
Asian Pacific Journal of Cancer Prevention, Vol 22 1045

DOI:10.31557/APJCP.2021.22.4.1045
Cure Rate Analysis for Leukemia Patients

Asian Pac J Cancer Prev, 22 (4), 1045-1053 

Introduction

Acute lymphocytic leukemia (ALL) is a form of 
blood and bone cancer where lymphoid progenitor cells 
proliferate in the bone marrow, blood, and other sites. 
While ALL represents 80% of children leukemia, it is 
uncommon in grown-ups (20% of cases). In the United 
States, the incidence of ALL is estimated at 1.64 per 
100,000 persons (National Cancer Institute, 2020). 
According to the American Cancer Society database 
(2019), an estimated 5930 new cases were diagnosed, 
with 1,500 deaths due to ALL in 2019. The formulation 
of treatment for grown-ups ALL has been adjusted from 
pediatric conventions. Shockingly, while cure tends to be 
90% for standard-hazard pediatric ALL, the long-term 
survival rate is humbler in grown-ups (Terwilliger and 
Abdul-Hay, 2017). 

The main treatment of ALL is chemotherapy, which 
comprises of induction, intensification, and long-term 
maintenance, with the central nervous system (CNS) 
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prophylaxis provided at different times during the therapy. 
Induction therapy aims to accomplish total remission and 
to re-establish ordinary hematopoiesis. Following the 
induction treatment, patients underwent three cycles of 
consolidation treatment of methotrexate with leucovorin 
rescue and L-asparaginase. Registered individuals as 
high-risk disease and a corresponded donor, then received 
allogeneic stem cell transplantation (allo-SCT). The 
rest were randomly assigned to standard intensification/
maintenance or autologous bone marrow transplants.

In survival analysis, analysts generally utilize 
product-limit estimates or log-rank test (Bradburn et al., 
2003a), semi-parametrical models (for instance, Cox 
proportional hazards model), or regular parametrical 
models considering several well-known distributions 
in the existence of covariates (Cox, 1972). The Weibull 
distribution is widely used in cancer research (Bradburn 
et al., 2003b). Since its risk function is flexible and its 
parameters are easy to estimate. However, data sets 
of medical studies often necessitate more advanced 

Editorial Process: Submission:07/21/2020   Acceptance:04/07/2021

1Department of Mathematics, College of Science, Sudan University of Science and Technology, Khartoum, Sudan. 2Department of 
Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia. 3Institute of Mathematical Research, 
Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia. *For Correspondence: elamin_omer@yahoo.com

Mohamed Elamin Omer1,2*, Mohd Abu Bakar2, Mohd Adam2,3, Mohd Mustafa2



Mohamed Elamin Omer et al

Asian Pacific Journal of Cancer Prevention, Vol 221046

parametric models. As a consequence, to resolve this 
problem, several authors in the literature have proposed 
new classes of parametric distributions based on Weibull 
distribution such as the EW (Mudholkar and Srivastava, 
1993), the GMW (Carrasco et al., 2008), the log-beta 
Weibull (Ortega et al., 2013), and the generalized alpha 
power inverse Weibull (Basheer, 2019) distributions. 
Another common scenario in survival data analysis, 
particularly in cancer research, is when a fraction of a 
population is not exposed to the event of interest. For this 
situation, patients were divided into two groups: those who 
were exposed to the event under study, and those who were 
not exposed to it and, therefore, were not at risk. These 
patients are viewed as cured or immunized. 

The existence of cured subjects in a sample data is 
commonly proposed by a Kaplan-Meier curve, which 
displays a tall and a steady level with dense censoring 
at the right extreme  (Corbière et al., 2009). To model 
the proportion of cured subjects, many authors have 
proposed several statistical methods. For further reading, 
we refer interested readers, for instance, to (Boag, 1949; 
Berkson and Gage, 1952; Goldman, 1984; Haybittle, 1965; 
Farewell, 1982; Maller and Zhou, 1992; Abu Bakar et al., 
2008; Lu, 2010; López-Cheda et al., 2017). Moreover, 
the maximum likelihood estimation technique has been 
suggested by some authors such as (Farewell, 1982; 
Yamaguchi, 1992; Ghitany and Maller, 1992; Peng et al., 
1998; Sy and Taylor, 2000) amongst others. 

Materials and Methods

Leukemia data
In this paper, we considered a leukemia dataset, 

presented by Kersey (1987) and available in smcure 
package in R software (Cai et al., 2012). This dataset 
consists of 91 patients with high-risk ALL and is divided 
into two subsets; the first subset (Group 1) contains 
46 patients who exposed to allogeneic bone marrow 
transplants and the second subset (Group 2) includes 
45 patients who received autologous bone marrow 
transplants. The event of interest is time to death. We 
found that there is 24.17 % of censored observations, in 
other words, 28.26 % if we assume the patients received 
allogeneic bone marrow transplant and 20 % if we consider 
the patients received autologous bone marrow transplant. 

Mixture cure model
In the context of survival analysis, a mixture cure 

model assumes that the survival function for the entire 
population can be expressed as a mixture of the cured and 
the uncured patients and is given by

                                                                                    (1)

where ρ is a proportion of “cured patients” or 
“long-term survivors” and Suc(t) represents the survival 
function for susceptible patients (Boag, 1949). The density 
function for the random time T is given by:

                                                                        , 

where fuc(t) is the probability density function for the 
uncured subjects. 

Assume for each subject belongs to a random sample 
of size m, we observe the pair         ,                 , then the 
jth subject contribution for the likelihood function can be 
given by

                                                                                ,

where dj is a censoring indicator variable which is 
defined as

The generalized modified Weibull distribution (GMW)
In the present study, we consider GMW distribution for 

uncured patients. The GMW distribution was proposed by 
Carrasco (2008), which is a four - parameter distribution 
with probability density function fuc(t) and survival 
function Suc(t) given respectively by:

 

                                                                                      (2)

and

                                                                                    (3)

where                                              . This distribution 
has a capability to model monotonic and non-monotonic 
failure rates, and it is denoted by                                        . 
The ε parameter is the scaling parameter, whereas ψ 
and η are shape parameters. The parameter λ is a sort of 
quickening operator in the lack of time. When the time 
increments, λ is working as an operator of weakness in 
the individual’s survival time (Carrasco et al., 2008). The 
respective risk function is as follows:

                                                                                  (4)

The GMW distribution (Carrasco et al., 2008) 
represents a generalization of some special cases which 
are given as follows:

• Weibull distribution (W): in the case where λ=0 and  
ψ=1, the equation (2) becomes 

which is the probability density function of a Weibull 
distribution with two parameters, and, furthermore, if  
η=1 and η=2, the cases correspond to exponential (E) and 
Rayleigh (R) distributions, respectively.

• Extreme value distribution (EV): for ψ=1 and η=0, 
GMW reduces to 

which is type I extreme value distribution (Kotz and 
Nadarajah, 2000). Nevertheless, when assuming survival 
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Moreover, let                           be a vector of unknown 
values, we can include the kind of transplant as a covariate 
in the shape control parameter ψ by substituting 

                              in the Equation (5). In this case, 
the parameter φ1 is associated with the transplant effect 
on the shape of the survival curve. 

Model choice
Comparison between mixture cure models presuming 

various distributions, was evaluated using the Akaike 
information criterion (AIC) introduced by Akaike (1974) 
in the early 1970s. The AIC is defined by, AIC=-2l+2q 
where -2l being the negative-two-log maximum likelihood 
and q is the number of free parameters in the model. A 
lower AIC value suggests preferable model fit.

Results

The product-limit estimates of survival function 
considering the leukemia data are demonstrated in Figure 
1a. There is a plateau in the right tail of the curve with a 
height closer to 0.228. Figure 1b presents the estimated 
survival curves for allogeneic and autologous groups, 
where steady plateaus are noticed after around 734 days 
and about 1,256 days of follow-up for the autologous and 
allogeneic groups, respectively.

In Table 1, we have maximum likelihood estimates for 
the parameters of the mixture cure model assuming the 
GMW distribution and its particular cases and excluding 
covariates, 95% confidence intervals for the estimated 
parameter, and AIC values. This table shows that the 
models considered the EW and the GMW distributions for 
susceptible patients are provide the smallest AIC values 
(953.3 and 955.94, respectively). To obtain a more visible 
illustration for the model fitting, considering different 
probability distributions for the leukemia data, Figure 2 
displays product-limit estimators for survival function 
versus the corresponding anticipated values obtained by 
the mixture cure models for every proposed distribution 
(results from Table 1).

The survival functions and the respective risk functions 
provided by the mixture cure model fit based on GMW 
distribution and its sub-distributions (results in Table 1) 
are shown in Figure 3 (panels (a) and (b)) and (panels 
(c) and (d)), respectively. Figure 3, panel (b) shows that 
the survival curves obtained by the models based on 
the EW and GMW distributions are the nearest to the 
Kaplan-Meier estimates’ curves. 

Table 2 presents the results of the models based on 
GMW distribution and its sub-distributions, excluding 
the cure rate ρ. This table also illustrates that the smallest 
AIC values are obtained by EW and GMW distributions.

The results in Table 3, obtained by considering the 
mixture cure model based on the GMW distribution and 
the covariate is included both in ρ and ψ. The values of 
ρ0 and ρ1 included in Table 3, were calculated from the 
formulas;

data some care is needed since its support dispersion over 
the entire real line (Lai et al., 2003). From the equation (3), 
we can derive the survival function for this distribution 
which is given by                                    . Consequently, 
we have                           when t=0 , and, in other words,               

            as it is anticipated considering survival 
outcomes. This distribution is also included in the present 
study regardless of these issues.

• Exponentiated Weibull distribution (EW): if we let 
λ=0 in the equation (2), we obtain the density 

which is the probability density function of EW 
distribution proposed by Mudholkar (1993). If η=1, 
in addition to λ=0, the particular case coincides with 
the exponentiated exponential (EE) distribution. Gupta 
(2001) debated some statistical properties of the EE 
distribution. If η=2 besides λ=0 , the case coincides with 
the generalized Rayleigh (GR) distribution (Kundu and 
Raqab, 2005).

• Modified Weibull distribution (MW): if we take ψ=1, 
the GMW distribution becomes 

which is the density of a MW distribution with 
three-parameter as suggested by Lai (2003). Sarhan (2009) 
presented the estimation of the parameters and properties 
of MW distribution using the maximum-likelihood 
estimation approach.

The log - likelihood function
Let                                       , then the log-likelihood 

function for Ω regarding the mixture model in Equation (1) 
takes the form: 

Covariates Influence
To link the cure fraction ρ with a vector of covariates  

xj considering the mixture cure model (1), we substitute 
                for ρ in the Equation (5), where β represents 

a vector of unknown coefficients. 
In order to study the effect of the transplant type as a 

covariate, we assume the following model:

where xj is a binary variable associated with the 
transplant (1 for the autologous transplant; 0 for the 
allogeneic transplant). The parameter β1 is linked to the 
influence of the transplant on the cure fraction. If the zero 
belongs to the 95% confidence intervals for β1, we can 
deduce that there is no proof the transplant has influence. 
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Model Parameter Estimate 95% Confidence interval AIC*
GMW ϵ 0.32873 (0.28630, 0.37116) 955.94

ѱ 9.84054 (8.74790, 10.93318) 
η 0.43651 (0.41644, 0.45658)
λ 6.34E-10 (-5.644e-05, 5.644e-05)
ρ 0.23391 (0.22445, 0.24336)

W ϵ 0.00389 (0.00345, 0.00432) 963.68
η 1.05514 (1.03570, 1.07457)
ρ 0.23838 (0.22911, 0.24765)

E ϵ 0.00528 (0.00515, 0.00543) 962.03
ρ 0.23746 (0.22818, 0.24674)

R ϵ 0.00001296 (1.261e-05, 1.331e-05) 1041
ρ 0.24148 (0.23225, 0.25070)

EV ϵ 0.39382 (0.38045, 0.40717) 1098.58
λ 0.00294 (0.00289, 0.00298)
ρ 0.23582 (0.22654, 0.24511)

EW ϵ 0.79738 (0.75529, 0.84406) 953.31
ѱ 26.16607 (24.52016, 28.02442)
η 0.31734 (0.30823, 0.32571)
ρ 0.22932 (0.21974, 0.23871)

EE ϵ 0.00643 (0.00622, 0.00664) 961.45
ѱ 1.33095 (1.28320, 1.37871)
ρ 0.23932 (0.23007, 0.24858)

GR ϵ 0.000005751 (5.427e-06, 6.076e-06) 981.53
ѱ 0.37329 (0.36226, 0.38433)
ρ 0.23853 (0.22927, 0.24780)

MW ϵ 0.00402 (0.00359, 0.00446) 965.78
η 1.04395 (1.02112, 1.06678)
λ 7.19E-11 (-8.379e-05, 8.379e-05)
ρ 0.24639 (0.23689, 0.25589)

Table 1. Maximum Likelihood Estimates, Considering the Mixture Cure Model based on the GMW Distribution and 
Its Special Cases, and Excluding Covariates. 

*Akaike information criterion

Figure 1. (a) Product-Limit Estimates of the Overall Survival Function for the Leukemia Patients’ Data. (b) Kaplan-Meier 
estimates of survival functions for each type of transplant. 
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and they represent the cure fractions assuming the 
patients exposed to allogeneic transplants and autologous 
transplants, respectively. This table shows that the 
estimated values of cure rates for the allogeneic and 

autologous patients groups are 0.27415 and 0.19175, 
respectively. 

The death risk functions considering the GMW 
mixture cure model with a covariate associated with the 

Model Parameter Estimate 95% Confidence interval AIC*
GMW ϵ 1.28517 (1.24678, 1.32357) 975.99

ѱ 26.6112 (25.64237, 27.58015)
η 0.18987 (0.18431, 0.19544)
λ 6.96E-12 (-1.6922e-05, 1.6922e-05)

W ϵ 0.01837 (0.01682, 0.01993) 997.5
η 0.63401 (0.62130, 0.64672)

E ϵ 0.00127 (0.00124, 0.00131) 1015.88
R ϵ 1.53E-06 (1.4721e-06, 1.5921e-06) 1237.23
EV ϵ 0.31512 (0.30447, 0.32578) 1190.94

λ 0.00125 (0.00123, 0.00128)
EW ϵ 2.75704 (2.72275, 2.79133) 969.35
  ѱ 178.18387 (177.2982, 179.0695)

η 0.12794 (0.12554, 0.13035)
EE ϵ 0.00094 (0.00090, 0.00099) 1007.14

ѱ 0.56532 (0.54870, 0.58195)
GR ϵ 5.18E-07 (4.1004e-07, 6.2647e-07) 1025.91

ѱ 0.28599 (0.27616, 0.29551)
MW ϵ 0.00749 (0.00722, 0.00778) 1013.84

η 0.70024 (0.68874, 0.71176)
λ 5.09E-10 (-5.1854e-05, 5.1855e-05)

Table 2. Maximum Likelihood Estimates Excluding the Cure Rate ρ and not Including Covariates

*Akaike information criterion

Figure 2. Product-Limit Estimates of the Survival Function versus the Anticipated Values Calculated from the Mixture 
Models for each Probability Distribution (Table 1, results). Perfect consent between product-limit estimates and 
anticipated values is shown by the diagonal lines. 
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Figure 3. Fitted Survival Curves Obtained from the Mixture Model Based on the GMW Distribution and Its 
Sub-Distributions for the Leukemia Data (Panels (a) and (b)). Respective hazard functions are shown in panels (c) 
and (d). For comparisons, curves considering the GMW distribution are displayed in all plots.

kind of transplant is incorporated both in the cure fraction 
ρ and the parameter of shape ψ (results from Table 3), are 
shown in Figure 4. The graph in this figure displays that 
the hazard functions are overlapping at the time of around 
382 days after the transplants.

Discussion

The present study aims to select a suitable distribution 
for survival times of susceptible leukemia patients. To 
achieve this goal, we proposed a mixture cure model 
based on a GMW and its sub-distributions. This model 
expands many distributions broadly utilized in the field of 
survival data analysis. The GMW distribution is adaptable 
to accommodate various forms of hazard rate functions, 
such as bathtub-shaped failure rates data. 

Parameter Estimate 95% Confidence interval AIC*
ϵ 0.004364 (0.00320, 0.00553) 970.9
ϕ -3.00E-05 (- 0.07801, 0.07794)
ϕ1 -3.95E-05 (- 0.05267, 0.05259)
η 1.03346 (0.99103, 1.07589)
λ 3.35E-09 (- 9.121e-05, 9.122e-05)
β -0.97365 (-1.04205, - 0.90526)
β1 -0.46498 (- 0.56860, - 0.36137)
ρ 0.27415 (0.26075, 0.28797)
ρ1 0.19175 (0.16650, 0.21983)
ρ0/ρ1 1.42972 (1.18614, 1.72955)

Figure 4. Risk Functions Obtained by the Mixture Cure Model Based on the GMW distribution where a Covariate 
(Kind of Transplant ) is Linked Both to the Cure Fraction ρ and in the Parameter of Shape Ѱ 

Table 3. Maximum Likelihood Estimates, Considering 
the Mixture Model with the GMW Distribution where 
Acovariate Including in Cure Fraction ρ and in the 
Parameter of Shape Ѱ.
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Cure fraction models are developed to estimate 
the probability of being cured. In the absence of cured 
individuals, cure models can be reduced to the classical 
survival models. There are two major types of cure models. 
The first one is the mixture cure model, which is a common 
approach for modelling data with long-term survivors. In 
this model, the population is considered as a mixture of 
cured patients and uncured patients. The advantage of the 
mixture cure model is that it enables covariates to have 
different effects on cured patients and on survival times of 
susceptible patients. It is then possible to consider various 
covariates in the two parts of the model (incidence and 
latency) and assess the influence of the same covariate(s) 
on the two components. This property distinguishes the 
mixture cure model from the other cure models. 

On the other hand, the mixture cure model cannot verify 
the property of proportional hazard functions. Besides, 
it does not appear to have a biological interpretation 
meaning, especially in the cancer recurrence. The other 
type of cure model is often known as the promotion time 
cure model or as the non-mixture cure model. It was first 
proposed by Yakovlev et al., (1993). This model assumes 
that after the cancer initial treatment, there are some cancer 
cells left inside a patient’s body which may develop slowly 
over time and produce a discernible relapse of cancer. In 
some cases, the mixture cure model and the promotion 
time cure model are mathematically related to each other.

The graph of Kaplan-Meier survival curves in this 
study indicates that survival models that disregard the 
rate of cured subjects ρ would not be appropriate for the 
analysis of this data. In addition, this graph illustrates that 
the probability of being cured for the allogeneic group 
is better than the survival probability of the autologous 
group. Moreover, it displays stable plateaus at the right 
tail of each curve, which indicates that there may exist 
unsusceptible patients in the two treatment groups.

The present study found that the mixture cure models 
based on the EW and the GMW distributions display a 
better fit to the leukemia data since these models provide 
the closest anticipated values to the empirical values. 
However, in a different setting to the present study, 
Peng et al., (2001) proposed for the autologous group, 
the log-normal mixture cure model provides the best fit 
compared to exponential, Weibull, and gamma mixture 
cure models. 

The results of the current study show that the estimated 
values for the cure proportion ρ obtained by the cure 
models based on the Weibull, exponential, Rayleigh, 
extreme value, exponentiated exponential, and generalized 
Rayleigh distributions are greater than the value of ρ 
shown in the panel (a) of Figure 1. Applying the models 
based on the EW and GMW distributions, one can obtain 
more accurate estimated values for the parameter ρ, and 
this means that we have extra proof of a good fit when 
assuming these models. 

The curves of risk functions obtained by the EW and 
the GMW distributions are extremely near one another. 
These curves indicate that there is a high danger of death 
during the period instantly after the transplant. After this 
pinnacle, the hazard continues to decline until the end of 
the observation period.

In the present study, comparing between Table 1 and 
Table 2, we note that the AIC values provided by the fit 
of models excluding ρ are greater than the values of AIC 
obtained by the fit of models not excluding the cure rate. 
As anticipated, this also reveals that the mixture cure 
model is very convenient for analysing the data at hand.

Kutal et al., (2018) found that the estimated cure 
rates for the allogeneic group obtained by a mixture cure 
model based on Weibull and exponentiated exponential 
distributions are 0.239 and 0.242, respectively. Moreover, 
Lázaro et al., (2020) reported that the approximated cure 
fractions for allogeneic and autologous groups are 0.270 
and 0.198, respectively.These results seemed relatively 
consistent with the present findings in terms of the values 
of the estimated cure fractions for the allogeneic and 
autologous patients groups. 

It is interesting to note that the 95% confidence 
intervals for ρ0/ρ1 (1.18614, 1.72955) do not contain the 
value 1, suggesting that there is  proof of differences 
between the population cure rates presuming patients 
treated by allogeneic and autologous bone marrow 
transplants. Furthermore, the 95% confidence intervals 
for β1 (-0.56860,-0.36137) not include zero. 

The results of this study reveal that the hazard functions 
considering the mixture cure model with the GMW 
distribution and the covariate is linked both to ρ and ψ, are 
not proportional. Thus, the Cox proportional hazard model 
approach is not appropriate for analysing this data. This 
result is in agreement with the findings of Kersey et al., 
(1987). The existence of cure individuals commonly is 
not presumed by the standard Cox model (Cox, 1972).  
Nevertheless, the literature presents several expansions 
of this model that consider cured subjects. However, 
these approaches are unsuitable for the evaluation of non-
proportional risk functions. 

The curves of the hazard functions have different 
shapes, indicating that applying the parametric models 
based on generalized probability distributions for the 
study of lifetime data like the data in hand can be very 
beneficial (Martinez et al., 2013). Because these models 
can incorporate numerous types of hazard rate functions. 

It is worth mentioning that the zero belongs to the 95% 
confidence intervals for φ1 (-0.05267, 0.05259) shown in 
Table 3, indicating no evidence of a significant difference 
between the shapes of population risk functions.

The findings of the present study show that the risk 
of doom is higher in the time around 11 days after the 
transplant assuming the patients that were exposed to 
allogeneic bone marrow transplants. While the hazard 
of dying is higher around 31 days after the transplant, 
presuming that the patients were treated by the autologous 
bone marrow transplants. Around 400 days after the 
transplantation, the hazard of death is almost the same. 

In conclusion, parametric models incorporating a cure 
fraction with a specified distribution for survival times 
of susceptible subjects are appropriate instruments to 
analyse survival data with long-term survivors because 
these models do not presume hazards proportionality, 
and they can estimate measures that are readily construed 
by practitioners and health experts, as the fractions of 
immune individuals and the mean survival time. Mixture 
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cure model with the EW or the GMW distribution for 
survival times of uncured leukemia patients provides 
the best results compared with the Weibull, exponential, 
Rayleigh, extreme value, exponentiated exponential, 
generalized Rayleigh, and modified Weibull distributions.
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