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Introduction

Despite major therapeutic advances and the 
development of new treatment options, cutaneous 
melanoma continues to have the highest mortality rate 
among skin tumors (Cronin et al., 2018; Schvartsman et 
al., 2019). The encouraging success of targeted therapy 
and immunotherapy underscores the need to improve our 
understanding of melanoma tumor biology to facilitate the 
identification of novel potential targets (Leonardi et al., 
2018; Pearlman et al. 2017).

CD133, also known as Prominin-1, is a pentaspan 
transmembrane glycoprotein encoded by PROM1 located 
on chromosome 4, which was first described as a marker 
for hematopoietic progenitor cells (Miraglia et al., 1997; 
Fargeas et al., 2007). Although the exact physiological 
function of CD133 remains to be elucidated and its 
natural ligand is unknown, it appears to be involved in cell 
differentiation and signal transduction (Sun et al., 2012; 
Bauer et al., 2011; Irollo and Pirozzi, 2013). Nevertheless, 
this cell-surface protein is regarded as an important driver 
of tumor progression and as a putative cancer stem cell 
(CSC) marker (Glumac and LeBeau, 2018). Our group 
previously demonstrated the increased ability of CD133-
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positive (CD133pos) cells to induce neoangiogenesis in 
vivo (Zimmerer et al., 2016).

In contrast to the stochastic or clonal evolution 
cancer models, the CSC theory assumes a hierarchical 
organization of cells, with one subpopulation at the apex, 
designated as CSCs, capable of tumor initiation and 
progression; CSCs are characterized by their unlimited 
self-renewal and lack of growth inhibition, as well as 
their increased resistance to chemotherapy (Baccelli and 
Trumpp, 2012).

CD133 has been detected in various types of solid 
tumors, such as in lung, liver, and colorectal cancers 
(Glumac and LeBeau 2018). Similarly, melanoma 
exhibits stemness characteristics through a CD133pos 
subset. However, the role of CD133 in general and 
specifically in melanoma remains highly controversial; 
there is no conclusive evidence regarding whether CD133-
negative (CD133neg) subpopulations can initiate tumors 
(Zimmerer et al., 2016, González-Herrero et al., 2013; 
Yde et al., 2018; Fomeshi et al., 2016; Rappa et al. 2008; 
Zimmerer et al., 2013; Roudi et al., 2015; Monzani et 
al., 2007). In the present study, the relationship between 
stemness features and CD133 expression was investigated; 
additionally, the suitability of CD133 as a cancer stem cell 
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marker in malignant melanoma was evaluated. 

Materials and Methods

Cell culture
A metastatic melanoma cell line, D10, characterized 

by tumor-associated antigen positivity and the HLA-A * 
0201 serotype, was used in the present study as previously 
described by our group (Zimmerer et al. 2013). Briefly, 
the cells were cultured in Dulbecco’s Modified Eagle 
Medium supplemented with 10% fetal bovine serum, 100 
IU/mL penicillin, and 100 μg/mL streptomycin (all from 
Biochrom, Berlin, Germany).

Flow cytometry
Fluorescence-activated cell sorting (FACS) was 

performed to identify the CD133pos fraction. Cells in 
suspension were marked by a specific antibody labelled 
with allophycocyanin (APC) fluorescent dye (CD133-
APC, Miltenyi Biotec GmbH, Bergisch Gladbach, 
Germany), according to the manufacturer’s protocol. 
The CD133 phenotype was then determined using the 
FACSCalibur flow cytometer (BD Biosciences, Franklin 
Lakes, NJ, USA); evaluation was carried out using 
CellQuestTM Pro (BD Biosciences) and FlowJoTM 
v7.6.5 (FlowJo LLC, Ashland, OR, USA) software.

 Cell separation
The CD133pos and CD133neg phenotypes were 

separated by Magnetic Activated Cell Sorting (MACS®, 
Miltenyi Biotec GmbH). The cultured D10 cells were 
first incubated with a CD133-targeted antibody. Next, 
a secondary antibody with metallic particles (MACS®-
MicroBeads) against the primary antibody was added. 
The cells, which were now magnetically labelled, 
were fractionally separated depending on their CD133 
expression profile.

Animal housing conditions and xenotransplantation
For in vivo examinations, 24 female NOD/SCID (non-

obesity diabetic/severe combined immunodeficiency) 
mice aged at least 12 weeks and weighing between 19 
and 25 g were used. The mice were kept in small groups 
of up to five animals under a 12-h day/night cycle at a 
temperature of 22–24°C and constant relative humidity of 
60–65%; all animals had unrestricted access to water and 
feed (1328 hybrid pellet, Altromin Spezialfutter GmbH & 
Co. KG, Lage, Germany). Three groups of eight animals 
each were randomized into different xenotransplantation 
groups according to cell separation status (A: unsorted 
cells, B: CD133pos, and C: CD133neg); inguinal bilateral 
subcutaneous injection of 105 tumor cells was carried 
out under intraperitoneal anesthesia with 75 mg/kg body 
weight ketamine hydrochloride (Ketamin Gräup, Albrecht 
GmbH, Aulendorf, Germany) and 25 mg/kg body weight 
dihydroxylidinothiazine hydrochloride (Rompun®, Bayer 
AG, Leverkusen, Germany). Tumor growth was assessed 
weekly with a precision caliper according to the longest 
tumor diameter; after 8 weeks, the test animals were 
sacrificed by anesthetic overdose and cervical dislocation. 
The xenografts were subsequently removed, measured, 

and fixed in 3.5% formaldehyde prior to embedding in 
paraffin (Merck KGaA, Darmstadt, Germany). The final 
tumor volume was approximately determined using the 
following three-axis ellipsoid formula: V =4/3 πabc with 
a, b, and c representing the radii of the three axes. 

Next, thin sections (5 μm) were prepared and 
stained with hematoxylin and eosin (both from 
Merck KGaG) according to established protocols. 
For immunohistochemical detection of CD133, 5-μm 
sections were incubated with a rabbit anti-human 
PROM1/CD133 antibody (Abnova, Taipei, Taiwan), 
followed by a secondary biotin-conjugated goat anti-
rabbit antibody (Dianova, Hamburg, Germany). Next, 
3.3′-diaminobenzidine (DAB) (Vector Laboratories, Inc., 
Burlingame, CA, USA) was added after incubation with 
streptavidin-conjugated horseradish peroxidase (Dianova), 
which was followed by counterstaining with hematoxylin 
for microscopic observation. The primary antibody was 
omitted from negative controls to ensure no detectable 
staining.

Histomorphometry
To quantify the immunohistochemical staining, the 

sections were imaged using light microscopy (Leica 
DM6 with camera DFC7000 T, Leica Mikrosysteme 
Vertrieb GmbH, Wetzlar, Germany) and assembled into 
mosaic images covering the entire tumor area using a 
supported software (Leica Application Suite X (LAS X), 
Leica Mikrosysteme). Using a previously determined 
color spectrum, histomorphometric analysis of these 
images was carried out using the cellSens Dimension 
1.14 image analysis software (Olympus, Tokyo, 
Japan). Immunohistochemically stained regions were 
subsequently detected using image analysis software 
and their areas were evaluated in terms of pixels. To 
account for the different sizes of the individual tumors, 
the stained areas were considered in relation to the area 
of counterstained cell nuclei.

Statistical analysis
Statistical analyses were performed using SigmaPlot 

software (Systat Software, Inc., San Jose, CA, USA). 
Univariate analysis of variance was carried out to detect 
significant differences between the three comparison 
groups. The Kruskal–Wallis test was used to compensate 
for the lack of normal distribution. The Tukey’s test 
was subsequently used for post-hoc testing to compare 
individual groups. Variations with p-values <0.05 were 
considered as statistically significant based on a 95% 
confidence interval. 

Results

Phenotypic characterization
As a first step, phenotypic characterization of D10 cells 

according to CD133 epitope expression was performed by 
flow cytometry; it was determined that 10.7% of these cells 
were positive for CD133 (CD133pos cells).

Tumorigenicity
Three groups of mice were considered for 
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volume at the end of the experiment (p = 0.014, Figure 3). 
Pair-wise differentiation using the post-hoc test showed 
that this difference was noted only between groups A 
(unsorted cells) and C (CD133neg) (p = 0.010); other 
group comparisons did not show significant results (A 
with B: p = 0.281 and B with C: p = 0.347).

Regarding the course of growth in the host organism 
during the experiment, no significant difference between 
the compared groups was detected. Tumor growth (in 
mm) over time is illustrated in Figure 4. According to 
analysis of variance, the three compared groups did not 
significantly differ (p = 0.881).

Histology and CD133 expression
Distinct differences between the individual groups 

could not be detected by light microscopy; there was always 
a trabecular light-celled growth pattern, accompanied by 
large core size variance with a conspicuously large number 
of nucleoli and frequent mitoses. Immunohistochemical 
staining for CD133 revealed heterogeneous positivity for 

xenotransplantation depending on the phenotype of the 
injected D10 cells (group A: unsorted cells, group B: 
CD133pos, and group C: CD133neg). The experimental 
animals were then periodically examined after the cells 
were administered into their flanks. Notably, all 48 
melanoma cell injections led to tumor manifestations; 
interestingly, tumor growth was also induced in group C. 
Thus, there were no differences between the compared 
groups, indicating that tumorigenicity was not affected 
by the CD133 phenotype. 

Tumor growth
In contrast, the time until a palpable tumor was 

detected differed. As shown in Figure 2, initial tumor 
formation was detected significantly later in group A 
mice (unsorted cells) than in the mice of the other two 
groups (p ≤ 0.001), whereas, no significant difference was 
observed between groups B and C (p = 0.992). Although 
the unsorted cells formed a palpable tumor significantly 
later, the neoplasms in this group showed the largest 

Figure 1. FACS-Analysis of the D10 Cell Line. (A), Autofluorescence of D10 cells; (B), Fluorescence after labelling 
CD133 (10.7% showed positive signals). FSC-H: forward scatter height; FL4-H: fluorescence emission spectrum 4 
height*: chosen cut-off

Figure 2. Time until tumor formation in weeks. *, comparison between group A and group B (p = 0.003); #, comparison 
between group A and group C (p = 0.004). 
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the examined surface antigen in all tumors (Figure 5); in 
all groups, tumors showing strong expression of CD133 
in addition to those with reduced expression of the marker 
were detected. However, no specific pattern was observed 
for this inconsistent distribution. Histomorphometric 
analysis of the explanted tumors showed no significant 
difference in CD133 expression (p = 0.07, Figure 6).

Discussion

CD133 is considered the most promising marker for 
CSCs in melanoma (Madjid et al., 2016). Most studies 
have reported a rare subset of CD133-positive cells in 
melanoma comprising less than 1% of total tumor cells 
(Monzani et al., 2007). The D10 cell line expresses CD133 
more frequently than typical melanoma (approximately 

10.7%); this high rate appears to be associated with the 
metastatic state of this cell line (Grasso et al., 2016). 
However, there are contradictory statements regarding 
the ability of CD133-negative cells to induce tumors. 
Monzani (2007) showed that only CD133-positive cells 
can induce tumors in mice. In our previous study, these 
results were confirmed using highly immunodeficient 
NSG mice (Zimmerer et al., 2013). However, other 
studies found that CD133-negative cells could also induce 
tumors (Grasso et al., 2016; Quintana et al., 2008); hence, 
this difference was further investigated using a different 
murine model. Considering the varying results and 
numerous factors that can influence this phenomenon, 
such as host organisms or number of injected cells, CD133 
does not appear to be a suitable and specific marker for 
tumorigenicity.

Figure 3. Final Tumor Volume (mm3) of the Mice in the Three Groups after Xenotransplantation. All groups showed a 
significant difference in tumor volume (p = 0.014); * difference between group C and the other groups (post hoc test 
p = 0.010). 

Figure 4. Tumor Size (mm) of the Mice in the Comparison Groups Over Time. All data are represented as the mean 
values ± standard deviation.  There was no significant difference (p = 0.881). 
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In addition, the well-known phenomenon of 
“phenotype switching” causes uncertainty regarding 
the correct grouping of different cell subsets (Li et al., 
2015). Nevertheless, interspecies differences between 
mice and humans should be considered before evaluating 
the implications of such animal model-based findings in 
humans; this is especially because in our study, cutaneous 

Figure 5. Immunohistochemical Staining of CD133 in Tissues from the Mice of the Three Groups. (A1, B1, C1: 
10x magnification); (A2, B2, C2: 20x magnification).Brown: immunohistochemical staining with DAB; blue: 
counterstaining with hematoxylin.

Figure 6. Percentage of CD133-Stained Area in the Three Groups. There was no significant difference between the 
three groups (p = 0.07). 

melanoma cells were heterotopically transplanted into the 
subcutaneous fat of the mouse model. 

Accumulating data have shown that elevated CD133 
expression in tumors is associated with more aggressive 
biological behavior, such as faster growth and poorer 
survival, as observed in colorectal tumors (Pallini et 
al., 2011; Horst et al., 2008). Thus, faster tumor growth 
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was anticipated in the CD133-positive group in vivo; 
however, this was not detectable in our investigation. 
Moreover, tumors induced by CD133-positive cells were 
predicted to have a larger tumor volume, which was also 
not the case in our study. As the group of unsorted cells 
induced the largest tumor volume, the presence of different 
cell populations may be conducive for tumor growth. 
Thus, the presence of CSCs is likely only one factor 
facilitating tumor growth; the interaction between these 
cells and neoplastic cells lacking stemness characteristics, 
non-neoplastic cells within the tumor, as well as the 
surrounding cells and micromilieu may also drive tumor 
progression (Somasundaram et al., 2016; Brandner and 
Haass, 2013).

In summary, all xenotransplanted tumors exhibited 
detectable CD133 expression via immunohistochemical 
staining, without significant differences between groups. 
During tumor growth, this surface characteristic was 
also expressed in initially CD133neg cells; this may be 
attributed to the aforementioned “phenotype switching” 
phenomenon. In general, the plasticity of tumor cells 
appears to be underestimated. During tumor growth, 
the influences of intrinsic and extrinsic stress factors 
repeatedly lead to cellular responses for overcoming 
suboptimal growth conditions (Leucci et al., 2017); 
this adaptation may be accompanied by a phenotypic 
change into a CD133-expressive state. This phenotype 
instability does not appear to be unidirectional, as 
once believed, and can pose a major obstacle to the 
identification of robust CSC markers (Hoek and Goding, 
2010). Therefore, combining different markers may be the 
key to identifying CSCs more reliably and this requires 
further investigation. There were certain limitations to 
our study. Monolayer cell cultures can only approximate 
the complex cellular processes and reaction patterns 
found in vivo. Even animal models, such as the mouse 
xenotransplantation model utilized in the present study, 
harbor uncertainties with regard to the host environment, 
which differs significantly from the natural environment 
surrounding human tumor cells. For example, the genomic 
instability of the xenografts appears to result in chromatic 
aberrations during growth in the host organism (Ben-
David et al., 2017). In addition, the microenvironment in 
the host organism, particularly in the case of a heterotopic 
transplant, can affect the expression of surface antigens, 
thereby influencing the outcome of the study (Grasso et 
al., 2016; Quintana et al., 2008).

In the present study, CD133neg cells demonstrated 
tumorigenic potential, in contrast to widely held 
predictions; conversely, CD133pos cells did not exhibit 
increased aggressiveness. Thus, in contrast to predictions, 
CD133 is not an accurate cancer stem cell marker in 
malignant melanoma. This is consistent with the findings 
obtained from other studies that critically assess the value 
of this surface antigen as a specific cancer stem cell 
marker in malignant melanoma. Further studies using a 
combination of different markers, while also taking the 
“phenotype switching” phenomenon into account, should 
be conducted; this approach may be crucial for reliably 
detecting cancer stem cells, particularly in malignant 
melanoma, and for designing true targeted therapies.
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