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Introduction

Modern lifestyle exposes us to various factors that 
may contribute to the activation of oncogenes (Djiogue 
et al., 2013; Kipanyula et al., 2013; Makarem et al., 2017; 
Nair-Shalliker et al., 2017), which in turn may induce 
disturbances in cell growth, differentiation, and apoptosis, 
resulting in cancers (Seke et al., 2012; Nwabo et al., 2017). 
Cancers are pathologies mainly resulting from both the 
inability of cells to control their divisions and by the loss of 
mechanisms of programmed cell death. Notably, they are a 
leading cause of death worldwide and there are continuous 
increases in the incidence and mortality rates. In 2018, the 
global cancer burden was estimated at 18.1 million new 
cases and 9.6 million deaths. It is estimated that there will 
be 21 million new cancer cases and 17 million cancer 
deaths per year by 2030 (Siegel et al., 2016). 

Developing drug-resistant cancer in patients is a 
major obstacle in both conventional chemotherapeutics 
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and novel targeted therapeutics (Butler et al., 2013). 
About 90% patients obtain chemotherapeutic failure due 
to generation of drug-resistant cancer cells, even in their 
initial treatment. The major mechanisms of drug-resistance 
in cancer cells are diversified and complicated processes, 
including activating of DNA repair, decreasing drug influx, 
confiscating of drugs within intracellular organelles, 
increasing drug efflux, disabling of apoptosis pathways, 
and triggering of immune response etc (Luqmani, 2005). 
Moreover, chemotherapy agents, the first line conventional 
anticancer drugs, are associated with adverse effects and 
severe adverse effects in patients, including nausea and 
vomiting, alopecia, marked affections of erythropoietic 
and immune functions, etc. Chemotherapy agents are 
also expensive and not easily accessible in developing 
countries (Singh et al., 2018). Hence, new anticancer 
agents are needed in the field. 

Natural products are recognized as a promising 
source of bioactive compounds with a high potential 
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for development as new preventive and therapeutic 
anticancer agents (Xu et al., 2014). About 60 % of drugs 
currently used for treating cancer were isolated from 
natural products (Yin et al., 2019), particularly medicinal 
plants, which are even commonly used as alternative 
anticancer therapies. Not surprisingly, several medicinal 
plants showed interesting anticancer activities, such as 
Annona muricata, Ailanthus altissima, Tabernaemontana 
elegans, and Urtica membranacea (Bandgar et al., 2010; 
Solowey et al., 2014; Apriyanto et al., 2018) , and various 
anticancer drugs commonly used were isolated from plants 
like Catharanthus roseus G. Don., Taxus brevifolia Nutt., 
Camptotheca acuminata Decne, Combretum caffrum and 
Podophyllum peltatum L. (Cragg and Pezzuto, 2016).

Combretum fragrans F. Hoffm is a medicinal plant 
of the Combretaceae family, which is widely use in 
African traditional medicine to treat various diseases 
and conditions, including pain and inflammation, cough, 
hypertension, wounds, syphilis, leprosy, fungal infections 
of the scalp, malaria, gonorrhea, and snake bite (Maregesi 
et al., 2007; Maima et al., 2009; Mbiantcha et al., 2018). 
In addition, in the Northern part of Cameroon, this plant 
is also used to treat jaundice, diabetic foot wounds, 
ulcers, and cancers. Previous pharmacological studies 
of C. fragrans extracts reported antibacterial, antifungal 
and antiproliferative properties (Fyhrquist et al., 2006; 
Maregesi et al., 2008). However, data on the apoptotic 
potential and the mode of action of these extracts are 
lacking.

In the present study, we assessed the anticancer activity 
and mode of action of the methanolic extract of the stem 
bark of C. fragrans in glioblastoma and prostate cancer 
cell lines.

Materials and Methods

Plant material and extract preparation
The stem bark of C. fragrans was collected in 

May 2017 from the village of Padarmé, North Region, 
Cameroon. A voucher specimen N° 39753/HNC was 
deposited at the National Herbarium of Cameroon (NHC). 
A total of 1 kg of shade-dried and powdered stem bark 
of C. fragrans was macerated in 5 L of methanol for 2 
days with intermittent stirring. The solution obtained was 
filtered, and the solvent was removed. The procedure 
was repeated three times to obtain a total of 40 g of 
the methanolic extract of the stem bark of C. fragrans 
(extraction yield: 0.04 %).

Cell lines and cell culture
Cells of the human U87MG and rat C6 glioblastoma 

lines were grown in Dulbecco’s modified Eagle’s medium 
(DMEM, 1 g/L glucose) containing GlutaMAXTM (Gibco) 
and sodium pyruvate (Invitrogen), supplemented with 
10% of fetal calf serum, 100 U/ml penicillin and 100 µg/
ml streptomycin (Gibco). Cells of PC-3 human prostate 
cancer line were grown in the same conditions, except 
for the use of DMEM medium with 4.5 g/L glucose. The 
cells were maintained at 37°C in a humidified incubator 
(95 % air and 5 % CO2).

XTT cytotoxicity assay
The U87 and C6 glioblastoma (GBM) cells, as well 

as the PC-3 prostate cancer cells were plated in 96-wells 
plate respectively at a density of 5×103, 3×103 and 4×103 
cells/well in 100 µL of corresponding medium. Then, 
cells were allowed to attach overnight in growth medium. 
After a 24h incubation, the medium was replaced with 
fresh medium containing different concentrations of the 
tested extracts (3.15 - 200 µg/mL). Control cells were 
treated with DMSO (0.5%) used to dissolve samples. 
After 72h of treatment, cell viability was measured using 
the Cell Proliferation Kit II (XTT) (Roche, Mannheim, 
Gremany) as recommended by the manufacturer. Briefly, 
50 µL of XTT (2,3-bis[2-Methoxy-4-nitro-5-sulfophenyl]-
2Htetrazolium-5-carboxyanilide inner salt) labeling 
reagent mixture solution was added in each well, and then, 
the plate was incubated for 4h. XTT reagent is converted 
by the metabolically active cells into an orange formazan 
dye, and the formazan formed is directly proportional to 
the living cells. The absorbance was measured at 490 nm 
using a spectrophotometric microplate reader.

Total protein extraction
To study the effect of the extract of C. fragrans on the 

level of ERK1/2 and Akt proteins expression, the U87, 
C6 and PC-3 cancer cells were seeded in Petri dishes 
and allowed to grow up to 90 % confluence. Then, the 
medium was removed and cells were treated with the 
medium containing the extract at 20 and 40 µg/mL for 1h, 
6h and 24h. Control cells were treated with the medium 
containing the solution used to dissolve the extract (0.5 % 
DMSO). After treatment, the medium was removed, and 
cells were washed twice with cold phosphate-buffered 
saline (PBS). Then, cells were scrapped into ice-cold lysis 
buffer (10 mM Tris-HCl, pH 7.5; 0.5 mM EDTA, pH 8; 0.5 
% CHAPS and 10 % glycerol) supplemented with protease 
and phosphatase cocktail inhibitors (Pierce 88669, 40X). 
After 30 min on ice, lysates were centrifuged at 4°C for 20 
min at 13,000g. The supernatant was collected and stored 
at - 80°C. Protein concentration was determined using the 
DC Protein Assay (Bio-Rad, Hercules, CA, USA).

Western blot
Proteins (20 µg) were resolved in 10% SDS–PAGE 

and transferred on polyvynilidene fluoride (PVDF) 
membranes. Membranes were blocked using 5% nonfat 
milk in tris-buffered saline (TBS) containing 0.1% 
Tween 20 (Sigma–Aldrich) (TBST) for 1 h at room 
temperature and then incubated overnight at 4°C with 
the following primary antibodies diluted in blocking 
solution: monoclonal rabbit anti-phospho-Akt (Ser473) 
(1:1,000) or anti-Akt (pan) (1:1,000) (Cell Signaling), 
monoclonal rabbit anti-phospho-p44/42 MAPK (ERK 
1/2) (Thr202/Tyr204) (1:1,000) or anti-p44/42 MAPK 
(ERK 1/2) (1:1,000) (Cell Signaling), monoclonal mouse 
anti-GAPDH antibody (1:80,000) (Abcam). After 3 
washes of 10 min with TBST, chemiluminescent signals 
were generated using Millipore Luminata forte (Merck, 
Darmstadt, Germany) and images were captured with PXi 
system (Syngene International Ltd, Bangalore, India). 
The blots were quantified by densitometry using Image J 
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Results

In Vitro cytotoxic effects of the extract of C. fragrans
The investigation of the cytotoxic potential of the 

methanolic extract of C. fragrans was conducted on three 
cancer cell lines (U87MG and C6 and PC-3). The extract 
exhibited a strong inhibition of the proliferation of U87, 
C6, and PC-3 cells, with similar IC50 values in PC-3 (11.50 
µg/mL) and C6 (12.17 µg/mL) cells, and an almost twice 
higher IC50 value in U87 (20.13 µg/mL) cells. 

Relative activities of ERK and Akt 
Figures 1, 2, and 3 show the effects of C. fragrans 

treatment for 1h, 6h and 24h on ERK and Akt expressions 
in U87, C6, and PC-3 cells, respectively. Relative activities 
of ERK (ratio phospho-ERK / total ERK) (Figure 1a) 
and Akt (phospho-Akt / total Akt) (Figure 1b) declined 
significantly compared to control cells (p < 0.05) in U87 
glioblastoma cells, particularly after 1h of treatment 
(Figure 1). Instead, C. fragrans extract induced strong 
and sustained activations of ERK1/2 in C6 glioblastoma 
cells and PC-3 prostate cancer cells, particularly strong 
after 24h of treatment and 1h of treatment, respectively, 
compared to control cells (p < 0.01) (Figures 2 and 3). 
No marked change in Akt activity was observed in either 

software (NIH, Bethesda, MD, USA).
Assay for apoptosis

Apoptosis was detected in cells by evaluating the 
caspase-3/7 activity and cleaved poly(ADP-ribose)
polymerase 1 (PARP-1) expression. Cells were treated 
with C. fragrans extract at 20 and 40 µg/mL for 1h, 6h and 
24h. The caspase-3/7 enzymatic activity was measured 
using the Apo-ONE® Homogeneous Caspase-3/7 kits 
assay (Promega) according to the manufacturer’s 
recommendations. The assay is based on the cleavage 
of non-fluorescent caspase substrate by caspase-3/7 that 
creates a fluorescent product; the amount of fluorescent 
product generated is proportional to the amount of 
caspase-3/7 cleavage activity present in the sample. The 
intensity of the emitted fluorescence was measured at 485 
nm using a spectrophotometric microplate reader (Mithras, 
Berthold Technologies, Bad Wildbad, Germany). 

Statistical analysis
The results were expressed as mean ± standard error 

of the mean (SEM). IC50 values were calculated from 
the sigmoidal nonlinear regression curve. Statistical 
comparisons were performed with the Friedman test 
using GraphPad Prism. The statistical significance was 
set at P < 0.05.
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Figure 1. Effects of C. fragrans Treatment on ERK and Akt Activities in U87 Cells. Representative experiment 
showing western immunoblot expressions of ERK and Akt (a) and quantification of active phospho-ERK / total ERK 
and phospho-Akt / total Akt (b). Cells were treated for 1h, 6h and 24h with C. fragrans extract (CFE). Results are from 
three independent experiments performed in duplicate. Friedman test: * p < 0.05 and *** p < 0.001. C: control cells
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Figure 2. Effects of C. fragrans Treatment on ERK and Akt Activities in C6 Cells. Representative experiment showing 
Western immunoblot expressions of ERK and Akt and quantification of active phospho-ERK / total ERK. Cells were 
treated for 1h, 6h and 24h with C. fragrans extract (CFE). Results are from three independent experiments performed 
in duplicate. Friedman test: ** p < 0.01 and *** p < 0.001. C, control cells. 

Figure 3. Effects of C. fragrans Treatment on ERK and Akt Activities in PC-3 Cells. Representative experiment 
showing Western immunoblot expressions of ERK and Akt and quantification of active phospho-ERK / total ERK. 
Cells were treated for 1h, 6h and 24h with C. fragrans extract (CFE). Results are from three independent experiments 
performed in duplicate. Friedman test: ** p < 0.01 and *** p < 0.001. C, control cells.
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C6 or PC-3 cells (data not shown).

Caspase-3/7 activity
Figure 4 shows the effects of C. fragrans treatment 

for 6h and 24h on caspase-3/7 activity in U87, C6 and 
PC-3 cells. C. fragrans extract strongly increased the 
caspase-3/7 activity in all the cancer cell lines tested, 
particularly after 24h of treatment (Figure 4). 
PARP-1 expression

Figure 5 shows the effects of C. fragrans extract on 
cleaved PARP 1 expression in U87, C6 and PC-3 cells 
following 1, 6 and 24h of treatment. A slight increase in 
the expression of cleaved PARP-1 was detected in U87 
cells after 24h of treatment with C. fragrans, while cleaved 
PARP-1 was not detected in C6 cells even after 24h of 
treatment with C. fragrans (Figure 5). On the other hand, 
slight increases in the expression of cleaved PARP-1 in 
PC-3, which were observed from 1h of treatment with 
C. fragrans, became marked after 24h of treatment 
(Figure 5).

Figure 4. Effects of C. fragrans Extract on Caspase-3/7 Activity in U87, C6 and PC-3 Cells. Cells were treated with 
20 µg/mL of C. fragrans extract (CFE) for 6 and 24h. Results were obtained from two independent experiments per-
formed in triplicate. Friedman test: * p < 0.05; ** p < 0.01 and *** p < 0.001.

Discussion

The results of the present study suggest that C. fragrans 
extract mediated a strong inhibition of the proliferation of 
U87, C6, and PC-3 cells, possibly through ERK and Akt 
signaling modulation. The extract induced a significant 
decrease in relative activities of ERK (ratio phospho-ERK 
/ total ERK) and Akt (phospho-Akt / total Akt) compared 
to control cells in U87 glioblastoma cells, particularly after 
6h of treatment. ERK 1/2 and Akt are key components of 
MAP kinase and PI3K signaling pathways, respectively. 
This finding indicates that the extract probably induced 
apoptosis in U87 through the modulation of ERK and 
Akt signaling, and is consistent with previous reports on 
effects of other medicinal plants (Wang et al., 2004; Yu 
et al., 2017). These signaling pathways are key players in 
cancer pathogenesis due to their involvement in malignant 
cell proliferation, differentiation and survival ( Coffer et 
al., 1998; Cobb, 1999; Xiao and Singh, 2002), including 
in glioblastoma (Molina et al., 2010) and prostate cancer 

Figure 5. Effects of C. fragrans Treatment on PARP 1 Expression. Representative experiment showing Western immu-
noblot expressions of cleaved PARP 1 in U87, C6 and PC-3 cells following 1, 6 and 24h of treatment with C. fragrans 
extract (CFE) at 20 and 40 µg/mL. C, control cells.
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(Albrecht et al., 2008). 
Interestingly, on the other hand, C. fragrans extract 

induced a sustained and strong activation of ERK in 
C6 and PC-3 cells without changes in Akt expression. 
Considering that early studies show that prolonged 
ERK activation causes cell growth arrest and cell death 
(Wang et al., 2000; Ballif and Blenis, 2001), it appears 
that C. fragrans extract may induce apoptosis through 
strong and prolonged activation of ERK1/2. It is now 
established that although ERK is a pro-survival factor in 
the MAP kinase family and contributes to the regulation 
of cell proliferation and differentiation, under some 
circumstances like prolonged activation, ERK1/2 can 
induce cell cycle arrest (Marshall, 1995; York et al., 1998) 
and apoptosis ( Xiao and Singh, 2002; Rangaswami et 
al., 2006; Lin et al., 2007). ERK1/2 prolonged activation 
is though to be present in approximately 30% of tumors 
(Albrecht et al., 2008). 

In conclusion, altogether, the results of the present 
study indicate that the methanolic extract of the stem 
bark of C. fragrans strongly inhibited the growth of U87 
human glioblastoma cells, C6 rat glioblastoma cells and 
PC-3 prostate cancer cells. The extract induced apoptosis 
which is correlated with a significant inhibition of ERK1/2 
and Akt activities in U87 cells, and a strong and sustained 
activation of ERK1/2 in C6 and PC-3 cells. Therefore, 
C. fragrans is a promising source of useful molecules for 
anticancer therapy.
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