissues.

Database search: GEO and Array express

Suitable microarray data sets [Affymetrix, GPL 570 (n=29)]

Raw data extraction and annotation

Data Analysis (Genespring software)
 RMA normalization
 Experimental grouping: OC tissues (n=533), healthy

normal tissues (n=335) and adjacent normal tissues
(n=93)
 QC on samples: PCA and Clustering Analysis
 Filter probesets: based on signal intensity values
 Significance analysis: ‘t’ test, asymptomatic ‘p’ value

<0.001, Benjamini Hochberg FDR
 FC >4.0
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PPI enrichment p-value: <1.0e-16
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Therefore, the criteria of at-least 4 FC and ‘p’ value 
<0.001 with Benjamini Hochberg FDR was used to further 
narrow down on DEGs which were both biologically and 
statistically highly significant. The integrated analysis of 
OC tissues against healthy normal tissues gave a list of 
197 DEGs, of which 98 were up-regulated and 99 were 

down-regulated. When expression mapping of OC tissues 
was compared with adjacent normal tissues, a total of 229 
DEGs, 134 up-regulated genes and 95 down-regulated 
genes were detected. Interestingly, in agreement with 
our deduction, we also identified significant dissimilarity 
in expression patterns between adjacent normal tissues 

Chromosome Location Alteration in m-RNA expression (N=345)
No. Gene Symbol No. of Cases (Altered/Profiled) Percentage
1 YWHAZ chr8q23.1 98/339 29%
2 RHOA chr3p21.3 90/339 27%
3 DLG1 chr3q29 81/339 24%
4 LY6E chr8q24.3 77/339 23%
5 PLEC chr8q24 69/339 20%
6 LY6K chr8q24.3 63/339 18%
7 TP63 chr3q28 63/339 18%
8 FSCN1 chr7p22 56/339 17%
9 SKIL chr3q26 58/339 17%
10 ATP6V1A chr3q13.31 54/339 16%
11 RAB6A chr11q13.3 51/339 15%
12 WDR1 chr4p16.1 51/339 15%
13 CFL1 chr11q13 48/339 14%
14 EXOC5 chr14q22.3 49/339 14%
15 EIF4A2 chr3q28 47/339 14%
16 PICALM chr11q14 45/339 13%
17 PHLDB2 chr3q13.2 39/339 12%
18 LAPTM4B chr8q22.1 41/339 12%
19 CTNNA1 chr5q31.2 40/339 12%
20 PMEPA1 chr20q13.31-q13.33 38/339 11%
21 HRASLS chr3q29 36/339 11%
22 GPBP1L1 chr1p34.1 38/339 11%
23 SERPINH1 chr11q13.5 35/339 10%
24 STIP1 chr11q13 35/339 10%
25 MAGEA3 chrXq28 33/339 10%
26 VAMP3 chr1p36.23 33/339 10%
27 ACTR2 chr2p14 33/339 10%

Table 2. List of Genes Based on the Percentage Gene Expression Alterations in the Cancer Genome Atlas Data

Figure 3. The Overlapping Differentially Expressed Genes three compared groups. a, up-regulated genes; b, 
down-regulated genes.
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and healthy normal tissues; total 104 genes were 
dysregulated in which predominantly 102 genes showed 
lower expression in adjacent normal tissues than healthy 
normal tissues. The lists of DEGs for each comparison 
are presented in Supporting File 2. 

Gene ontology and pathway enrichment for differentially 
expressed genes

To get insights into the functions of obtained DEGs, 
we performed an enrichment analysis using web-based 
software, GeneCodis 4.0. The significantly enriched GO 
terms in biological process, molecular functions and 
cellular compartments were enlisted in Supporting File 3. 
For DEGs in OC tissues against healthy normal tissues, 
the most significant KEGG pathways enriched were viral 
protein interaction with cytokine and cytokine receptor 
(hsa04061; p=6.52E-06), IL-17 signaling (hsa04657; 
p=7.17E-06) and ECM-receptor interaction (hsa04512; 
p=0.000192). The analysis with regard to DEGs in 
OC tissues against adjacent normal tissues, indicated 
that in KEGG pathways, ECM-receptor interaction 
(hsa04512; p=2.04E-07), protein digestion and absorption 
(hsa04974; p= 2.51E-07) and IL-17 signaling (hsa04657; 
p=1.82E-06) showed significant enrichment. It was 
found that for DEGs in adjacent normal tissues against 
healthy normal tissues, the significantly augmented 

terms for KEGG pathways were salmonella infection 
(hsa05132; p=0.0031677), bacterial invasion of epithelial 
cells (hsa05100; p=0.00546264) and adherens junction 
(hsa04520; p=0.00598445) (Table 1).

Interaction network construction
The PPI network was constructed using the list 

of DEGs for each compared groups in the STRING 
database which is illustrated in Figure 2. The database 
analysis regarding OC tissues and healthy normal tissues 
recognised 185 nodes and 546 edges. The significant hub 
proteins contained FN1 (node=39), MMP9 (node=37), 
CXCL8 (node=34) and CXCL10 (node=31). The PPI 
network of dysregulated genes in OC tissues than adjacent 
normal tissues showed 192 nodes, and 740 edges. FN1 
(node=59), MMP9 (node=45), COL1A1 (node=35) and 
COL1A2 (node=34) were significant hub proteins in this 
network. Total 95 nodes and 242 edges were observed in 
the established network for adjacent normal tissues and 
healthy normal tissues with YWHAZ (node=21), CDH1 
(node=17), CFL1 (node=16) and ENO1 (node=16) as 
significant hub proteins.

Meta-gene signatures among different groups compared
The overlapping DEGs of three compared groups 

were identified by drawing Venn diagrams and shown 

Figure 4. Survival Analysis of Selected Makers in the Cancer Genome Atlas Database. (a), overall survival for EIF4A2 
(p=0.0364); (b), disease free survival for EIF4A2 (p=0.0107); (c), overall survival for PMEPA1 (p=0.0337); (d), 
disease free survival for CTNNA1 (p=0.0232).

A) B)

C) D)
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in Figure 3. The comparison revealed 94 genes among 
which 50 genes were up-regulated and 44 genes were 
down-regulated in OC tissues as compared to both normal 
tissues (healthy normal and adjacent normal). Total 47 and 
80 genes were found to be significantly elevated in OC 
tissues only against healthy normal tissues and adjacent 
normal tissues, respectively. Similarly, 39 and 44 genes 
displayed significant low expressions in OC tissues only 
against healthy normal tissues and adjacent normal tissues, 
respectively. The expressions of 2 and 85 genes were 
significantly higher and lower in adjacent normal tissues 
than healthy normal tissues, respectively. As 13 genes 
were expressed a little in OC tissues and adjacent normal 
tissues in comparison of healthy tissues, but displayed no 
significant expression difference between OC tissues and 
adjacent normal tissues. Merely, 1 down-regulated gene 
was noted as a common gene entity in all three compared 
groups (Supporting File 4). 

Cross-examination with the cancer genome atlas data
The DEGs in the meta-dataset were interrogated 

in TCGA database to find mutations, CNVs, m-RNA 
alterations and protein alterations in OC cohort (N=345). 
A total of 85 genes were altered in at least 10% of the 
patients, while 8-gene signatures, LY6K, LY6E, TP63, 
PLEC, SKIL, YWHAZ, DLG1 and RHOA were altered in 
more than 25% of samples for mutations, CNVs, m-RNA 
expressions and protein expressions (Supporting File 5). 
The top genes based on the m-RNA alteration percentages 
in TCGA are enlisted in Table 2. Five genes: YWHAZ, 
RHOA, DLG1, LY6E and PLEC showed gene expression 
alterations in at-least 20% of OC samples.  

Among these genes, at m-RNA expression levels, 
only EIF4A2 showed significant association with OS and 
DFS in TCGA database (Figure 4 a-b). The 47 cases with 
higher EIF4A2 expression demonstrated poor survival as 
compared to the 295 cases without alterations (35.45 vs 
53.91 months; p=0.0364). Similarly, the 32 cases with up-
regulation of EIF4A2 showed worse treatment outcomes 
as compared to the 219 cases without alterations (16.98 vs 
107.82 months; p=0.0107). In addition, altered PMEPA1 
expression was significantly associated with longer OS 
(100.49 vs 39.49; p=0.0337), whereas altered CTNNA1 
expression was significantly associated with shorter DFS 
(17.05 vs 71.22; p=0.0232) (Figure 4 c-d).

Discussion

The use of high throughput global transcriptome 
profiling for molecular characterization of cancers appears 
to be a credible approach to discover candidate cancer 
biomarkers. Nonetheless, the clinical utilization of data 
is extremely challenging by reason of data analysis, 
discordance among studies and biomarker validation. 
The discordance may be either deliberate to biological 
heterogeneity or technical artefacts. These facets lay 
emphasis on integrative analysis, a systemic method 
that analyse individual experiments as single to increase 
the power, develop a more correct estimate of effect 
magnitude and resolve ‘the uncertainty. Hence, the prime 
objective of the present study was to recognise clinically 

relevant biomarkers for OC employing this statistical 
procedure.

Adopting a similar method, reports on microarray 
datasets have led the discovery of novel biomarkers in 
thyroid cancer, gastric cancer and head and neck cancer 
(Liu et al., 2018; Reddy et al., 2016; Zhao and Li, 2018). 
This is also translated in clinics to predict recurrence and 
treatment outcome in breast cancer (Ademuyiwa et al., 
2011; Madden et al., 2013). Earlier investigations also 
have analysed public repositories on gene expression 
profiling for OC. Two such studies by Osathanon et 
al., (2016) and Sun et al., (2016) identified important 
molecular contributors in OC development. Another 
study by Reis et al., (2011) identified 4-gene signature 
in histologically normal surgical margins to predict 
recurrence through testing 5 GEO datasets along with 
their own dataset. However, none of these studies included 
microarray experiments which were aimed to characterize 
normal oral tissues. Additionally, in the recent analysis, 
Makarov and Gorlin, (2019) have incorporated only 
healthy normal buccal mucosa samples of single dataset 
(GSE17913) to obtain a gene set for OC diagnosis. Our 
study integrated suitable samples from such experiments, 
restricted the analysis on a single platform and categorised 
controls as per their sources. These not only enhanced the 
study power, but also avoided cancer/healthy mosaicity 
and checked the degree of difference in their expression 
profiles. Further, validation using TCGA data imparted 
higher assurance rate to selected biomarkers in terms of 
their clinical use.

Our study noted substantial differences between 
adjacent normal tissues and healthy normal tissues in 
the expression patterns, thereby defining molecular 
divergence among them. This is in accord with a 
comprehensive analysis of genotype-tissue expression 
project and TCGA transcriptome data (Aran et al., 2017). 
The authors indicated that histologically normal tissue 
adjacent to the tumor presents a unique intermediate 
state between healthy and tumor. Moreover, other studies 
have observed that altered biomarkers in adjacent normal 
tissues can predict cancer recurrence and disease prognosis 
(Kuan et al., 2015; Reis et al., 2011). Altogether, these 
are suggestive of penalties due to presence of molecular 
alterations in adjacent normal tissues which are also found 
in primary tumors. Such molecular changes consequently, 
may designate premalignant or malignant clones which 
were left behind even after surgical removal and may be 
involved in tumor progression and treatment relapse (Reis 
et al., 2011). Thus, to better understand this phenomenon, 
DEGs were subjected to GO and pathway analysis that 
revealed focal adhesion (hsg04510) as a common cancer 
related pathway in all three groups compared. This 
particular observation further strengthens our premise and 
confirmed that comparison among OC tissues, healthy 
normal tissues and adjacent normal tissues is a valuable 
approach in spotting DEGs and pathways associated with 
OC initiation and progression.

Herein, a 5-gene signature (YWHAZ, RHOA, DLG1, 
LY6E and PLEC) was elected for OC using an integrative 
analysis of 29 microarray datasets and validation using a 
RNA sequencing TCGA dataset. The signature is based on 
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the genes that were dysregulated in any of the comparisons 
in meta-cohort and showed high m-RNA alterations in 
TCGA cohort. Of great interest, these genes are found to 
be located on different regions of chromosome 8 (3/5) and 
chromosome 3 (2/5). Besides, the majority of DEGs which 
showed high m-RNA alterations in TCGA cohort showed 
the location on chromosome 3, 8 and 11 regions (Table 2). 
Surprisingly, alterations in the same chromosomes have 
been recurrently identified in OC (Ambatipudi et al., 2011; 
Garnis et al., 2004; Vincent-Chong et al., 2017). Genomic 
profiling studies have reported frequent amplifications/
gains in multiple chromosomal regions involving 3q, 8q 
and 11q in OC cell lines and tissue samples (Ambatipudi 
et al., 2011; Garnis et al., 2004; Martin et al., 2008; 
Vincent-Chong et al., 2017). Vincent-Chong et al., 
(2017) have also demonstrated significant relations of 
8q and 11q amplification with histological parameters, 
such as tumor size, pathological staging and lymph node 
metastasis. The data of Garnis et al., (2004) indicated the 
potential role of altered genes on 8q in oral premalignant 
lesions progression towards OC. Further, Martin et al., 
(2008) have suggested that 11q13 amplification may 
offer prognostic value in the OC management. Along 
with other documented studies, our results imply that 
genes located on these regions might have key tasks in 
oral carcinogenesis.

Among 5 genes, YWHAZ is the most frequently 
altered in OC patients of TCGA dataset. This 14-3-3 family 
protein, when up-regulated, can activate many signalling 
pathways influencing cell cycle, cell growth, migration/
invasion and apoptosis and therefore acts as an oncogene 
in several cancer types (Gan et al., 2020). A study by Han et 
al., (2015) has further found over-expression of YWHAZ 
and verified its involvement in tumor inflammation and 
immune response through Stat3 signaling in OC. Likewise, 
RHOA, the second most frequently altered gene in OC 
patients of TCGA dataset encodes small GTPase protein 
that participates in the regulation of the intracellular signal 
transduction (Karlsson et al., 2009). It has been proven 
that RHOA up-regulation is tightly connected with cancer 
progression, treatments and prognosis (Song et al., 2017). 
Yan et al., (2014) have shown that RHOA silencing hinders 
cell proliferation via cell cycle regulation and migration/
invasion via Wnt/β catenin pathway in tongue cancer. 
Further, as per Huaitong et al., (2017) and Zainal et al., 
(2018), RHOA has pivotal roles in OC cell proliferation, 
motility and angiogenesis. In our evaluation, DLG1 and 
LY6E displayed almost similar alterations frequency in 
the validation set. DLG1 belongs to membrane associated 
guanylate kinases family with functions in cell adhesion, 
tight junction and cell polarity (Marziali et al., 2019), 
whereas LY6E is a member of the lymphostromal cell 
membrane Ly6 superfamily with functions in cell adhesion 
and T cell development (Lv et al., 2018). Numerous studies 
have documented that their altered expression promotes 
growth, progression, metastasis and drug resistance in 
different cancers (AlHossiny et al., 2016; Lv et al., 2018; 
Zhu et al., 2017). Yet, their biological purpose and clinical 
importance in human OC are not largely known. Lastly, 
PLEC, a cytoskeleton linker protein exhibited alterations 
in 20% OC samples of TCGA cohort.  An in-vitro study by 

Chaudhari et al., (2017) has revealed that PLEC regulates 
cell motility, invasion and tumorigenicity in OC cells. 
Katada et al., (2012) and Rikardsen et al., (2015) have 
as well reported association of high PLEC in OC tumors 
with worse treatment outcome. So, detection of aforesaid 
genes in cross-validation analysis demands future in-depth 
studies to use them as OC biomarkers and/or therapeutic 
targets.

With more clinical relevance, the study outcome 
clearly stated prognostic utility of EIF4A2, CTNNA1 and 
PMEPA1 in OC. These genes were frequently altered in 
OC samples of TCGA cohort and exhibited significant 
association with DFS and/or OS. EIF4A2, a eukaryotic 
translational initiation factor takes part in protein synthesis 
that might be related to an altered translational landscape 
of cancer cells (Raza et al., 2015). TCGA data for other 
cancers and experimental data of Chen et al., (2019) have 
established high EIF4A2 as a poor prognostic indicator 
in a variety of cancers. Further, they also suggested that 
high EIF4A2 promotes metastasis and drug resistance. 
CTNNA1 encodes catenin alpha 1 protein, which is an 
important regulator of intracellular adhesion (Sakaki et 
al., 1999). It is experimentally confirmed that altered 
expression of CTNNA1 is correlated with dysfunction 
in E-cadherin mediated cell adhesion in cancer cells 
and also grants metastatic abilities (Tanaka et al., 2003). 
Accordingly, Chow et al., (2001) and Tanaka et al., (2003) 
have found low CTNNA1 expression in OC patients who 
showed LN metastasis and recurrent tumors. PMEPA1 is 
a transmembrane protein and controls negative feedback 
loops in androgen receptor and TGFβ signalling (Itoh 
and Itoh, 2018). The over-expression of this gene was 
demonstrated in various cancers excluding prostate 
cancer. Studies have also reported that altered PMEPA1 
expression accelerates cancer cell growth and metastasis 
and therefore influences disease prognosis (Itoh and Itoh, 
2018; Xu et al., 2017). At last, further large scale studies 
in diverse cohorts are necessary to illuminate the clinical 
applicability of these prognostic markers in OC. 

In conclusions, the study combining GEO, array 
express, the integrative analysis and TCGA registered a 
catalogue of eminent OC biomarkers with high reliability 
rate in respect to their biological and clinical significance. 
The elected 5-gene signature, YWHAZ, RHOA, DLG1, 
LY6E and PLEC demonstrated high m-RNA alterations in 
OC. The survival data established that EIF4A2, CTNNA1 
and PMEPA1 expressions were closely associated with 
poor DFS and/or OS. However, patient based validation 
was not performed in the study. Indeed, to draw more 
critical conclusions about their diagnostic, prognostic 
and therapeutic utility, large retrospective and prospective 
clinical studies are needed.
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